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Abstract

Finite-state verification provides software developers with a powerful tool to
detect errors. Many different analysis techniques have been proposed and imple-
mented, and the limited amount of empirical data available shows that the per-
formance of these techniques varies enormously from system to system. Before
this technology can be transferred from research to practice, the community must
provide guidance to developers on which methods are best for different kinds of
systems. We describe a substantial case study in which several finite-state verifi-
cation tools were applied to verify properties of the Chiron user interface system,
a real Ada program of substantial size. Our study provides important data com-
paring these different analysis methods, and points out a number of difficulties in
conducting fair comparisons of finite-state verification tools.

1 INTRODUCTION

Automated or partially-automated techniques for checking the correctness of concur-
rent programs range from formal verification that the program satisfies a complete spec-
ification to dynamic methods that examine the outcome of executions of the program or
check assertions during such executions. Different techniques are, of course, useful for
different purposes. For the most critical modules, for example, the extra assurance of
formal verification may justify its effort and expense, but formal verification is likely to
be impractical if not infeasible for large and complex programs. Dynamic techniques
such as testing, on the other hand, while an essential part of software development,
examine only a single execution at a time. Especially for concurrent programs, which
may display very different behaviors in response to the same input data due to changes
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in the relative order of events in different components, such techniques may fail to
detect serious faults.

A third class of techniques consists of finite-state verification methods such as
model checking, necessary conditions analysis, or data flow analysis. Such techniques
can consider all possible executions of a concurrent program, but generally cannot be
used to show that a program satisfies a complete specification. Instead they check a
particular property or collection of properties, such as freedom from deadlock or the
mutually exclusive use of certain resources, that should hold on all executions of the
program. Because these methods can be automated relatively easily, at least in com-
parison to the theorem-proving required for formal verification, but still consider all
possible executions of the program, they have the potential to play an extremely im-
portant role in the development of high-quality concurrent software. With the spread
of distributed applications running over the Internet and the widespread adoption of
languages such as Java that provide support for concurrency, the need for developers
of concurrent programs to use such methods will continue to increase.

A variety of finite-state verification techniques have been proposed, and several of
these have been implemented as prototype tools. Experience in using these prototypes
to analyze concurrent software, however, is still largely limited to simple academic
programs (some of which can be scaled to large sizes) and indicates that, while all of
the proposed techniques can check important properties for some programs, they all
encounter problems with at least some programs that approach realistic size and com-
plexity. Moreover, basic theoretical results tell us that virtually all the questions we
want to answer about concurrent systems are at least NP-hard, so no single approach
is likely to be practical across the broad range of concurrent programs. Indeed, prelim-
inary experience with the prototype tools suggests that considerable skill in properly
formulating models of the programs and their properties is necessary to successfully an-
alyze real programs. Developers of concurrent systems will thus need guidance about
which techniques and tools are most appropriate for a particular analysis problem and
about how those techniques and tools can be used effectively, but no such guidance is
now available, whether from analytic or empirical studies.

As part of a project to help provide such guidance, we have conducted a substantial
case study in which several different finite-state verification tools were used to check
properties of the Chiron user interface system—a large concurrent Ada program that
was not written to illustrate finite-state verification techniques. In particular, we com-
pared the performance of SPIN, SMV, INCA, and FLAVERS in checking properties of
the event dispatch mechanism in Chiron as the system is scaled. This paper reports the
results of this study and makes three main contributions.

First, we provide another example of the successful application of finite-state ver-
ification tools to realistic concurrent programs. We found a deadlock in the Chiron
system that had been observed but not explained by the Chiron developers, and were
able to verify several important requirements of the system.

Second, we have accumulated a considerable body of examples and data that are
available to other researchers. The models we used and the properties we checked,
expressed in the different input formalisms of the various tools, and the complete data
from our analyses are available on the web and contribute to a common body of infor-
mation that can be used by other researchers comparing tools and by the developers of



finite-state verification tools.

Third, we have obtained clear evidence of the sensitivity of the analysis tools to
details of the particular model of the system being analyzed. Models that are formally
equivalent in important ways yield very different performance by the different tools,
and we do not yet have a good understanding of the source of these differences in
performance or the ability to predict them. This raises a number of important questions
for the transfer of finite-state verification technology to industrial practice. It also points
out how cautious researchers must be about using translations from one specification
formalism to another. Even translations that are sound and have been reasonably well
validated on a particular class of systems may introduce significant bias when applied
to other kinds of systems.

