
Specifying Coordination in Processes Using Little-JIL
Alexander Wise Barbara Staudt Lerner Eric K. McCall Leon J. Osterweil

Stanley M. Sutton Jr.

Department of Computer Science
University of Massachusetts

Amherst, MA 01003-4610 USA
+1 413 545 2013

wise, mccall, ljo, sutton @cs.umass.edu

Department of Computer Science
Bronfman Science Center

Williams College
Williamstown, MA 01267 USA

+1 413 597 4215
lerner@cs.williams.edu

ABSTRACT
Little-JIL, a new language for programming coordination in
processes is an executable, high-level process language with
a formal (yet graphical) syntax and rigorously defined op-
erational semantics. The central abstraction in Little-JIL is
the “step.” Little-JIL steps serve as foci for coordination and
provide a scoping mechanism for control, data, and excep-
tion flow and for agent and resource assignment. Steps are
composed hierarchically, but Little-JIL processes can have
highly dynamic structures and can include recursion and
concurrency.

Little-JIL is based on two main hypotheses. The first is that
the specification of coordination control structures is separa-
ble from other process programming language issues. Little-
JIL provides a rich set of control structures while relying on
separate systems for support in areas such as resource, arti-
fact, and agenda management. The second is that processes
can be executed by agents who know how to perform their
tasks but will benefit from coordination support. Accord-
ingly, each step in Little-JIL is assigned to an execution agent
(human or automated); agents are responsible for initiating
steps and performing the work associated with them.

This approach has so far proven effective in allowing us to
clearly and concisely express the agent coordination aspects
of a wide variety of software, workflow, and other processes.

Keywords
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nation

1 INTRODUCTION
There is a growing need for process and workflow specifica-
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tion in many contexts. This is evidenced by both a growing
marketplace as well as a thriving research community. In this
paper we present Little-JIL, a process language that attempts
to resolve the apparently conflicting objectives of providing
constructs to support a wide variety of process abstractions
such as organizations, activities, artifacts, resources, events,
agents, and exceptions, which can easily make a language
large and complex, and creating a language that is easy to
use and understandable by non-programmers.

Little-JIL is strongly rooted in our past research on process
programming languages [25, 26], but it makes some impor-
tant breaks with this earlier work. Of primary importance for
this paper is the focus on the coordination of activities and
agents and the premise of process language factoring. Pro-
cess language factoring is the separation of various semantic
elements of a process so that they can be treated indepen-
dently.

Coordination, as defined by Carriero and Gelernter is “the
process of building programs by gluing together active
pieces” and is a vehicle for building programs that “can in-
clude both human and software processes”[6]. From this per-
spective, it can be seen that coordination is a logically central
aspect of process semantics and is an especially important
focus for a factored process language.

As with Linda [6], in Little-JIL we have separated coordina-
tion from other language elements. Unlike Linda, which is
made up of a set of common primitives for the construction
of multiple coordination paradigms and removes all com-
putational elements, in Little-JIL we have selected a single
higher-level coordination paradigm that we believe fits natu-
rally with the domain of process and workflow specification
and included a small set of computational constructs to allow
the programmer to further refine the ways in which the major
computational elements interact. Furthermore, the paradigm
we have selected serves as a natural focus to which other fac-
tors (such as artifacts, resources, and agents) can be related
and through which the use of these factors can be orches-



trated.

Little-JIL also differs from our prior work in that it is pri-
marily a graphical language. This helps to promote under-
standability, adoption, and ease of use. However, Little-JIL
language constructs are still defined using the sort of precise
semantics that is more typically associated with textual lan-
guages. This is facilitated in part because the focus of the
language is narrowed to coordination-related elements.

Because minimizing the process language and factoring out
related components permit language complexity to be added
incrementally, we believe that this approach can lead to ben-
efits in many areas, including process analysis, understand-
ing, adaptation, and execution. In this paper, we present the
design of Little-JIL and evaluate our experience with it.

