
Bell Labs/Columbia/UMass RTP Library Internal Function
Descriptions

Dan Rubenstein, Jonathan Lennox, Jonathan Rosenberg, and Henning Schulzrinne

Technical Report 99-76
Department of Computer Science

November, 1999

Comments related to this document or to the Bell Labs/Columbia/UMass RTP Library should be sent to
rtplib@cs.columbia.edu

Abstract

This documentation describes the internal functions that are components of the Bell Labs/Columbia/UMass RTP
Library.1 The purpose of this document is to provide the experienced networking programmer who is familiar with
the details of RTP/RTCP with a detailed understanding of the operation of the internal aspects of the Library. This
document should not be necessary for implementing an application that uses the RTP/RTCP protocols. Use of the
library for such a purpose is described in [1]. The Bell Labs/Columbia/UMass RTP Library attempts to conform to
the protocol description discussed in [2]. The software is provided as-is: neither the authors nor Lucent Technologies
make any guarantees as to its correctness. Furthermore, the reader is warned that modifying any part of the library
code can result in a protocol that no longer satisfies the requirements of the RTP/RTCP protocol as specified in [2].

c 1997, 1998, 1999 Lucent Technologies; all rights reserved.
1In its current form, the document describes the library as it appeared in January, 1998. We point out that there have been significant modifications

since then.

1

Contents
1 Introduction 3

2 Library Internals Overview 3

3 rtp mlist internal. h,c 3
3.1 #defines . 3
3.2 structures . 4
3.3 global variables . 4
3.4 functionality . 4

4 rtp mlist. h,c 7
4.1 functions . 7

4.1.1 Reaction to Events . 7
4.1.2 Member Initialization / destruction functions . 7
4.1.3 Functions to update a member’s status . 8
4.1.4 Queries of a member’s status . 8

5 rtp api internal. h,c 9
5.1 #defines . 9
5.2 structures . 10
5.3 global variables . 11
5.4 functions . 11

6 rtp collision. h,c 14
6.1 functions . 14

7 rtp encrypt. h,c 15
7.1 functions . 15

8 Other Files 15

References 16

2

1 Introduction
The Bell Labs/Columbia/UMass RTP Library is provided as a tool to facilitate development of applications that imple-
ment RTP/RTCP protocols for delivering real-time data. It also provides a common implementation of the RTP/RTCP
protocols. By using the library, various applications’ protocols will conform to the same set of requirements. This will
make it easier for different applications to share data over a network. Furthermore, the cost of updating an applica-
tion to a newer version of RTP/RTCP is simplified. The application programmer simply needs to compile in a newer
version of the library.

The library itself can be viewed in two levels. The top level is the interface that is provided to the application
programmer. Through calls to this interface, the application programmer should be able to easily construct an appli-
cation whose network transport protocol conforms to the RTP/RTCP specification in [2]. This interface is described
in [1]. In this document, we describe how the internals of the interface operate (i.e. all the details that an application
programmer shouldn’t need to know).

2 Library Internals Overview
The Internals of the Library perform many functions that are required to support RTP/RTCP. This support can be
broken down into two basic components: Network Interface Operations and Membership Operations. Network
interface operationsinvolve sending, receiving, processing, and perhaps decoding of RTP/RTCP packets. Membership
operationsinvolve keeping track of the members of the current session, and any statistics for these members that are
relevant to the operation of RTP/RTCP.

3 rtp mlist internal. h,c
These files provide structures and functionality that perform generic list operations. They also provide structures
and functionality for operations that are specific to RTP/RTCP, but which are for the mostpart strictly membership
operations.

3.1 #defines
RTP DEBUG

If this variable is #defined, then certain interal messages will be printed to stdout.

RTP WATCH ALLOCATION
If this variable is #defined, then dynamic memory allocations are tracked, messages to stdout will provide
notification whenever a memory location is freed by the library that was not allocated by the library. Further-
more, functionality is provided that can be called to examine the status of memory at any time.

RTP SEMI RANDOM
If this variable is #defined, then the random number generator does not use a random seed, so that it generates
random numbers in a predictable order, and makes it easier to test for things like SSRC collisions.

RTP NUM SDES TYPES
This variable must be #defined to the number of SDES types that are supported by the library. The current
default is 12.

MAXMALLOCS
Defined for internal use only. Number of items that can be dynamically allocated during a session. Currently
set to 10,000. Its use (and the imposed limit) is only in effect if RTP WATCH ALLOCATION is #defined.