The next section briefly reviews related work. Section 3 gives an overview of the
Chiron user interface system, and Section 4 describes how we analyzed the system with
the different analysis tools. Finally, Section 5 summarizes the data we collected, and
Section 6 concludes.

2 PREVIOUS WORK

Much of the research on the application of finite-state verification tools to software sys-
tems has concentrated on the specification and design phases of software development
(e.g., [1,3,18]). Among the advantages of using finite-state verfication at such early
stages of development are the smaller size of specifications and designs, compared to
the programs implementing them, and the well-known observation that errors detected
at the design stage can be corrected much more cheaply than those caught after imple-
mentation. But there are also many circumstances in which it might be appropriate to
apply such tools to code. For instance, it is necessary to check that the code actually
implements a design correctly and, when an existing system is being modified, designs
for the existing components may simply be unavailable. Some work has therefore in-
vestigated the application of finite-state verification to concurrent code. For instance,
Young, et al. [23] applied a reachability-based tool to part of the Chiron user interface
development system, and Masticola [20] used data flow methods to check for deadlock
in a number of relatively small Ada programs. All of these investigations have focused
on a single tool.

To our knowledge, the only studies comparing the performance of several different
finite-state verification tools on software are those carried out by Duri, et al., by Cor-
bett, by Chamillard, and by Dong, et al. The paper by Duri, et al. [10] compared a
variety of state-space reduction methods, separately and in combination, for deadlock
detection using a Petri-net based reachability analyzer and applied these techniques to
a number of small Ada programs. This work involved building Petri net models of the
Ada programs, and applying reduction methods to these models and their reachability
graphs. A single reachability analyzer was used to search for deadlock.

Corbett [6] and Chamillard [2] compared tools using several different approaches
to finite-state verification. Their studies also used small Ada programs from the con-
currency literature and communication skeletons of a few real programs of relatively
small size. The tools compared by Corbett and Chamillard use different formalisms for



describing the program to be analyzed and for specifying the properties to check. Cor-
bett compared three tools for checking deadlock. One of these tools uses an Ada-like
language to describe the program and constructs a model of the program as a collection
of communicating finite-state automata (FSAs). Corbett constructed automated trans-
lators that used this collection of FSAs to create representations of the program being
analyzed in the input languages for SPIN and SMV. He validated these translations by
consultation with the developers of the SPIN and SMV and by some comparisons with
hand-translated versions of the original Ada programs. Chamillard’s study included an
additional finite-state verification tool that could work directly from Ada source code,
and also considered a number of application-specific properties in addition to dead-
lock. He made use of Corbett’s translations, and carried out a statistical analysis to
check several aspects of the translation process for bias.

Neither Corbett nor Chamillard was able to draw any definitive conclusions, al-
though both observed that there was considerable variation in both the absolute and
relative performance of the tools across the range of concurrent programs considered.
Corbett’s work suggested that communication structure, i.e., the topology of communi-
cation among the tasks in the system, had a significant effect on SPIN and SMV, while
the size of individual tasks was more important for INCA. Chamillard attempted to
build predictive models of tool performance and failure using a large number of stan-
dard measures of the programs being analyzed; while he was able to construct a fairly
good model predicting failure, his work suggested that the metrics he applied to the
example programs did not reflect the features of those programs that most affected tool
performance.

Dong, et al. [9] report on the application of five different model checkers to ana-
lyze the i-protocol, an optimized sliding window protocol implemented in C as part of
the GNU UUCP package. The authors used their own model checker, XMC, as well
as SPIN, SMV and several other tools. Abstract models were constructed by-hand in
each tool’s input language that represented the essential behavior of the 1500 line C
program; several different people participated in this model construction effort. The
results of the study showed that XMC was superior to both SPIN and SMV. Gerard
Holzmann, the author of SPIN, has recently considered the details of this empirical
study [17] and identified two significant methodological problems with the study rela-
tive to the use of SPIN to check the i-protocol. First, SPIN was invoked with inappro-
priate parameters that hurt its performance. SPIN is a complex tool and it is difficult
to arrive at a setting of its parameters that optimizes its performance. In the i-protocol
study, however, the investigators overrode the default settings for SPIN, causing it to
allocate much more memory in performing its check than was necessary; with default
settings SPIN’s performance was better than that of XMC. The second methodological
problem identified by Holzmann is that the XMC and SPIN models used in the study
were not equivalent. It may be difficult to construct identical models in different tool
input languages, due to differences in the features of those languages. In this study,
however, the models were dramatically different, with the SPIN model consisting of
more than twice as much information per-state than the other models. With less than
1 hour of work and minor changes to the model’s description, Holzmann was able to
produce a model whose per-state information was half that of the model used in the
study. Using this model and the corrected settings SPIN was faster than XMC by sev-



eral orders of magnitude. This analysis of the i-protocol study findings illustrates the
importance of trying to eliminate possible sources of bias in the use of different analy-
sis tools. For this study, the bias was sufficient to declare one tool superior to another
when the opposite seems to be true.

