
Experiences in Simulating Multi-Agent Systems
Using TÆMS

Régis Vincent, Bryan Horling, Victor Lesser
Department of Computer Science

University of Massachusetts, Amherst, MA, 01003
Email: vincent,bhorling,lesser@cs.umass.edu, Phone: +1 413 545 0675

Abstract

Building multi-agent systems in real, open environments, often means we
have to spend significant energy on resolving issues orthogonal to the initial
goals of the research. To avoid such overhead many researchers choose to
implement, test and evaluate their multi-agent systems in a simulated world.
In addition to providing a better-defined and predictable debugging envi-
ronment, a good simulator can also help evaluate and quantify aspects of
multi-agent system and multi-agent coordination in a controlled environment
through repeated experiments. In this paper we will describe the simulator
we built, which uses the TÆMS modeling language as its primary knowledge
representation. We will also present two multi-agent environments built us-
ing these tools and how the simulator can be used to effectively implement
and test multi-agent systems.

1 Motivations for a Simulated World

As researchers in multi-agent systems, we hope to build, deploy, and most im-
portantly evaluate multi-agent systems in real, open environments. Unfortunately,

Effort partially sponsored by the Defense Advanced Research Projects Agency (DARPA)
and Air Force Research Laboratory Air Force Materiel Command, USAF, under agreement num-
ber F30602-97-1-0249. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation thereon.This material is based
upon work supported by the National Science Foundation under Grant No.IIS-9812755. Disclaimer:
The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency (DARPA), Air Force Research Laboratory, National
Science Foundation, or the U.S. Government.

1

working in such environments usually implies we expend significant energy on
resolving issues orthogonal to the initial goals of the research, such as dealing
with the knowledge engineering and low-level system integration issues. To avoid
such overhead many researchers choose to implement, test and evaluate their multi-
agent systems in a simulated world. In addition to providing a better-defined and
predictable debugging environment, a good simulator can also help evaluate and
quantify aspects of multi-agent system and multi-agent coordination in a controlled
environment through repeated experiments.

To be useful, a simulation environment should be carefully designed Hanks
et al. define in [9] several characteristics a multi-agent simulator should possess.
It should permit exogenous or unplanned events to occur. Because the system is
closed, environmental complexity is required to make the simulation more realistic
and applicable; ideally, the simulated world should react based on prior observa-
tions of the real world. For example, a network’s behavior may be based on actual
network statistics. Quality and cost of sensing and effecting need to be explicitly
represented in the testbed to simulate imperfect sensors and activators. It should
also have a clean and reasonably complete interface that allows agents to ”observe”
the world. Multiple agents must be able to act and interact in the simulated world.
A clean interface between the agents and simulation controller is necessary. We
elaborate on this by claiming that agents and simulator should run in separate pro-
cesses or even different processors when possible - the communication between
agents and simulator should not make any assumptions of the simulation’s con-
figuration, such shared file systems or memory. A well-defined model of time is
needed to make simulation deterministic. Events are defined by their occurrence in
simulation time, which may be independent of real time.

We add to this list two other characteristics: deterministic experimentation and
different worldviews. Deterministic experimentation is needed to compare differ-
ent trials, as one must be sure what parameters vary between them. By allowing
agents to have different worldviews, the designer can directly explore the ramifi-
cations of agents possessing incorrect beliefs. The second involves the ability to
introduce uncertainty into agents’ beliefs what may come from either incorrect or
approximate or incomplete knowledge. The manipulation of agents’ uncertainty
we feel is the key to study how a MAS will function in an open, real environment.

Most of the existing MAS simulators concentrate on a state-based simulation,
they are responsoble for simulating the world and the effects of the agents’ ac-
tions. Simulators like SWARM ([12]) or MANTA ([5, 6]) were designed to simu-
late MAS with independent agent’s actions. MAGSY ([7]) and PHOENIX [10]) on
the other hand were designed to simulate interacting actions, but agent coordina-
tion is completely independent of the simulation. Because, we want to explicitly
study agent coordination and evaluate protocols in different classes of problems,

2

none of those simulators fit our needs. We have used past experience [2, 13] to
build a better environment.