2 APPROACH
In previous work, we have investigated extending a conven-
tional programming language with process-motivated con-
structs (APPL/A [25]). This work suggested that it would be
preferable to develop a new special purpose, high-level lan-
guage designed specifically for process programming. This
new language, JIL, has been described elsewhere [26]. Pre-
liminary evaluation of JIL has suggested: 1) the value of
high-level, process-oriented semantics, 2) the appropriate-
ness of the “step” as a central abstraction, 3) the use of
the step construct as a scoping construct for other features,
and 4) the possibility of a factored language design. Both
APPL/A and JIL aimed to be comprehensive in their fea-
tures and were concerned with supporting full process im-
plementations, including necessary computational and data-
modeling functionality. However, this work also under-
scored difficulties both in developing and in using large and
complex languages.

The language described here is called Little-JIL. Little-JIL
draws on the lessons of JIL by retaining the step as the cen-
tral abstraction and scoping mechanism but refines the fea-
tures in terms of which a step is defined. A main objective of
the design of Little-JIL is to pursue a factored approach, by
which we mean separating different aspects of process defi-
nition into elements called factors. In Little-JIL we identify
what we believe to be a viable factoring for a process pro-
gramming language, and have designed what we believe to
be a viable set of linguistic elements that initially focuses on
the coordination factor.

Note, though, that while a language may select specific se-
mantic factors to address, additional factors are still gener-
ally required for an effective process representation. A well-
factored language is thus part of a larger process environ-
ment along with additional notations and systems. Little-JIL
relies on separate systems for the definition of language fac-
tors other than coordination. These systems provide, for ex-
ample, for the definition of resource requirements, artifact
specification, and agenda management. This factored ap-
proach allows the core coordination language to be simpler

and easier to understand, develop, and use. Additionally, by
factoring out certain aspects of process definition, these as-
pects can be developed and evolved in independent ways, as
appropriate to the environments and organizations in which
they will be used.

The design of Little-JIL features was guided by three pri-
mary principles:

Simplicity: To foster clarity, ease-of-use, and understand-
ability, we made a concerted effort to keep the language sim-
ple. We added features only when there was a demonstrated
need in terms of function, expressiveness, or simplification
of programs. Furthermore, by using a factored approach and
concentrating on coordination, we were able to simplify the
language relative to that of a general-purpose programming
language. To help make the language accessible to both de-
velopers and readers, we adopted a primarily visual syntax.

Expressiveness: Subject to (and supportive of) the goal of
simplicity, we made the language highly expressive. Soft-
ware and workflow processes are semantically rich domains,
and a process language, even one tightly focused on coor-
dination, must reflect a corresponding variety of semantics.
We wanted the language to allow users to speak to the range
of concerns relevant to a process and be able to express their
intentions in a clear and natural way.

Precision: The language semantics are precisely defined.
This precision contributes to several important goals. First,
it enables automatic execution of process programs. Sec-
ond, precision supports the analyzability of process pro-
grams. Analysis is key to assuring that process programs
indeed have properties that are desirable for process safety,
correctness, reliability, and predictability (or, conversely, for
showing that those properties cannot be guaranteed). Analy-
sis also contributes to process understanding and validation.

We also followed many other software and language design
criteria, such as hierarchic decomposition, scoping, and so
on, but the three principles described were the primary con-
cerns for Little-JIL. These concerns are related, however, so
the design of Little-JIL has also involved balancing trade-
offs. For example, adding a control construct may increase
expressiveness, but it may also increase complexity in terms
of the number of language features. Some additional com-
plexity may be warranted if new features will be widely used
or they result in a simplification of programs, but such con-
siderations may be difficult to weigh. Fortunately, our design
principles can also be complementary: separating out com-
ponents of the language has increased its simplicity. In the
next section we describe the features of Little-JIL. We show
how Little-JIL can be used to clearly and effectively express
the coordination aspects of agent-based processes using the
familiar problem of trip planning.

3 LANGUAGE AND EXAMPLES
Capturing the coordination in a process as a hierarchy of
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steps is the central focus of programming in Little-JIL. A
Little-JIL program is a tree of steps whose leaves represent
the smallest specified units of work and whose structure rep-
resents the way in which this work will be coordinated.

As processes execute, steps go through several states. Typi-
cally, a step is posted when assigned to an execution agent,
then started by the agent. Eventually either the step is suc-
cessfully completed or it is terminated with an exception.
Many other states exist, but a full description of all states
is beyond the scope of this paper.

There are six main features of the Little-JIL language that
allow a process programmer to specify the coordination of
steps in a process. Due to space constraints, we can only give
an overview of the language. Detailed language semantics
are provided by the Little-JIL language report [27].