3 THE CHIRON USER INTERFACE SYSTEM

Chiron [15] is a user interface development system. The data and functionality of the
application for which an interface is to be constructed must be organized as abstract
data types (ADTs). These ADTs are depicted by one or more artists that maintain
mappings between ADT objects within the application and visual objects appearing on
the screen.

The basic architecture of Chiron distinguishes between servers and clients. The
Chiron server manages all aspects of a user interace that are not artist- or application-
specific. It maintains an internal data representation that is rendered on the screen
via calls to the underlying window system. The server also listens for events from
the window system (e.g., button pushes) and sends them to the appropriate clients. A
single server can support multiple clients.

A Chiron client comprises the application, the ADTs to be depicted, artists for
those ADTs, and some runtime components that provide coordination among these
components. Figure 1 gives a slightly simplified view of the architecture of a client,
showing the main components and the connectors between them. A Client Initializer
is responsible for bringing up the initial client configuration. An Artist Manager pro-
vides an interface through which new instances of artists can be invoked dynamically
and is used by the Client Initializer to construct the initial configuration of artists. The
Artist Manager also can shut down an existing artist. The Application makes calls to its
ADTs through wrappers that provide appropriate control of concurrent access and no-
tify other Chiron components of changes in the state of the ADTs. The Artists maintain
the graphical depictions of the ADTs. They indicate which events they are interested
in by registering or deregistering with the Dispatcher, which routes the events from
the ADTSs to the appropriate artists. Artists manipulate their graphical depictions by
making calls in the Abstract Depiction Language (ADL) that are routed to the server
through the Client Protocol Manager. Events from the server, such as button pushes,
are sent to the client through the Client Protocol Manager and distributed to the appro-
priate artists by the Mapper.

The Chiron architecture is highly concurrent and even a toy Chiron interface repre-
sents about 1000 lines of Ada code. It therefore offers a serious challenge for automated
static analysis methods. Because some aspects of Chiron had been previously analyzed
using the CATS toolset [23], however, we had some reason to believe that the challenge
would not completely overwhelm the finite-state verification tools we intended to use.
Furthermore, we have good communication with the Chiron developers at the Univer-
sity of California at Irvine and we could call on them for assistance in understanding
the code and the behavior of Chiron and in identifying significant properties to check.
Chiron therefore seemed to be a good choice for a subject program for a comparative
study of analysis techniques.
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Figure 1: Chiron client architecture

4 METHODOLOGY

In this section, we describe how we applied the finite-state verification tools to a part
of the Chiron user interface system.

4.1 Basic Approach

An empirical comparison of several finite-state verification tools presents some sig-
nificant difficulties. First, analyzing even a single real program with a single tool is
likely to be a very sizable project. Carrying out analyses of even a few real concurrent
programs is an imposing task, but unless there were some way to ensure that these pro-
grams really represented the population of concurrent programs of interest, it would
only provide hints about the general performance of the tools. Second, not only does
the use of several tools magnify the effort needed, but it requires expertise in the use of
those different tools. Finally, although such a study can avoid many of the difficulties
faced by software engineering experiments with human subjects, the design of a sound
study of this type is difficult and requires extremely careful attention to a number of
possible sources of bias [2,6]. The present work is not intended to represent a full-scale
comparison of finite-state verification tools, but rather is an exploratory study of the ap-
plication of several such tools to a single program. Our goal is to learn more about the
problems of comparing different tools and to gain some insights into the differences in
their performance that might guide further research.

Our approach was to choose a single concurrent program of moderate but substan-
tial size, to identify a number of properties of that program that would be of significant
interest to the developers, and to use several different finite-state verification tools to
check those properties. We expected to have to use various abstractions to produce
models small enough to be handled by the tools, and perhaps to have to make other
changes in the code.