3

3.2 structures
rtp sndr local

Holds information about observations from a particular member about a particular sender, . For instance, it
keeps track of the jitter and arrival times and sequence numbers for recently received packets from as observed
, and communicated locally via RTCP reports. can also be the local member, such that the information

contained in the structure is what is observed of sender from a local perspective.

member
Holds information about a particular member of the RTP/RTCP session. Sample members for which this struc-
ture is used include: the local member, any member that is sending RTP or RTCP packets, or any member that
appears in the CSRC list of an RTCP packet.

struct link
An object used within a doubly linked list to connect the members of the list.

doubly linked list
A doubly linked list of members that are linked together via struct links.

membership list
The list of members for the current context. This is simply a doubly linked list with a few extra fields that
allow it to group members of different status (RTP MEMBER CONFIRMED, RTP MEMBER PENDING, and
RTP MEMBER EXPIRED).

hash table
Simply an array of several doubly linked lists, where a function maps each member to a particular list
via a hash function.

3.3 global variables
long mallctr

Counts the number of bytes that were dynamically allocated made throughout the entire running of the exe-
cutable. Only in use if RTP WATCH ALLOCATION is #defined.

long mallcalls
Counts the number of dynamic memory allocations made throughout the entire running of the executable. Only
in use if RTP WATCH ALLOCATION is #defined.

long freecalls
Counts the number of times memory was freed. Only in use if RTP WATCH ALLOCATION is #defined.

void* malladdr[MAXMALLOCS]
Stores the currently active memory allocations. When an allocation is no longer active (i.e. it has been
free()d), its value is set to NULL.

3.4 functionality
void InitMallocs()

Initialization function for malloc() tracking. Should only be called when RTP WATCH ALLOCATION is
#defined.

void CheckMallocs()
Examines what has been malloc()d and free()d and reports any unfreed memory. Should be called right
before termination of the executable to check for memory leaks. Should only be used when RTP WATCH ALLOCATION
is #defined.

4

void* my malloc(size t size)
This function is called throughout the library code in place of malloc(). If RTP WATCH ALLOCATION is
#defined, then the call performs a malloc() and also retains information about the memory allocation.
Otherwise, it simply calls malloc().

void* my calloc(size t num, size t size)
Similar to my malloc(), except replaces calloc().

void my free(void* tofree)
Similar to my malloc(), except replaces free().

void InitList(doubly linked list *l)
Initializes a list to be empty. Does not allocate memory for the list.

struct link *CreateLink(member *the member)
Allocates memory for a link which can be used to insert the member into some list. The function itself does
not place the link in any lists.

int PullMember(doubly linked list *l, struct link *the link)
Remove link the link from the list l.

int UnsortedInsertMember (doubly linked list *l, struct link *the link,
struct link *prev on list)

Insert the link the link into the list l immediately behind the link, prev on list. If prev on list is
NULL, then insert the member into the front of the list.

int SortedInsertMember (RTP CONTEXT *the context, doubly linked list *l, struct link *the link,
int (*sort func)(RTP CONTEXT *the context, struct link *compare me,
struct link *to me), struct link *start point)

Insert the link the link into the sorted list, l, sorted by the member that each link points to, ordered by the
sorting function sort func(). The sorting should begin by comparing the link to the link to me. For the
list to be sorted properly, the SortedInsertMember() function must always use the same sort function for
a particular list. At this point in time, this function is not used within the library.

void MembershipListInit(membership list *l)
Initialize the membership list. This entails initializing the doubly linked list structure as well as setting
the number of confirmed members to 0, and setting the pointer to the oldest member that has not soft timed out
yet to NULL (since there are no members at all).

int MembershipListPullMember(membership list *l, strcut link *the link)
Remove a member from the membership list, l. Involves taking the member out of the list and updating the
confirmed member count (if necessary) and the oldest not-yet-soft pointer (if necessary).

void ChangeMemberStatus (RTP CONTEXT *the context, member *m,
memberstatus new status)

Should be called whenever a member’s status is changed. It not only updates the member’s information appro-
priately, but also makes the necessary changes within the context the context’s membership list.

void InitSSRCHashTable(RTP CONTEXT *the context)
Initializes the member hash table that hashes on the SSRC.

void DeleteSSRCHashTable(RTP CONTEXT *the context)
Destroys the member hash table that hashes on the SSRC.

int EnterSSRCHashTable(RTP CONTEXT *the context, member *the member)
Places a member into the hash table that hashes on the member’s SSRC.

member *GetMemberFromSSRCHash(RTP CONTEXT *the context, u int32 ssrc)
Retrieves a member with SSRC ssrc (there might be more than one if a collision exists). If no such member
exists, the function returns NULL.