In this paper we will describe the simulator we built, which uses the TÆMS
modeling language as its primary knowledge representation. We will also present
two multi-agent environments built using these tools and how the simulator can be
used to effectively implement and test multi-agent systems.

2 TÆMS as a Simulator Knowledge Representation

TÆMS[4] is a task modeling language that can be used to represent agent activities.
It models planned actions, candidate activities, and alternative solution paths from
a quantified perspective, by using a task decomposition tree. In this design, the
root nodes of the structure, or task groups, represent goals the agent can achieve.
Internal nodes, or tasks, represent sub-goals and provide the organizational struc-
ture for primitive executable methods, which reside at the leaves of the tree. Each
method is characterized along three dimensions: quality, which the agent hopes to
maximize, cost, which the agent tries to minimize, and duration, which describes
the time required to executing the method. The dimensions themselves are discrete
distributions, so each probability/value pair represents a potential result for the
characteristic in question. In structure TÆMS is very close to HTN (Hierarchical
Task Network) or TCA (Task Control Architecture) approaches. TÆMS extends
the HTN approach by replacing the logical decomposition (AND and OR) of tasks
by a continuous function (called quality accumulation function or qaf) that defines
how to accumulate the quality dimension based on the sub-task quality. For ex-
ample, instead of having AND decomposition that require all the sub-tasks to be
completed, TÆMS defines the similar decomposition q min that also require all
the sub-tasks to be completed but also specify that the quality of the task is the
minimum of all sub-tasks quality. Another important ability of TÆMS is its capac-
ity to represent relationships between methods or tasks. For example, if method

must successfully complete before can be started, we say that enables
. Other interrelationship types include disables, hinders, and facilitates. Any of

those relationships could be defined locally in an agent or across agents. Resources
consumed or produced by tasks and methods can be represented using a different
kind of interrelationship, which quantifies those effects. The effects that can occur
by exceeding the bounds on the use a resource may be similarly described. In ad-
dition to describe characteristics local to the agent, TÆMS models also permit the
designer (or agent) to represent elements associated with other agents. Thus, this
same structure can allow the agent to reason both about its own internal state and
as well the potential capabilities and interactions of other agents.

3

Figure 1: TÆMS Task Structure for Making Coffee

Figure 1 shows an example of a TÆMS task structure, describing the abili-
ties of a coffee maker agent in a simulated intelligent home populated with agents
controlling different appliances and resources [11]. According to this model, the
agent has a single goal of Make-Coffee, which can be achieved by acquiring the
ingredients and then heating the coffee. The qaf for Make-Coffee is q sum, which
indicates that the final quality of this task is the sum of Acquire-Ingredients and
Heat-Hoffee. On the left side of the figure one can see that as part of acquiring
ingredients, the agent must obtain water, which it can do in two different ways:
Get-Hot-Water and Get-Cold-Water. The qaf associated with Fill-Water is a
q max which take the maximum of the two sub-tasks (q min is equivalent to an
OR).These methods represent primitive actions the agent can perform, and are de-
scribed in terms of their quality, cost and duration distributions. Using these de-
scriptions, a scheduling or control component could reason about the tradeoffs of
each action, and choose the most appropriate one given the agent’s current context.
Once the agent has obtained water, it should also get the coffee. We have defined
two ways to acquire coffee beans, from Starbucks and by using frozen beans. The
task of acquiring coffee beans enables the fact that the agent may grind them, i.e.
you can’t grind the beans until the agent has acquired them. Of course, if the agent
is in a hurry, it can also just use instant coffee. The final step is to brew the coffee
itself.