We initially chose to use three finite-state verification tools: SPIN [16], a reachability-
based model checker that explicitly enumerates the state space of the system being
checked; SMV [21], which uses Ordered Binary Decision Diagrams to encode subsets



of the state space; and INCA [7], which generates systems of inequalities that must be
satisfied by an execution of the system that violates the property being checked and
tests for consistency of those inequalities. SPIN can check Linear Temporal Logic [19]
formulas. SMV checks properties expressed in Computation Tree Logic [4], a branching-
time temporal logic. INCA checks queries that describe intervals in a trace of an exe-
cution [7]. These tools represent three very different algorithms for finite-state verifi-
cation, and were used by Corbett and Chamillard in their earlier work.

4.2 Specification of Correctness Properties

In order to study the extent to which finite-state verification methods are effective on a
real software system such as Chiron, we need a collection of correctness requirements
describing the intended behavior of Chiron. Like most real software systems, Chiron
does not have a complete formal description of its intended behavior. What exists is
documentation in the code and information in the minds of its developers. Fortunately,
the Chiron developers were willing to assist us by providing information about the in-
tended behaviors of the system. This formed the basis of the collection of 10 properties
that we checked in this study. The properties that we chose to examine focus on the
event dispatching mechanism.

It is important to note that finite-state verification tools are applied to reason about
partial rather than total specifications of system’s correctness. In practice, one can
specify relatively weak necessary conditions for correct system behavior and the anal-
ysis of such a specification may still find a defect. There are a wide range of partial
specifications that one may write which describe some aspect of a systems execution,
e.g., the event dispatching mechanism in Chiron. While we believe that the specifi-
cations we check are realistic and reflect the Chiron developers’ understanding of the
intended behavior, we do not claim that these are exactly the specifications that the
developers would have written. For the purpose of our study, however, they serve as
good examples of realistic system properties.

Rendering an English language requirement in the specification language of a finite-
state verification tool, like SPIN, SMV or INCA, can be a significant challenge. For our
study, there is an additional complication. For each requirement, we need to produce
LTL and CTL formulas and an INCA query formalizing it. In order for performance
comparisons of the tools to be meaningful, we must be sure that those formalizations
are consistent. In other words, we must be sure that the process of translating spec-
ifications from informal to formal notations was consistent with respect to meaning;
otherwise we run the risk of biasing the results by presenting one of the tools with a
property that is easier to check.

To address this issue, whenever possible we used a specification patterns sys-
tem [11] to help translate from English to formal specifications. The patterns system
defines a collection of 40 different parameterized specification templates in 5 different
specification formalisms; LTL, CTL and the INCA query language are supported. Pat-
terns are organized by English language statements of infent which describe a class of
permissible system behaviors. Each pattern has associated with it a specification tem-
plate which is a skeletal specification. Templates are parameterized by descriptions of
the specific states or events that are to be related by the specification. The entire pattern



system is available at [22], including all of the specification templates, documentation
for how to define parameters, and examples of its use.

4.2.1 Requirement Formalization Methodology

Formalizing an English language requirements statement proceeds in several steps.

The first step was to agree on English versions of the requirements statements that
were relatively unambiguous; there were several requirements that were significantly
rewritten or split into multiple requirements in this process. The final statement of the
Chiron requirements we used in the study are given in Figure 2.

The second step was to identify the semantic features of the program which are
mentioned in the requirement. For example, a specification might mention the occur-
rence of a specific rendezvous (e.g., between the dispatcher and a specific artist), or
that a program variable has achieved a specified value(e.g., variable el sz is greater
than zero). These semantic features were then assigned names (e.g., dispatcherNotif-
yArtistEventl, elszGT0).

The third step was to use the English requirements statement to guide the selection
of the most appropriate specification pattern. The pattern can then be instantiated by
substituting the names of the appropriate semantic features into the parameters in the
specification templates.

To check specified properties, the names of the program features defined in step
two must be bound to the states of the model in which those features hold. The INCA
toolset provides a predicate definition language that allows for the description of a col-
lection of states to be associated with a specific name. The INCA toolset then encodes
the definition of that name in the model checker input file, thereby allowing properties
to be written in terms of predicate names. INCA supports event and state predicates.
An event refers to the occurence of a rendezvous, a procedure call, or some other desig-
nated program statement. An event predicate is true in the state following an occurrence
of the event. State predicates define the points at which selected program variables hold
a given value. INCA’s predicate definition capabilities are detailed in [14].