The main features of the language and their raisons d’être
are the following:

Four non-leaf step kinds provide control flow. These
four kinds, “sequential,” “parallel,” “try,” and “choice,”
are the bare minimum for which a need has been clearly
established to date. Non-leaf steps consist of one or
more substeps whose execution sequence is determined
by the step kind. A sequential step’s substeps are all ex-
ecuted in left to right order. A parallel step’s substeps
can be simultaneously executed. A try step’s substeps
are executed in left to right order stopping when one
completes successfully. Exactly one of a choice step’s
substeps is executed with the decision of which to ex-
ecute being made dynamically. It is important to note
how the parallel and choice step kinds accord to hu-
man users the power to exercise their judgment and to
make choices about in what order the subtasks of an
item should be performed or how a particular item of
work is to be done. While the language can be used to
constrain the alternatives, the human agent is left free to
make the choices.
Requisites are a mechanism to add checks before and af-
ter a step is executed to ensure that all of the conditions
needed to begin a step are satisfied and that the step
has been executed “correctly” when it is completed.
A prerequisite is a step that must be completed before
the step to which it is attached. Similarly, a postrequi-
site must be completed after the step to which it is at-
tached. While requisites decrease the simplicity of the
language, we have found them necessary to allow pro-
cess programmers to naturally describe common step
contingencies. The need for pre- and post-requisites
appears common enough in process programs and req-
uisite step semantics seem different enough from other
kinds of sequential steps that a special notation was in-
troduced.
Exceptions and handlers augment the control flow con-
structs of the step kinds. Exceptions and handlers are

used to indicate and fix up exceptional conditions or er-
rors during program execution and provide a degree of
reactive control that we believe allows a process pro-
grammer to simply and accurately codify common pro-
cesses.
The exception mechanism in Little-JIL has been de-
signed to be simple yet remain expressive. It is based
on the use of steps to define the scope of exceptions and
handlers. Exceptions are passed up the step decomposi-
tion tree (call stack) until a matching handler is found.
Our experience has indicated that it is necessary to al-
low different exception handlers to work in a variety
of ways. After handling an exception, a continuation
badge determines whether the step will continue execu-
tion, successfully complete, restart execution at the be-
ginning, or rethrow the exception. Detailed semantics
are provided in [27].
Messages and reactions are another form of reactive
control and greatly increase the expressive power of
Little-JIL. The greatest difference between exceptions
and messages is that messages do not propagate up the
step decomposition tree, being global in scope instead
– any executing step can react to a message. Thus, mes-
sages provide a way for one part of a process program
to react to events without being constrained by the step
hierarchy. Because messages are broadcast, there may
be multiple reactions to a single message.
The semantics of messages are not fully worked out and
thus they are not implemented yet, but experience so
far has convinced us that the coordination factor of a
process language must be both able to drive execution
forward through proactive mechanisms, and be able to
react to events from the environment.
Parameters passed between steps allow communication
of information necessary for the execution of a step and
for the return of step execution results. The type model
for parameters has been factored out of Little-JIL, thus
removing issues such as type definition and equality,
which are unrelated to coordination.
Resources are representations of entities that are re-
quired during step execution. Resources may include
the step’s execution agent, permissions to use tools, and
various physical artifacts; resource specification is not
done in Little-JIL, but is carried out by a resource spec-
ification factor. As with parameters, Little-JIL attempts
to minimize the requirements placed on the resource
specification factor: Little-JIL requires little more than
that the factor support the identification of resources
that match a specification, and that it support resource
acquisition and release to avoid usage conflicts.

What’s missing from the above feature list is also important
to note. As noted above, Little-JIL does not specify a data
type model for parameters and resources. It also omits ex-
pressions and most imperative commands. Little-JIL relies
on agents to know how the tasks represented by leaf steps
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are performed: Little-JIL is used to specify step coordina-
tion, not execution. These typical language features have
been factored out, thus simplifying Little-JIL.