5

int RemoveMemberFromSSRCHash (RTP CONTEXT *the context,
member *the member)

Removes a particular member from the SSRC hash table. Returns FALSE if the member is not currently in
the hash table.

void InitUniqueIDHashTable(RTP CONTEXT *the context)
Creates the hash table that hashes on the canonical identifier for each member.

void DeleteUniqueIDHashTable(RTP CONTEXT *the context)
Deletes the hash table that hashes on the canonical identifier for each member.

int EnterUniqueIDHashTable(RTP CONTEXT *the context, member *the member)
Places the member the member into the unique ID hash table.

member *GetMemberFromUniqueIDHash(RTP CONTEXT *the context, person id)
Gets the member with the unique id id. Returns NULL if no such member exists.

int RemoveMemberFromUniqueIDHash (RTP CONTEXT *the context,
member *the member)

Remove the member the member from the hash table. Returns FALSE if no such member is present in the
table.

void InitCNAMEHashTable(RTP CONTEXT *the context)
Creates the hash table that hashes on the canonical name of a member.

void DeleteCNAMEHashTable(RTP CONTEXT *the context)
Deletes the hash table that hashes on the canonical name of a member.

int HashOnName(char *the name)
Converts a NULL-terminated string the name into an integer that can then be fed to a hash function to produce
a hash value.

int EnterCNAMEHashTable(RTP CONTEXT *the context, member *the member)
Places the member the member into the CNAME hash table.

member *GetMemberFromCNAMEHash(RTP CONTEXT *the context, char *cname)
Gets the member with the CNAME cname. Returns NULL if no such member exists.

int RemoveMemberFromCNAMEHash (RTP CONTEXT *the context,
member *the member)

Remove the member the member from the hash table. Returns FALSE if no such member is present in the
table.

void Init RR Hash(member *the member)
Creates the hash table used by the member the member that hashes on a receiver report for a sender.

void Delete RR Hash(member *the member)
Deletes the hash table used by the member the member that hashes on a receiver report for a sender.

receiver report *Update RR (member *reporter, member *sender,
rtcp report block *the block)

Updates the report to the block for the sender sender that was issued by the member reporter.

void Clear Member RRs(RTP CONTEXT *the context, member *the member)
Removes hash enttries for the member the member.

static void Merge RRs(receiver report *prev sr, receiver report *new sr)
Merges two receiver reports and stores the results in prev sr.

6

void Merge RR Hashes(member* prev member, member *new member)
Merges the hash table from member new member into the hash table for prev member.

void panic(char *format, ...)
Called by tclHash.c whenever something goes wrong. Hopefully, it never gets called.

4 rtp mlist. h,c
These files provide network interface operationsthat affect the membership lists.

4.1 functions
4.1.1 Reaction to Events

Library member list operations are performed whenever an event occurs. An event is defined as a (RTP or RTCP)
packet, or a timeout (i.e. when the application makes a call to RTPExecute() (see [1]).

rtperror UpdateMemberInfoByRTCP (RTP CONTEXT *the context, rtcp packet *the packet,
struct sockaddr *fromaddr,
int addrlen,
int part in compound pkt)

This function is called for the member from which an RTCP packet was just received. The member is moved
to status RTP MEMBER CONFIRMED if two RT(C)P packets have been received from it. All fields which are
affected by information in RTCP compound packets are updated. SSRC collisions are detected and handled
via calls to HandleSSRCCollision() if two members with the same SSRC but different CNAMEs are
detected. Members are merged if a member obtains a CNAME and turns out to be identical to a previous
member that was previously involved in an SSRC collision. If the RTCP packet includes a BYE packet, those
members specified in the packet are removed. An APP packet updates member info. At the end of the function,
a call to UpdateMembershipLists() is made to update the appropriate lists.

rtperror UpdateMemberInfoByRTP (RTP CONTEXT *the context, rtp packet *the packet,
struct sockaddr *fromaddr,
int addrlen)

Called upon receipt (or sending) of an RTP packet. Updates the info of the sending member of the RTP packet.
The status of the member is changed to RTP MEMBER CONFIRMED if two RTP packets have been received.
Jitter and sequence number fields are updated as well.

void UpdateMembershipLists(RTP CONTEXT *the context)
Called after an RTCP packet is received (i.e. called by UpdateMemberInfoByRTCP()) as well as when an
RTCP packet is sent (see SendRTCPPacket() in [1]. Updates the status of all members on the membership
list, calls the necessary callbacks when membership status changes, and purges those members from the list that
no longer belong on it. It also updates the sender status appropriately for members.