In several cases, we found it desirable to refine our definition of semantic features
by modifying the finite-state model to reveal relevant program features in a slightly
different way. For example, if we wish to state that “after an occurrence of eventl,
there are no more occurrences of event!” this is an instance of an after, absence pattern
whose instantiated specification template for this property is:

[1(eventl -> [](!eventl))

Unfortunately, if event! occurs, this formula is false. The difficulty is that the [ ]
operator will begin requiring the truth of !eventl at the state where eventl is true—
LTL is a state-based formalism which does not naturally refer to the occurrence of
eventl. The solution is to model the state just after event] becomes false. While such a
refinement to the model could be automated, in our experiments with Chiron, we found
it convenient to add additional control points to the program tasks at appropriate points.
We then named the states corresponding to those control points (e.g., after eventl), so
that we could use them in specifications. For the example, the resultant specification
would be:



0 The system does not deadlock.

1 An artist never registers for an event if she is already registered for that event and never unregisters for an
event if she is not already registered for that event.

2 If artist] is registered for event]l and dispatcher receives eventl, it will not receive another event before
passing eventl to the artist.

3 Dispatcher does not notify any artists of event! until it receives eventl from ADT.
4 Having received eventl, dispatcher never notifies artists of event2.

5 If no artists are registered for eventl, dispatcher does not attempt a notification upon receiving event!
from the ADT.

6 Dispatcher never gives event! to artistl if artist] is not registered for eventl.

7 If artist] registers for eventl before artist2 does, then once dispatcher receives event! from the ADT, it
will not notify artist2 before notifying artisti.

8 No artist attempts to register for event! when the size of the array used to store artists registered for event!
is equal to the number of artists.

9 The program never terminates with an artist registered.
Figure 2: English Correctness Requirements

[1(after eventl -> [](!eventl))

INCA uses an event-based formalism for system desription and we encountered a
related problem when we needed to represent the fact that a certain condition holds
at the time eventl occurs. In this case, we used the standard technique of identifying
events that correspond to the condition becoming true and becoming false, and requir-
ing that event! occur after an occurrence of the event indicating the condition becomes
true and before an occurrence of the event indicating that it becomes false.

4.3 Modeling the Source Code

We chose to analyze the event handling mechanism in the Chiron architecture since
this involves the interaction of several concurrent tasks—the kind of code in which
subtle errors often remain undiscovered. Below, we outline the steps required to check
properties of Chiron’s event-handling code.

Before we can analyze the Chiron source, we need to build a finite-state model of
its behavior. To do this, we use two tools: an Ada-to-SEDL translator, and the INCA
front-end. The first tool can translate Ada source code into SEDL [5], a subset of Ada
in a Lisp-like syntax used by INCA. Parameters to this tool control which variables are
modeled (i.e., put in the SEDL) and which are abstracted away (so branches depending
on such a variable are simply taken nondeterministically). The INCA front-end then
takes the SEDL and constructs a set of communicating finite-state machines (CFSAs)
representing the behavior of the tasks. Each task state encodes the value of the task’s
variables. The CFSAs communicate by taking transitions on shared symbols that rep-



resent rendezvous, and also encode any parameters passed in the rendezvous.

Analysis with the inequality-based method of INCA is then performed on the CF-
SAs by the INCA back-end. To analyze the CFSA model using SPIN and SMV, we
used the translators developed by Corbett [6] for his empirical studies, which encode
the CFSAs in the input languages of those tools. Of course, translating from one mod-
eling language to another can introduce bias in the comparison. The translations used
by INCA were evaluated and found to be fair by Corbett, who tried various alterna-
tives and also compared the performance of the tools on native specifications to their
performance on translated specifications. See [6] for details on the translation and its
validation.

Figure 3 gives an overview of the various analysis tools and artifacts used in our
study. Solid lines denote automated tools/translations, while dashed lines denote trans-
formations carried out by hand.

The Ada-to-SEDL translator and INCA front-end are primarily model construc-
tors, not model extractors. Except for the ability of the Ada-to-SEDL translator to
selectively include certain variables, these tools try to model everything they are fed.
Since we want to focus on a specific aspect of the program’s behavior, we had to re-
move the unimportant parts of the source code by hand. We were also forced to make
some changes to the code in the dispatcher task, as explained below.

The dispatcher task is the center of the event delivery mechanism, thus we included
the code for this task. The original Ada code used a dynamically allocated linked list
to record the list of artists registered for each event. Since the number of artists is
fixed at compile time, it is not clear why the developer chose to use a linked list rather
than an array, but in any case, our model constructor (like most static analysis tools)
cannot handle dynamic lists and was thus unable to represent the list. Unfortunately,
without modeling the information in this list (and its effect on the control flow within
the dispatcher task), few useful properties can be proved. We therefore changed the
implementation of the dispatcher to use (fixed-sized) arrays to record this information;
our model construction tools are able to handle this construct.