HandlerStep

Exception

Step Name

Reaction Step

Message

Parameter

SubStep

Interface Badge

Exception Handler Badge

Continuation Badge

Postrequisite Badge

Control Flow Badge

Reaction Badge

Prerequisite Badge

Figure 1: Legend

The graphical representation of a Little-JIL step is shown in
Figure 1. This figure shows the various badges that make up
a step, as well a step’s possible connections to other steps.
The interface badge at the top is a circle to which an edge
from the parent may be attached. The circle is filled if there
are local declarations associated with the step, such as pa-
rameters and resources, and is empty otherwise. Below the
circle is the step name, and to the left is a triangle called the
prerequisite badge. The badge appears filled if the step has
a prerequisite step, and an edge may be shown that connects
this step to its prerequisite (not shown). On the right is an-
other similarly filled triangle called the postrequisite badge
to which a postrequisite step may be attached. Within the
box (below the step name) are three more badges. From left
to right, they are the control flow badge, which tells what
kind of step this is and to which child steps are attached, the
reaction badge, to which reaction steps are attached, and the
exception handler badge, to which exception handlers are at-
tached. These badges are omitted if there are no child steps,
reactions, or handlers, respectively. The edges that come
from these badges can be annotated with parameters (passed
to and from substeps), messages (to which reactions occur),
and exceptions (that a handler should handle). It is possible
for an exception to have a null handler, in which case the con-
tinuation badge alone determines how execution proceeds.

To better motivate each of these language features and to il-
lustrate their use, we present in Figures 2, 3, and 4 a trip
planning process, coded in Little-JIL. The process is based
on one presented in [4]. Our version involves four people:
the traveler, a travel agent, and two secretaries. The basic
idea is to make an airline reservation, trying United first,
then USAir. If (after making the plane reservation) the trav-
eler has gone over budget, and a Saturday stayover was not
included, the dates should be changed to include a Saturday
stayover and another attempt should be made. After the air-
line reservation is made and travel dates and times are set,

car and hotel reservations should be made. The hotel reser-
vations may be made at either a Days Inn or, if the budget is
not tight, a Hyatt, and the car reservations may be made with
either Avis or Hertz.

The separation of the semantic issues into separate graphi-
cal components, as described above, allows an editor tool to
selectively display information relevant to a particular factor
of a Little-JIL program. Indeed, we illustrate this approach
to visualization in the subsequent figures to highlight various
language features.

STEP KINDS
Figure 2 depicts the overall structure of the Little-JIL trip
planning process program. Each of the four step kinds are
used where appropriate:

A sequential step is used to make plane reservations be-
fore car and hotel reservations,
A try step is used to try United first, then USAir,
A parallel step is used to allow the two secretaries to
make car and hotel reservations simultaneously, and
Choice steps are used to allow a secretary to choose
which hotel chain or car company to try first.

Note that the process program is relatively resilient to many
expectable sorts of changes. For example, changing the pro-
cess program to express a preference in hotel or car rental
companies or deciding to attempt all reservations in parallel,
i.e., changing the way in which these activities are coordi-
nated, can be accomplished with a straightforward change of
step kind.

Requisites
There are two cases in the example (Figure 2) where req-
uisite steps have been used. A postrequisite has been at-
tached to the PlaneReservation step to check that the air-
fare hasn’t exceeded the budget. This means that after the
travel agent has successfully made an airline reservation, the
traveler should complete the InBudget step. A prerequisite
for theHyattReservation step is also shown. This prerequi-
site could be considered an optimization that is based on the
assumption that staying at a Hyatt depletes one’s travel bud-
get more than staying at a Days Inn. If a secretary chooses to
reserve a room at the Hyatt and the budget is too tight, that
step aborts immediately because it will definitely cause costs
to exceed the budget.

While the English description of the process does not specify
who should check the budget, the Little-JIL program speci-
fies that the traveler is responsible for this task. Postrequisite
steps help clarify how the delegation of work can be done.
For example, a subordinate can be specified as the agent for
a step, but the subordinate’s supervisor could then be spec-
ified as the agent responsible for executing a postrequisite
step that checks the acceptability of the work done by the
subordinate. This is shown in the PlaneReservation step.
If, for example, the travel budget were sensitive information,
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Sequential
Try
Choice
Parallel

PlaneReservation InBudget

HotelReservation CarReservation

DaysInnReservation

NotTightBudget

HyattReservation AvisReservation HertzReservation

CarAndHotelReservation

USAir Reservation

PlanTrip

UnitedReservation

Figure 2: Reservation process showing proactive control: step kinds, requisites.

the execution agent for PlaneReservation could assign the
UnitedReservation and USAirReservation steps to other
agents without divulging the budget.