TÆMS can be used both as a subjective internal representation for agent rea-
soning or as an objective modeling language for formally specifying a problem.
At the same time, we have found that it may also serve as a compact world rep-
resentation for a simulation environment. An agent in such an environment will
have several versions of the same TÆMS structure, which it uses internally. The

4

simulation controller would have an equivalent task structure, which it will use to
determine and enforce the correct world model. The fact that the agents and simu-
lator’s view can be different also allows us to model situations where agents reason
about potentially incomplete or incorrect descriptions of the world. In these cases,
we say the agent has a subjective view it perceives to be true, while the simulator
uses an objective view that is the actual truth. This is how we model and simu-
late uncertainty in the agent belief and we do believe that it’s a key feature when
designing systems for working in dynamic, unpredictable environments.

TÆMS was developed originally to support agent reasoning, and to describe
instances where agents might need to coordinate over interrelated tasks. We also
found that it was a very compact representation for multi-agent simulation envi-
ronments because the relationships between objects (task, method, and resources)
were explicit. So if a particular action an agent might perform would consume five
units of resource , it would have an explicit consumes interrelationship between
that method and resource . In the next section, we will describe the TÆMS based
multi-agent system simulator we have built.

3 Multi-agent system simulator (MASS)

The Multi-Agent System Simulation MASS is a more advanced incarnation of the
TÆMS simulator created by Decker and Lesser in 1993. MASS is completely-
domain independent, all domain knowledge is obtained either from configuration
files or data received from agents working in the environment. Agents running
in the MASS environment use TÆMS a domain-independent, hierarchical rep-
resentation of an agent’s goals and capabilities (see Figure 2), to represent their
knowledge. To prevent any interference or assumption, MASS and the agents are
running in separate different processes, which provides a more accurate model of
how they would function under real conditions. This TÆMS model is also used to
supply the internal domain knowledge of the simulation controller. This fact, cou-
pled with a simple configuration mechanism and robust logging tools, make MASS
a good platform for rapid prototyping and evaluation of multi-agent systems. From
an agent’s point of view, MASS is acting like the world, we have made the sim-
ulation completely transparent for the agent. We have derived some basic agent’s
components (like the communication module or the execution module) to interface
with the simulator but no other components in the agent are aware of the simulator.
Using this object-oriented technique of subclassing offer a direct and immediate
transition from a simulated agent to a real agent by just replacing the MASS-aware
component by a normal one.

Figure 2 shows the overall design of MASS, and, at a high level, how it in-

5

Agent Specific
Resource Definitions
TAEMS Models

 Sensors and Scripts

Control

Execution

Problem
Solver State

Log

Communications

Agent A

Control

Execution

Problem
Solver State

Log

Communications

Agent B

Control

Execution

Problem
Solver State

Log

Communications

Agent C

during the execution
Monitoring

Clock

Method execution
and request results (cost,

pulse

time, quality, rsrc usage)

Sensors
Scripts
Random Seed
Log Control

Config

HR

Events Engine

Stream

Execution Simulation

Resource Manager

Communications Module

Event

Resource DB

TAEMS DB

DATABASES

Sensor DB

Scripting DB

Figure 2: Architecture of the MASS system.

teracts with the agents connected to it. On initialization, MASS reads its config-
uration, which defines the logging parameters, random seed, scripts (if any) and
global sensor definitions. These are used to instantiate various subsystems and
databases. When connected, agents will send additional information to be incorpo-
rated into this configuration, which allows environmental characteristics specific to
the agent to be bundled with that agent. Arguably the most important piece of data
arising from the agents is their TÆMS task structures, which are assimilated into
the TÆMS database shown in the figure. By doing the assimilation, the simulator
constructs the global objective TÆMS task structure. This global objective view
will be used by the execution subsystem when the simulation is running to quan-
tify both the characteristics of method execution and the effects interactions with
resources and other actions have on that method. The resource manager is respon-
sible for tracking the state of all resources in the environment, and the event engine
manages the queue of events which represent tangible actions that are taking place
(see section 3.1.2). The last component shown here, the communications module,
maintains a TCP stream connection with each agent, and is responsible for rout-
ing the different kinds of messages between the agents and destinations within the
controller. In the database part of the figure, we will describe in details the external
event generation (section 3.2) and the sensing mechanism (section 3.3).