Other tasks relevant to the event handling mechanism include the artists, who reg-
ister for and accept notification of events, and the ADT wrapper task, which starts the
artists and generates the events (or more accurately, passes them on from the applica-
tion). Since our focus is the event handling, we removed most of these tasks, leaving
only stubs to model the relevant interaction of these tasks with the dispatcher. In par-
ticular, the artist stub tasks are started by the ADT wrapper, register for one or more
events, and then wait to be notified that these events occurred (by the dispatcher). The
specific data maintained by the artists and the artist’s interaction with the application is
abstracted away. The ADT wrapper task starts the artists and then delivers a sequence
of (nondeterministically chosen) events to the dispatcher.

To obtain a tractable model, we arbitrarily limited the number of artists and events.
Thus it must be emphasized that our analyses are not conservative, in the sense of
covering all Chiron interfaces. Nevertheless, it is well known [8, 18] that most design
errors are present in small versions of a system, so analyzing restricted models is an
excellent way to find errors in the full (scaled) system.
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S RESULTS

In this study, we used SPIN version 3.2.4, SMV version 2.5.3, and INCA version 3.4.
All runs were made on a Sun Enterprise 3500 with two processors and 2 GB of memory,
running Solaris 2.6. SPIN and SMV were compiled with the Sun C compiler, using the
options provided by the tool developers. For INCA, we used Harlequin Lispworks
4.1.0.

For our initial tests, we used each tool to verify, or find a counterexample to, each
of the 10 properties listed in Figure 2 for a system with 2 artists and 2 events. We
steadily incremented the number of events until memory capacity was exceeded for
one or more of the properties.

The results of these initial experiments were simultaneously encouraging and dis-
couraging. On the positive side, the 3 tools all detected a deadlock that can arise when
the dispatcher is trying to inform an artist of an event and the artist is trying to unregis-
ter for an event. (The Chiron developers had seen this deadlock when the system was
shutting down, but had not determined precisely how it arose.) The 3 tools were also
able to verify the remaining properties in Figure 2 for small systems. But we were not
able to analyze systems with more than 6 events, indicating that our methods were far
from scaling to realistic programs.

Closer examination of the data indicated two possible sources of difficulty. The
first of these involves the construction of FSAs by INCA. Essentially, INCA builds
the FSA for a particular task by constructing what amounts to a control flow graph for
that task, expanding this graph by creating states at each node to represent all possible
combinations of values of the task’s variables, and then using a form of constant propa-
gation to eliminate unreachable states. Although a number of optimizations are applied
to reduce the size of the intermediate graphs, this procedure can blow up on tasks with
a large amount of local data. In the case of Chiron, the Dispatcher task maintains an
array for each event that records the artists registered for that event and the order in
which they have registered, leading to a large number of possible values for the cells
of the arrays. With more than 6 events, the current implementation of INCA could
not build and prune the intermediate graph used to construct the Dispatcher FSA. This
suggests that INCA is simply not suited for analyzing the Chiron system, and that the
limitations of SPIN and SMV arise from the limitations of INCA as a front-end. This is
consistent with Corbett’s earlier work, which had suggested that INCA did not perform
well on systems in which a single task had a particularly large FSA.

The second possible problem, however, involves the actual translated input for
SPIN and SMV created by INCA. For SPIN, the translator represents each state of
an FSA as a location in the Promela code and describes the possible transitions in
terms of these locations. Thus, the range of possible values of variables at a single
location in the Ada code is explicitly represented by separate locations in the Promela
input for SPIN, rather than implicitly represented through different values of Promela
variables. Although this approach produces a model with a small number of states to
explore, it leads to large input files that take a long time to process. (Note that analysis
with SPIN involves constructing a C program from the Promela code, and compiling
that program.) Similarly, because the SMV process input formalism cannot efficiently
represent the rendezvous construct of Ada, the translation makes use of a second mech-
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anism in SMV for modeling the program to be analyzed, the TRANS input format. This
requires explicitly describing the program as a transition system, and again results in
large input files. For instance, for the 2-artist, 5-event Chiron system and property 5,
the input file for SPIN is 584 KB and the input file for SMV is almost 2 MB. Although
the translations had been validated for relatively small programs, we were concerned
that the translations themselves made the analysis difficult for SPIN and SMV.