Exceptions and handlers
If the agent cannot complete the InBudget prerequisite step
previously mentioned (because it determines that the bud-
get has been exceeded), an exception, NotInBudget (not
shown), is thrown to the parent. The parent step’s handler,
IncludeSaturdayStayover (in Figure 31), would check to
see that a Saturday stayover was not already included, and if
not, it would change the travel dates and restart the PlanTrip
step with the new travel dates. If there was already a Satur-
day stayover, the handler could throw another exception (not
shown) that would be propagated higher in the tree or would
terminate the program.

Just as different step executions result from the different
step kinds, different executions result from different contin-
uation badges. If, for example, IncludeSaturdayStayover
were rewritten to make alternative plans, the continuation
badge would be changed to “complete,” indicating that the
exception step had provided an alternative implementation
of PlanTrip.

Messages and reactions
An example of a reaction, the “handler” for a message, ap-
pears in Figure 3. Here, when the MeetingCancelled mes-
sage is generated, the CancelAndStop substep of PlanTrip
is assigned to the traveler. In this case, there may be very
little information associated with that step; it is assumed that
the agent will take appropriate action (e.g., phoning the travel
agent and secretaries and asking them to abort).

1In the figures, ellipses indicate when substeps have been omitted for
clarity. In practice, we expect a visual editor to elide information at the
user’s request.

Parameters
In the example, it is clear that information must be passed
from step to step. For example, the PlaneReservation step
must pass the trip dates and times to the other reservation
steps so that a hotel room and car are reserved for the correct
times. Information is passed between steps via parameters.
Parameter passing is indicated by annotations made on the
step connections, shown in Figure 4. Three parameter pass-
ing modes are defined in Little-JIL. Arrows attached to the
parameters indicate whether a parameter is copied into the
substep’s scope from the parent, copied out, or both.

The treatment of the budget says a lot about the approach
we have taken with Little-JIL. The language only specifies
that a parent step’s appropriate parameter values are copied
to and from its child steps as specified in the program. Thus,
it is assumed that the agents executing steps that need to con-
sult the budget know how to do so; “budget” is not explicitly
modeled in the Little-JIL program. Thus, the Little-JIL pro-
gram provides guidance about when to check the budget, but
doesn’t dictate any particular way of doing so.

Resources
Resource requirements for a step are indicated by annota-
tions on the step’s interface specification. Resources play
a central role in the execution of Little-JIL programs, how-
ever resource management has been factored out of Little-
JIL. By identifying and acquiring resources at run time, a
resource management component enables a Little-JIL pro-
gram to adapt to different environments, allowing more dy-
namism during process execution. Because resource man-
agement has been factored out of the language, the details
of a resource model do not have to be represented in each
process program.

In Figure 4 execution agent resources are specified as anno-

5



PlanTrip

MeetingCanceled

UnitedReservation

PlaneReservation

USAir Reservation
NoUnited:  exception NoUSAir:  exception

NoPlane:  exception

NoMoreChoices

CancelAndStop
IncludeSaturdayStayover

CarAndHotelReservationNoUnited

NotInBudget

NoPlane

NoUSAir
Continue
Throw

Restart
Complete

Figure 3: Reservation process showing reactive control: exceptions, messages.

tations on the interface badge. The steps for HotelReser-
vation and CarReservation specify a secretary as the agent
responsible for the task. We expect that these tasks would
be done in parallel by two different secretaries – but in an
environment with only a single secretary, both of these tasks
would automatically be assigned to the same secretary who
might interleave the activities or perform them sequentially.

In the example, only the agents are being managed as re-
sources, however, resources can be any artifact for which the
resource manager’s ability to identify artifacts and avoid us-
age conflicts would be an asset.

4 EXPERIENCE
Process programs
The development of Little-JIL began in 1997, and has pro-
ceeded as a series of iterative cycles of design and evalua-
tion. The current version of the language (version 1.0 [27])
is the product of at least three such iterations, each of which
entailed the writing of process programs from a variety of
application areas. With each iteration, existing features have
been honed, and new features have been added only when a
clear need has been demonstrated.