The MASS controller has several tasks to perform while managing simulation.
These include routing message traffic to the correct destination, providing hooks
that allow agents to sense the virtual environment and managing the different re-
sources utilized by the agents. Its primary role, however, is to simulate the exe-

6

cution of methods requested by the agents. The simulator uses the distributions in
its global objective view to compute the values for method execution in terms of
cost, quality, duration and resource consumption. Note also that those values are
the typical case outcomes, the simulator will degrade results as necessary (lower
quality, more cost or longer duration) if required resources are not available, or if
execution is adversely affected by interactions with other methods. For example,
the method Visit-Starbucks has the following distribution: 50% of the time it has
a duration of 15 minutes and 50% 20 minutes1. In a more physical sense, this
means that sometimes you can get to Starbucks in 15 minutes, and sometime you
need 20 minutes. We don’t want to model road traffic, weather, or other possible
disturbances in this scenario, the action is simplified to its base components. Based
on this distribution, MASS will pick a value (randomly choosen based on the fre-
quency, or density, of each possible result) - let’s say 15 minutes in this case. The
simulator will then simulate the execution ofVisit-Starbucks, which will normally
complete in 15 minutes. It is important to note that at any time during the execution
of the method, it is possible for an external event to affect that duration (or quality
or cost). For example, it may be the case that another agent in the environment
has performed an action that will hinder our trip to Starbucks in some way, adding
two minutes to the total execution duration. The agent who had requested this ex-
ecution will now be notified of its completion 17 minutes after starting it, instead
of 15. The choice of how to handle this particular problem is left up to the agent
itself.

The second responsibility consuming a large portion of the simulator’s atten-
tion is to act as a message router for the agents. Agents send and receive their
messages through the simulator, which allows us to model adverse network condi-
tions through unpredictable delays and transfer failures. This routing also plays an
important role in the environment’s general determinism, as it permits control over
the order of message receipt from one run to the next. Section 3.1.2 will describe
this mechanism in more detail.

3.1 Controllable Simulation

In our simulated experiments, our goal is to compare the behavior of different
algorithms in the same environment under the same conditions. To correctly repli-
cate running conditions for a controlled simulation, the simulation should have a
deterministic notion of time, a deterministic notion of randomness and a determin-
istic order of events. Two simulation techniques exist which we have exploited to
achieve this behavior: discrete time and events. Discrete time simulation segments

1The duration in TÆMS is actually a unitless value, we represent times in minutes here for clarity.

7

the environmental time line into a number of slices. In this model, the simulator
begins a time slice by sending a pulse to all of the actors involved, which allows
them to run for a period of (real) CPU time. In our model, a pulse does not rep-
resent a predefined quantity CPU time; each agent decides independently when
to stop running; this allows agent performance to remain independent of the hard-
ware it runs on. The second type of simulation is event-based, which means that the
control is directed by events that force agents to react. The MASS simulator com-
bines these by dividing time into a number of slices, during which events are used
to internally represent actions and interact with the agents. In this model, agents
then execute within discrete time slices, but are also notified of activity (method
execution, message delivery, etc.) through event notification.

In the next section we will discuss discrete time simulation and the benefits that
arise from using it. We will then describe the need for an event based simulation
within a multi-agent environment.

3.1.1 Discrete time simulation

Because MASS utilizes a discrete notion of time, all agents running in the envi-
ronment must be synchronized with the simulator’s time. To enable this synchro-
nization, the simulator begins each time slice by sending each agent a “pulse”
message. This pulse tells the agent it can resume local execution, so in a sense the
agent functions by transforming the pulse to some amount of real CPU time on its
local processor. This local activity can take an arbitrary amount of real time, up
to several minutes if the action involves complex planning, but with respect to the
simulator, and in the perceptions of other agents, it will take only one pulse. This
technique has several advantages:

1. A series of actions will always require the same number of pulses, and thus
will always be performed in the same amount of simulation time. The num-
ber of pulses is completely independent of where the action takes place,
so performance will be independent of processor speed, available memory,
competing processes, etc...