To explore the first issue, we decomposed the Dispatcher task into a subsystem with
a separate task that maintains the array for each event, together with a single interface
task that receives the requests for registration and unregistration and the notification of
events, and passes them to the appropriate task responsible for a particular event. We
constructed this subsystem so that no additional parallelism is introduced —if internal
communications of the Dispatcher subsystem are hidden, the new system is observa-
tionally equivalent to the original one—but each task now maintains only a single array
and the explosion in the size of the intermediate graphs does not occur. We refer to this
version as the decomposed dispatcher version, in contrast to the original version.

To explore the second issue, we translated the Ada code (modified and abstracted as
described in the previous section) into Promela by hand, going through several versions
as we refined the Promela code to improve the performance of SPIN. We translated both
the original and decomposed systems, producing what we call “native SPIN” versions,
as opposed to the translated “INCA-SPIN” versions. (We also attempted to produce a
hand translation into the SMV process formalism but several problems in representing
Ada’s concurrency constructs, including the lack of support for rendezvous-style com-
munication and the difficulty in modeling the guarded select statement, prevented us
from producing a reasonable translation. It is certainly possible to introduce extra state
variables to mimic rendezvous, but earlier work had shown us that this led to worse
performance than the translated systems.)

We then collected data on the verification of the properties in Figure 2 for both
the original and decomposed versions of Chiron, using INCA, SMV (with translated
input), INCA-SPIN, and native SPIN.

At about this time, a new implementation of the FLAVERS data flow analysis
tool [12,13] became available, and we also analyzed both the original and decomposed
versions with FLAVERS. FLAVERS constructs annotated control flow graphs for the
tasks of the program from the Ada code, and adds edges connecting nodes in different
tasks based on the possible interleavings of events from the tasks to build a Trace Flow
Graph. Paths through this graph then represent possible sequences of events that could
be seen on executions of the program. FLAVERS uses a regular expression-based
formalism to represent the property to be checked, and propagates states of an FSA
representing the property through the Trace Flow Graph to check whether the property
holds. FLAVERS provides a mechanism for adding information, in the form of addi-
tional FSAs called feasibility constraints, to eliminate infeasible paths and increase the
precision of the analysis. The current implementation of FLAVERS has a number of
limitations that affected the analysis of Chiron, many of which required considerable
further modification of the Ada code. First, FLAVERS cannot check for deadlock, so
we did not check property O with FLAVERS. Second, because a single call or accept
statement in Ada may be executed with different values of the parameters, it is not
possible to insert events that identify the parameter values passed in a rendezvous. It
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Figure 4: Tool Performance for Property 5 with Original Dispatcher

was therefore necessary to modify the Ada code to create separate calls and entries
for each possible set of parameter values that could be passed in a given rendezvous.
Finally, because FLAVERS cannot represent the use of a variable as an index into an
array or directly handle situations where the value of one variable is set to the current
value of another variable, it was necessary to unroll all the loops in which arrays are
searched and updated, and to add explicit case statements to handle the updating of the
arrays. All of these modifications could presumably be carried out automatically using
appropriate compiler and partial evaluation technology, but we made the changes by
hand.

INCA, SPIN, and SMV were able to detect the deadlock and verify all the other
properties in Figure 2 for the original version as well as the decomposed version.
FLAVERS was able to verify the non-deadlock properties in both versions. Figure 4
shows the times for the various tools in verifying a typical property (number 5) on
the original dispatcher version, while Figure 5 shows the times for verifying the same
property on the decomposed version. Note that the time axis is logarithmic in both
figures. (All of the data from this study are available at http://laser.cs.umass.
edu/verification-examples/chiron/.)

The input for INCA is generated from the Ada source by our Ada-to-SEDL trans-
lator. The data shown for INCA include the time needed for generating a system of
inequalities from the SEDL input and the query specifying the property to be checked,
and the time to solve that system of inequalities. The data labeled INCA-SPIN in the
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Figure 5: Tool Performance for Property 5 with Decomposed Dispatcher

figures are for analysis using SPIN of Promela code generated by our INCA-based
translator. The times shown include the time to generate a Biichi automaton from the
LTL formula specifying the property to be checked, the time to generate the C source
code for the analzyer for the particular problem, the time to compile that code, and
the time to run the analyzer. The data labeled native-SPIN are for analysis using SPIN
of Promela code translated by hand from the Ada source code, and the times include
the same steps as for INCA-SPIN. The data labeled INCA-SMV are for analysis using
SMYV of the TRANS relation generated by our INCA-based translator to check the CTL
formula representing the property to be checked. The data labeled FLAVERS include
the time to build annotated control flow graphs from the Ada source code, the time to
build the Trace Flow Graph from these control flow graphs, the time to build the prop-
erty automata from the Quantified Regular Expression representing the property to be
checked, the time to build the feasibility constraints, and the time for state propagation
over the Trace Flow Graph to check the property.