In the software engineering domain, we have written process
programs for coordinating the actions of multiple designers
doing Booch Object Oriented Design [22] and the assign-
ment and tracking of bug reports from submission through
regression testing. These processes have focussed on pro-
gramming coordination among programmers, and also on
how to assure that the processes provide support to humans,
while not appearing to be too prescriptive or authoritarian.
We have also written process programs for guiding the use
of the FLAVERS dataflow analysis toolset [13]. In this work
we have been particularly interested in using Little-JIL to

support both novice and expert users in being more effective
in using several tools in this complex toolset. We have also
written process programs for guiding the application of for-
mal verification methods and tools, but here our experience
has been rather limited. Finally, we have also used Little-JIL
to program the ISPW 6 software development process [21].

We have explored the application of process programming
to data mining as well. In [17] we describe the applicability
of process programming to this domain, and present some
example Little-JIL data mining process code. The focus of
this work has been to explore how well Little-JIL seems to
coordinate diverse tools in this area and program important
interactions among tools that focus on distant phases of over-
all data mining processes.

We are also exploring the use of Little-JIL in programming
high-level strategies for coordinating teams of robots. In this
work we have been particularly interested in coordinating the
activities of humans with those of robots, and in evaluating
the effectiveness of our approach to resource specification.

We have also demonstrated the applicability of Little-JIL in
programming processes taken from electronic commerce and
the workflow domain, such as auctions, the monitoring of
assigned tasks, and the example used in this paper.

Several idioms have emerged that simplify the design and
understanding of processes. For example, resource-bounded
recursion allows a step to be repeated multiple times execut-
ing with a different resource on each iteration and ceasing
when there are no more resources (by completing on a Re-
sourceNotAvailable exception). Resource-bounded paral-
lelism is similar to resource-bounded recursion except that in
this case the iterations are allowed to happen in parallel. The
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Figure 4: Reservation process showing data flow.

prevalence of situations in which these idioms seem effective
in being simultaneously terse, yet clear and precise, suggests
that they represent high level language abstractions that may
well deserve to be formalized in process programming lan-
guages.

Runtime environment
Over the evolution of Little-JIL, the specification of the var-
ious processes we have examined has taught us a great deal
about the strengths and weaknesses of the language. How-
ever, to gain more understanding of the effectiveness of
Little-JIL in coordinating agents, we must execute Little-
JIL process programs. Unfortunately, we have less experi-
ence here due to the fact that the other factors as well as the
Little-JIL interpreter were developed after the coordination
language.

As has been emphasized earlier, the Little-JIL language has
been designed to allow clean separation of process environ-
ment components that are not integral parts of the process
language. In order to execute Little-JIL process programs,
these separated components must be provided. A Little-
JIL execution environment consists of the following com-
ponents:

Execution agents: these components are required to
accomplish the tasks codified in the process program.
They do the real work in the process, and make deci-
sions such as when a step should be started or which
exception a step throws.
Little-JIL interpreter: this component interprets the pro-
cess program by interacting with the other components
of the environment as dictated by the semantics of the

Little-JIL program being interpreted. It keeps track of
and responds to the state changes of steps that occur
during execution.
Resource manager: the resource manager is responsi-
ble for managing the resources required by a process
program. Its tasks include processing resource manage-
ment requests generated by the interpreter (including
requests for execution agents for a step) and handling
model change requests generated by execution agents
(upon, for example, the production of a resource needed
by other steps in the process).
Artifact manager: the artifact manager is responsible
for managing artifacts produced and needed by the pro-
cess. Among other things, it provides the type model
used by the system for parameter type checking and
passing.
Agenda manager: this component handles the commu-
nication of the agents (and interpreter) during process
execution. It is responsible, for example, for notifying
an execution agent when the interpreter assigns it a step
for execution.

A variety of software systems could be used to serve as each
of these components. Our prototype Little-JIL process exe-
cution environment, called Juliette [7], has a mixture of hu-
man and tools as its execution agents, a highly distributed
interpreter, a locally developed resource manager, the Java
1.1 runtime system and a file system as its artifact manager
and an agenda management system [23] for communication.