2. Events and execution requests will always take place at the same time. Note
that this technique does not guarantee the ordering of these events within the
time slice, which will be discussed later in this section.

Using this technique, we are able to control and reproduce the simulation to
the granularity of the time pulse. Within the span of a single pulse however, many
events may occur, the ordering of which can affect simulation results. Messages
exchanged by agents arrive at the simulator and are converted to events to facilitate

8

control over how they are routed to their final destination. Just about everything
coming from the agents, in fact, is converted to events; in the next section we will
discuss how this is implemented and the advantages of using such a method.

3.1.2 Event based simulation

Events within our simulation environment are defined as actions which have a spe-
cific starting time and duration, and may be incrementally realized and inspected
(with respect to our deterministic time line). Note that this is different from the
notion of event as it is traditionally known in the simulation community, and is
separate from the notion of the “event streams”, which are used internally by the
agents in our environment.

All message traffic in the simulation environment is routed through the sim-
ulator, where it is instantiated as a message event. Similarly, execution results,
resource modifiers or scripted actions are also represented as events within the
simulation controller. We attempt to represent all activities as events both for con-
sistency reasons and because of the ease with which such a representation can be
monitored and controlled.

The most important classes of events in the simulator are the execution and
message events. An execution event is created each time an agent uses the simula-
tor to model a method’s execution. As with all events, execution events will define
the method’s start time, usually immediately, and duration, which depends on the
method’s probabilistic distribution as specified in the objective TÆMS task struc-
ture (see section 2). The execution event will also calculate the other qualities asso-
ciated with a method’s execution, such as its cost, quality and resource usage. All
interrelationships that could affect this method (for example enables from another
agent) are checked and their effects integrated with the current method distribution.
After being created, the execution event is inserted into the simulator’s time based
event queue, where it will be represented in each of the time slots during which it
exists. At the point of insertion, the simulator has computed, but not assigned, the
expected final quality, cost, duration and resource usage for the method’s execu-
tion. These characteristics will be accrued (or reduced) incrementally as the action
is performed, as long as no other events perturbate the system. Such perturbations
can occur during the execution when forces outside of the method affect its out-
come, such as a limiting resource or interaction with another execution method.
For example, if during this method’s execution, another executing method over-
loads a resource required by the first execution, the performance of the first will
be degraded. The simulator models this interaction by creating a “limiting event”,
which can change one or more of the performance vectors of the execution (cost,
quality, duration) as needed. The exact representation of this change is also defined

9

in the simulator’s objective TÆMS structure.
Real activities may be also incorporated into the MASS environment by al-

lowing agents to notify the controller when it has performed some activity. Using
this mechanism, an agent may execute some method locally, generating actual re-
sults in the process. When completed, it then reports these results to the simulator,
which updates its local view accordingly to maintain a consistent state. Agents
may then be incrementally generated to meet real world requirements by adding
real capabilities piecemeal, and using MASS to simulate the rest.

The other important class of event is the message event, which is used to model
the network traffic, which occurs between agents. Instead of communicating di-
rectly between themselves, when a message needs to be sent from one agent to
another (or to the group), it is routed through the simulator. The event’s lifetime
in the simulation event queue represents the travel time the message would use
if it were sent directly, so by controlling the duration of the event it is possible
to model different network conditions. More interesting network behavior can be
modeled by corrupting or dropping the contents of the message event. Like execu-
tion events, the message event may also may be influenced by other events in the
system, so a large number of co-occurring message events might cause one another
to be delayed or lost.

To prevent non-deterministic behavior and race conditions in our simulation
environment, we utilize a kind of “controlled randomness” to order the realization
of events within a given time pulse. When all of the agents have completed their
pulse activity (e.g. they have successfully acknowledged the pulse message), the
simulator can work with the accumulated events for that time slot. The simula-
tor begins this process by generating a unique number or hash key for each event
in the time slot. It uses these keys to sort the events into an ordered list. It then
deterministically shuffles this list before working through it, realizing each event
in turn. This shuffling technique, coupled with control over the random function’s
initial seed, forces the events to be processed in the same order during subsequent
runs without unfairly weighting a certain class of events (as would take place if we
simply processed the sorted list). This makes our simulation completely determin-
istic, without sacrificing the unpredictable nature a real world environment would
have.