5.1 Discussion

In this section, we note some of the most salient features of the data.

Perhaps the most striking aspect of the data is the difference between the per-
formance of INCA and the tools using the INCA-based translators (INCA-SPIN and
INCA-SMYV) on the original version and on the decomposed version. These tools were
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unable to handle more than 6 events for the original version, but can handle more than
30 (more than 60 in the case of INCA) for the decomposed version. For the original
systems, the performance of native-SPIN (SPIN applied to the hand-translated Promela
code) is significantly better than that of INCA, FLAVERS, or the two tools using in-
put produced by the INCA-based translators (although it appears that FLAVERS may
do better on the largest systems.) On the decomposed systems, on the other hand, the
times for native-SPIN, INCA-SPIN, and INCA-SMV are relatively close, while INCA
is very much faster and can do larger systems. (The jumps between sets of three con-
secutive points seen in some of the data are an artifact of the way we chose which
events an artist would register for as the number of events increased.)

It is clear that INCA breaks down on systems where a single task has a large number
of states, and that the translations based on INCA’s FSAs are unfair to SPIN and SMV
for such systems. On the other hand, the translations seem to be reasonable when no
task is too large. On the decomposed system, for instance, the native-SPIN and INCA-
SPIN times seem to differ only by a small factor and INCA-SPIN can actually handle
slightly larger systems. Furthermore, the number of states of the translated Promela
models is slightly smaller than the native Promela models we created.

We note that the SPIN times include the time to compile the pan.c program gener-
ated from the Promela code. These compilation times can be as much as one-third of
the total time for the smaller decomposed examples, and an even bigger fraction on the
smaller examples of the original version.

The FLAVERS times include the time to build the annotated CFGs, which can be
as much as 3/4 of the total time. The FLAVERS tool is designed to work directly
from Ada source code. The times shown for the other tools do not include the time
necessary to translate from Ada into their native input languages, although they do
include the time to create internal representations from those native input languages.
The times shown for FLAVERS are therefore perhaps not strictly comparable to those
shown for the other tools, although simply subtracting the time to build the CFGs would
not give comparable times, either. Furthermore, the FLAVERS times shown represent
the analysis time using a minimal set of feasibility constraints of two standard types
that was needed to verify the property. This set was determined by exhaustively testing
sets of possible feasibility constraints, and may or may not represent the best possible
FLAVERS time —it is possible that using additional constraints would result in a lower
time by eliminating more paths through the Trace Flow Graph. The problem of quickly
determining a useful set of feasibility constraints for FLAVERS is one that is not well-
understood as yet, but is important for the use of FLAVERS in finite-state verification.

We were surprised to observe that, with the exception of FLAVERS and check-
ing for deadlock with SPIN, the performance of the tools showed very little variation
across the properties. (Since SPIN includes a built-in check for deadlock, its improved
performance when checking for deadlock was not unexpected.) For FLAVERS, there
was considerable variation between properties. In some cases (e.g., property 9) this
appears to be due to the size of the regular expression used to state the property, but in
others (e.g., property 4), we do not understand the precise source of the variation. It
should be noted however, that SPIN, INCA, and SMV were applied to the same pro-
gram model for each property, while the FLAVERS feasibility constraints were chosen
separately for each property. Tuning the model to the particular property, for instance
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by using program slicing to remove variables not important for that property, might
lead to greater variation across properties for the other tools as well.

6 CONCLUSION

In this paper, we have reported on a case study comparing several finite-state verifica-
tion techniques for concurrent systems. We applied these techniques to check a number
of properties of a Chiron user interface system and successfully used these tools to de-
tect a deadlock that had been observed but not explained by the Chiron developers. We
have also accumulated a large body of examples and data that are available on the web
and contribute to a common body of information that can be used by other researchers
comparing tools and by developers of finite-state verification tools. In the course of our
study, we have obtained clear evidence of the surprising sensitivity of finite-state veri-
fication tools to the details of the particular model of the system being analyzed. This
raises a number of important questions for the transfer of finite-state verification tech-
nology to industrial practice, and points out how cautious researchers must be about
using “equivalent” models or translating from one specification formalism to another.
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