5 RELATED WORK
In our research, we have constructed a richly-featured pro-
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cess language with a factored design. Little-JIL has a vari-
ety of language features: both proactive and reactive control
constructs, data flow specification, pre- and post-requisites,
etc. At the same time, Little-JIL focuses only on allowing
specification of agent coordination and defers specification
of the resource management, object (artifact) type model-
ing and management, and agenda management factors to ex-
ternal languages. The prototype execution environment is
composed of several connected modules, thus mirroring this
factored approach.

Many other process language and workflow systems have a
focus similar to that of Little-JIL, however most lack some of
the language features we have identified in Little-JIL, such as
exception handling or scoped parameter passing. Many more
do not follow a factored approach, instead combining into a
single specification language the specification of agent coor-
dination and artifact or resource specifications. APEL [14]
is a notable exception. APEL is similar to our work in that it
defines separate models for different process factors, but un-
like Little-JIL does not seek to make the modeling languages
separately evolvable.

InConcert [24] is billed as an “object-oriented client-server
workflow management system.” A process is specified by
a solution developer as tasks (i.e., steps in Little-JIL), roles
(execution agents), and references (to documents or objects).
InConcert’s workflow language is not factored, however. For
example, workflow modeling is wound up with resource
modeling, and, as with many workflow systems, document
management is integrated with workflow execution. We be-
lieve the factored approach taken in the design of the Little-
JIL language will allow us to run the same process program
with a variety of resource models (managed by a variety of
resource management components); such flexibility may be
difficult to achieve with InConcert.

The approach taken in Little-JIL also contrasts with that
taken in workflow management systems such as Action
Technology’s Metro [1]. In Metro, process enactment is
handled by Metro Server, which is also used to manage the
workbox (the mechanism for assigning tasks to agents). In
Little-JIL, these are separate factors in both the language
and implementation. Thus, in the execution environment the
interpreter component controls when steps are assigned to
agents, but the determination of exactly which agent is as-
signed the step and how the step is assigned are handled by
other components, namely the resource manager and agenda
manager.

A number of process languages based on general-purpose
programming languages or Petri-Nets, such as APPL/A [25],
AP5 [9], and SLANG [2], lack high-level, process-oriented
abstractions and a focus on the “step” as the unit of work.

Languages that have focused on process steps or tasks
include HFSP [20], EPOS [10], Teamware [28], and
APEL [12]. While none of the features in Little-JIL are

unique, the way in which they are combined to form a
step-oriented process language is. For example, ALF [5]
“MASPs” include an object model (parameters), tools (with
pre/postconditions), ordering constraints on operators (path
expressions), rules (reactions) and “characteristics” (post-
conditions on the MASP as a whole). However, ALF lacks
explicit exception handlers and treats human agents and tools
separately.

ProcessWeaver [15], Merlin [18], and Adele-Tempo [3], fo-
cus on notions related to “work contexts” (which may be cor-
related with steps). In most process languages, some form
of agent specification is given as part of the process, of-
ten giving human and software agents different treatment;
frequently work contexts are assigned only to humans. Re-
source specification is frequently included as an integral part
of process modeling, and many languages lack effective vi-
sual representations, sufficient reactive control constructs, or
both.

A particularly distinctive feature of Little-JIL is its explicit,
scoped exception handling. Support for exception handling
in other process languages, if it exists, usually takes one of
two forms. Some languages provide consistency rules for
violation of consistency conditions (one kind of exception),
for example, Merlin, Marvel [19], and AP5. Other languages
provide general reactive mechanisms that might be used to
handle exceptional events, although these may not be differ-
entiated from normal events. Some examples include ALF,
Adele-Tempo, and Statemate [16].

Some process languages have achieved an effect similar to
the factored approach taken with Little-JIL by defining in-
terfaces to external aspects of process execution. Some ex-
amples include ALF (where agents are defined wholly out-
side the MASPs, and operators and objects are bound to ex-
ternal tools and artifacts), ProcessWeaver (in which external
agents, tools, and artifacts are coordinated), and OPSS [11]
(in which a separate State Server is integrated with human,
tool, and software agents via a software bus). Little-JIL,
in contrast, explicitly factors those elements external to the
process specification, not just the execution. As as result,
resource management, agent coordination, and artifact man-
agement are specified outside of the process language itself.
ProcessWeaver’s process modeling language, for example,
has notions of concurrency control with semaphores built
in; and though the agent coordination mechanism seems fac-
tored in OPSS, the state server still models artifacts, agents
and resources in addition to the state of process enactment.