3.2 External Event Scripting

MASS includes an event scripting mechanism that permits the creation of a wide
range of events capable of changing simulation characteristics. Using this mecha-
nism, event generation can be triggered by any combination of characteristics such
as time, resource’s state, agent activity or sensor data. Script effects may generate

10

arbitrary network data, disconnect agents or even modify their internal state. The
reactions we have found to be most useful are resource related. Using a script,
it is possible to change the state of any resource for an arbitrary period of time,
including its current level and upper and lower bounds. Scripting also provides
an additional mechanism by which we can simulate both external influences and
internal agent behaviors. The following scenarios demonstrate how this can be
accomplished:

Change the maximum/minimum usage bound for a resource for some period
of time. This can be used to simulate a resource that has temporal capacity
fluctuations, as is seen in network bandwidth.

Permanently alter the maximum/minimum usage bound, or currently avail-
able quantity, to model an upgraded or damaged resource.

Continuously adjusts a resource’s level value over a period of time, or until
some other event occurs. This can be used to simulate a leaky resource, or
one being used by a non-agent entity, and the results of a repair mechanism.

Change resource sensor characteristics, simulating damage or repair to that
component.

Modify or insert a new TÆMS task structure in an agent, which might indi-
cate a new set of goals or a more refined view of local, remote or environ-
mental capabilities. This is particularly useful for simulating planner, plan
retriever or domain problem solving capabilities that are not implemented in
the agent. The designer of the simulation can generate appropriate structures
a-priori which are then supplied to the agent by the simulator. For the agent,
those new structures are treated as if they were generated locally at runtime.

Modify the execution characteristics of a particular method, to mimic the
effects of an adversarial intrusion.

3.3 Sensor Simulation

To provide sensing capabilities, we have defined a mechanism that allows agents to
read environmental information from the simulated world via the controller. Our
goal was to make the interface generic, so agents could actively gather information
on subjects ranging from the current time to the current noise level in a room to
the location of another agent in the system. Within the simulator one or more
sensor objects can be created, each of which can access a particular environmental

11

characteristic with some amount of precision. Sensors that return arbitrary data (as
number of agents in the simulation, address of a matchmaker) are also possible.

Multiple sensor objects may be defined to access the same environmental char-
acteristic, but with different precision levels and agent access privileges. This al-
lows us to model different sensing capabilities and damaged or faulty sensors, and
explore scenarios involving redundant and/or conflicting sensor results.

As an example, suppose the Dishwasher agent in the intelligent Home is able to
sense the current noise level, but the simulator will return the sensed level adjusted
by up to 5% of its real value. Meanwhile, the Vacuum agent might read the value
with perfect precision. So if the current level is 76 dB, the Dishwasher can receive
a reading anywhere from 72.2 to 79.8, while Vacuum will always know the correct
value of 76.

4 Experiences

Using TÆMS, we have developed several simulation environments, including an
Intelligent Home system, and a new (still under development) supply chain system
involving 20 agents. In this section, we will show how we used MASS and TÆMS
for those two testbeds.

4.1 Intelligent Home project

The first project developed with MASS was the Intelligent Home project. In this
environment, we have populated a house with intelligent appliances, capable of
working towards goals, interacting with their environment and reasoning about
tradeoffs. The goal of this testbed was to develop a number of specific agents that
negotiate over the environmental resources needed to perform their tasks, while
respecting global deadlines on those tasks. The testbed was developed to explore
different types of coordination protocols and compare them. The specific idea was
to compare the performance of specialized protocols (such as seen in [11]) against
generic protocols (like Contract-Net[1] and GPGP[3]). MASS was used to build
a ”regular day in the house” - it simulates the tasks requested by the occupants,
maintains the status of all environmental resources, simulates agent interactions
with the house and resources, and manages sensors available to the agents. Using
MASS features, we can guarantee that events always occur at the same time in
subsequent trials, and the only changes from one run to the next are due to changes
in agent behavior. Such changes could be due to new reasoning activities by the
agents, new protocols or new task characteristics. The designer, however, must
explicitly make all those changes, so their impact may be easily quantified and