6 CONCLUSIONS
Our experience with Little-JIL thus far has been encourag-
ing. In general, we have found that the focus on coordina-
tion has made it relatively easy to express the process seman-
tics that we desire. More importantly, separating out factors
did not hinder such expression, simplified language develop-
ment, and made it easier to adopt and use. In this section,
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we revisit our main design principles to identify where the
factored approach taken in the design of Little-JIL has suc-
ceeded and where work remains.

Simplicity: By separating out many process-related factors
not directly relevant to coordination, Little-JIL remains fairly
small and easy to understand. This has been evidenced by
our interactions with researchers from other domains, specif-
ically from data mining, static analysis, and robotics, who
have found Little-JIL to be easy to read.

The factored approach has allowed the creation of a graphi-
cal notation centered around the step, which we have identi-
fied as the focus of coordination. While the notation is cen-
tered on the step, other factors are still well represented.

Expressiveness: Factoring issues unrelated to coordination,
such as the specification of types, resource modeling, and
the communication mechanism, have not prevented us from
expressing a wide variety of processes in Little-JIL. As com-
ponents were factored from the language, features that repre-
sented the interfaces to the factored components were added
to maintain expressiveness. For example, while resources
were factored from the language so that a resource model
definition is independent from Little-JIL, resource specifi-
cations appear in the interface badge, and a Little-JIL in-
terpreter must be prepared to communicate with a resource
manager to identify, acquire, and release resources as it exe-
cutes process programs.

To maintain its simplicity, we have resisted impulses to add
features to the language, but our experience indicates that it
may yet be necessary to add some traditional language fea-
tures to improve expressiveness. In particular, Little-JIL pro-
cesses often use exceptions for non-exceptional conditions,
such as terminating resource-bounded recursion and paral-
lelism, which would be more naturally terminated by testing
whether resources exist rather than failing when resources
are depleted. We are currently considering adding looping
and conditional constructs as well as a simple expression lan-
guage to reduce the inappropriate use of exceptions. We have
also begun to explore how to add a scheduling factor to Juli-
ette and the impact of timing on coordination.

Thus far in our experience, reactions have been used less
than the other control mechanisms. We believe that this is
attributable more to the fact that they have been added to the
language relatively recently than to their inherent utility. As
we get more experience with them, we expect their semantics
to shift somewhat.

Precision: We require precision in our language for two rea-
sons: executability and analyzability.

As as result of the factored approach, components such as
an agenda manager, resource manager, and execution agents
must be provided. We have developed these components as
well as an interpreter for a subset of Little-JIL. We have ex-
ecuted processes written in that subset and are confident that

all of Little-JIL is executable.

Complex processes typically involve a great deal of concur-
rent activity being performed by multiple agents. We want
to reason about common concurrency problems, such as or-
dering of activities, possibilities for deadlock or starvation,
and so on. Much of the detailed behavior of a process is
imprecise. Rather it is left to the agents. Since we believe
micromanagement of an agent’s process is inappropriate –
it has been factored out. Because this and many other fac-
tors are not completely represented in Little-JIL, it will be
interesting to discover what the practical limits of analysis
are. It will likely be necessary to perform analysis across the
representational boundaries imposed by this factoring.

Thus far most of our static analysis has been limited to man-
ual evaluation of processes, but Little-JIL is precise enough
to allow application of static analysis technology, especially
to the analysis of issues directly related to the coordination of
step execution [8]. In recent work we have begun to demon-
strate success in applying the FLAVERS static dataflow an-
alyzer to Little-JIL process programs. This work has been
very revealing. We have succeeded in demonstrating the
presence of specific bugs in some Little-JIL process pro-
grams, and the absence of bugs in others. But have also dis-
covered that apparently simple and intuitive Little-JIL con-
structs such as the parallel and choice steps (especially when
used in conjunction with recursion) often conceal consid-
erably semantic complexity. This buttresses our contention
that these language constructs are important additions to pro-
cess programming languages, as they are intuitively clear,
yet represent substantial semantic content.

Our evaluation of Little-JIL is continuing through the defi-
nition of processes from a variety of domains, and use and
analysis of the resulting processes. We expect to learn a great
deal from these experiments and expect to continue to refine
Little-JIL as experience directs us.
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