12

measured.
The Intelligent Home project includes 9 agents (dishwasher, dryer, washing

machine, coffee maker, robots, heater, air conditioner, water-heater) and were run-
ning for 1440 simulated minutes (24 hours). Several simulations were run with
different resource levels, to test if our ad-hoc protocols could scale up with the
increasing number of resource conflicts. Space limitations prevent a a complete
report of the project here, more complete results can be found in [11]. Instead, we
will give a synopsis of a small scenario, which also makes use of diagnosis-based
reorganization [?].

A dishwasher and waterheater exist in the house, related by the fact that the
dishwasher uses the hot water the waterheater produces. Under normal circum-
stances, the dishwasher assumes sufficient water will be available for it to operate,
since the waterheater will attempt to maintain a consistent level in the tank at all
times. Because of this assumption, and the desire to reduce unnecessary network
activity, the initial organization between the agents says that coordination is unnec-
essary between the two agents. In our scenario, we examine what happens when
this assumption fails, perhaps because the owner decides to take a shower at a con-
flicting time (i.e. there might be a preexisting assumption that showers only take
place in the morning), or if the waterheater is put into “conservation mode” and
thus only produces hot water when requested to do so. When this occurs, the dish-
washer will no longer have sufficient resources to perform its task. Lacking adap-
tative capabilitities, the dishwasher could repeatedly progress as normal but do a
poor job of dishwashing, or do no washing at all because of insufficient amounts of
hot water. We determined that using a diagnostics engine the dishwasher could, as
a result of poor performance observed through internal sensors or user feedback,
first determine that a required resource is missing, and then that the resource was
not being coordinated over - the dishwasher did not explicitly communicate its wa-
ter requirements to the waterheater. By itself, this would be sufficient to produce
a preliminary diagnosis the dishwasher could act upon simply by making use of a
resource coordination protocol. This diagnosis would then be used to change the
organizational structure to indicate that explicit coordination should be performed
over hot water usage. Later, after reviewing its modified assumptions, new expe-
riences or interactions with the waterheater, it could also refine and validate this
diagnosis, and perhaps update its assumptions to note that that there are certain
times during the day or water requirement thresholds when coordination is recom-
mended.

13

4.2 Supply Chain

The supply chain is a new project that involves up to 20 agents. Each agent rep-
resents a factory, which produces resources by consuming other resources. The
problem is thus one of obtaining the necessary components from other factories in
the environment, which in turn may need to obtain other resources for their local
production. Each factory bids on contracts for supplying other factories, potentially
cascading their needs to others factories. The simulator, by generating requests for
final products supplies the ”consumer” demand. In our testbed, we have used the
PC manufacturing industry. A Consumer will order a number of PC systems per
day, through distribution center like Best Buy or CompUSA. If those distribution
centers don’t have sufficient local reserves to satisfy the request, they will react by
sending other bids for other resources required satisfying the requests.

In this testbed, MASS allows us to simulate different agents at different loca-
tions, which forces agents to take account transportation between locations. MASS
natively defines the notion of a locale (a spatial location, potentially associated
with local resources and sensors), so each agent will be in a different locale with
its own storage for goods. Locales in MASS can also be hierarchical; sub-locales
can be defined to specialize where resources are stored. This could be as complex
as needed, but our initial approach to the supply chain testbed is to break down
locals by town, in which factories may be located. The connections allowed be-
tween locales are arbitrary; in this case, we have defined two types of connections:
highways and airlines. The type of connection that is used to ship goods will af-
fect the shipment price and duration. MASS is able to compute the expected cost,
duration and quality for transferring goods, depending of the connection you will
use, and external events may also affects those values (to simulate a snow storm at
an airport, for instance).

We envision this testbed growing up to 100 agents, which will MASS to be
extended to support such large communities. To address this issue, we plan on
distributing MASS as a hierarchy or graph of simulators, synchronized from one
primary controller.

5 Conclusions and extensions

MASS was successfully used to develop and evaluate multi-agent system up to
20 agents. Even if those simulations work, they are involving a limited number
of agents. Our next goal is to build a system with more than 100 agents using a
distributed version of MASS. We are also working on integrating MASS and the
DECAF [8] architecture from the University of Delaware to allow people to use
MASS with their own agent architecture.

14

Based on those experiments, we found that MASS has a lot of necessary fea-
tures for multi-agent systems: using the scripting language built-in has allowed us
to have only single point of configuration for the simulation. It was also easy to
use the scripting language to simulate component we didn’t have like a domain
problem solver (we use the simulator to send to an agent some new TÆMS task
structure based on its previous execution). It was also useful for debugging to be
able to rerun the same simulation over and over.

References
[1] Martin Andersson and Tumas Sandholm. Leveled commitment contracts with my-

opic and strategic agents. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence, pages 38–44, 1998.

[2] K. Decker, M. Williamson, and K. Sycara. Modeling information agents: Advertise-
ments, organizational roles, and dynamic behavior. In Proceedings of the AAAI-96
Workshop on Agent Modeling, 1996.

[3] Keith S. Decker and Victor R. Lesser. Generalizing the partial global planning al-
gorithm. International Journal of Intelligent and Cooperative Information Systems,
1(2):319–346, June 1992.

[4] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex environ-
ments. International Journal of Intelligent Systems in Accounting, Finance, and
Management, 2(4):215–234, December 1993.

[5] A. Drogoul and J. Ferber. Multi-agent simulation as a tool for modeling societies:
Application to social differentiation in ant colonies. In Europeen Workshop Mod-
elling Autonomous Agents Multi Agent World (MAAMAW), pages pp. 3–23, Rome,
Italy, 1992.

[6] Jacques Ferber. Foundations of Distributed Artificial Intelligence, chapter Reactive
Distributed Artificial Intelligence: Principles and Applications, pages pp. 287–314.
John Wiley & Sons, Inc., 1996.

[7] K. Fisher, J. Muller, and Pischel M. Foundations of Distributed Artificial Intelli-
gence, chapter AGenDA - A General Testbed for Distributed Artificial Intelligence
Applications, pages pp. 401–428. John Wiley & Sons, Inc., 1996.

[8] John R. Graham and Keith S. Decker. Towards a distributed, environment-centered
agent framework. In Proceedings of the Sixth International Workshop on Agent The-
ories, Architectures, and Languages (ATAL), Florida, jul 1999.

[9] Martha E. Pollack Hanks, Steven and Paul R. Cohen. Benchmarks, testbeds, con-
trolled experimentation, and the design of agent architectures. AIMagazine, 14(4):pp.
17–42, 1993. Winter issue.

[10] A. E. Howe. Analyzing failure recovery to improve planner design. In Proc. of
AAAI-92, pages 387–392, San-Jose, CA, 1992.

15

[11] Victor Lesser, Michael Atighetchi, Bryan Horling, Brett Benyo, Anita Raja, Regis
Vincent, Thomas Wagner, Ping Xuan, and Shelley XQ. Zhang. A Multi-Agent Sys-
tem for Intelligent Environment Control. Computer Science Technical Report TR-
98-XX, University of Massachusetts at Amherst, October 1998.

[12] Nelson Minar, Roger Burkhart, Chris Langton, and Manor Askenazi. The swarm
simulation system: A toolkit for building multi-agent simulations. Web paper:
http://www.santefe.edu/projects/swarm/, Sante Fe Institute, 1996.

[13] M. V. Nagendra Prasad and Victor R. Lesser. The use of meta-level information in
learning situation specific coordination. In IJCAI-97, Nagoya (Japan), 1997.

16