4.1.2 Member Initialization / destruction functions

Functions that correspond to initializing members are called whenever the library believes that a new member has
joined the session (i.e. a packet arrives from a previously unknown SSRC, or a collision of SSRCs has been detected).
Functions that destroy members are called when a member hard times out, or when a collision is resolved (i.e. two
members with different SSRCs in fact refer to the pre- and post-collission members).

member *EstablishNewMember (RTP CONTEXT *the context, u int32 ssrc,
void* user data, struct sockaddr *fromaddr)

Constructs a new member with the specified SSRC. The member is given a unique ID (the CNAME is not yet
known so it is assumed to be a new member). The initial status of the member is RTP MEMBER PENDING.

7

Calling this function also triggers callbacks UpdateMemberCallBack() and ChangedMemberInfo-
CallBack() if they have been set to indicate a new member and announce the IP address of the member,
respectively.

static person AssignID(RTP CONTEXT *the context)
Allocates a unique ID each time the function is called. The returned number is simply incremented each time.

int RemoveMember(RTP CONTEXT *the context, member *remove me)
Removes a member from all lists and hash tables.

int DestroyMember(RTP CONTEXT *the context, member *destroy me)
Deallocates memory associated with a member. Removes it from any collisions that it is involved in as well.

4.1.3 Functions to update a member’s status

The following functions update the status of a member, and the appropriate function is called in reaction to an event
triggered by the member that is being updated.

int UpdateMemberTime (RTP CONTEXT *the context, member *the member,
struct timeval newtime)

Updates the field that tracks the last time that the member received an RTP/RTCP packet. The function gets
called whenever an RTP or RTCP packet is received from the member the member.

int UpdateSenderTime(RTP CONTEXT *the context, member *the member, struct timeval newtime)
Updates the field that tracks the last time the member sent an RTP packet. If this member is a new sender, it
initiates the RR Hash table and calls the UpdateMemberCallBack(). The function is called whenever an
RTP packet is received from the member.

static member* UpdateTimeOrCreateMember (RTP CONTEXT *the context,
u int32 ssrc,
struct sockaddr *fromaddr,
int addrlen)

This function is called internally by functions that wish to receive a member structure that contains the given
SSRC with the given address. If no such member exists, it is created. If there are multiple members with this
SSRC (i.e. all members with the SSRC are involved in a collision), it attempts to retrieve the member with the
same SSRC. If it finds a member whose address isn’t known, it sets that member’s address to the address spec-
ified (See the comments above the function for details) and calls the ChangedMemberInfoCallBack()
function to notify about changes in address and port. Finally, it updates the time associated with the member to
the current time.

4.1.4 Queries of a member’s status

int SenderTimedOut (RTP CONTEXT *the context, member *themember,
struct timeval now)

Returns TRUE if the member has timed out as a sender.
int SoftTimedOut (RTP CONTEXT *the context, member *themember,

struct timeval now)
Returns TRUE if the member has soft timed out.

int HardTimedOut (RTP CONTEXT *the context, member *themember,
struct timeval now)

Returns TRUE if the member has hard timed out.
int FromDifferentSource (struct sockaddr *addr1, struct sockaddr *addr2,

int complen)
Returns TRUE if the addresses do not match. If the address is of type AF INET, then either the addresses must
not match, or the ports must differ by a value greater than 1. If of another address type, then the addresses are
considered different if the first complen bytes don’t match exactly.

8

5 rtp api internal. h,c
These files provide the basic network interface operations, as well as the definition of the RTP CONTEXT structure, in
which all information about the session is stored. What is in these files is meant to support what appears in rtp api.h
and rtp api.c, but which can be kept hidden from the application programmer.

5.1 #defines
RTP INIT CONTEXTS AVAIL

How many contexts can be constructed before the ContextList structure must be expanded in size. The
current value is 256.

RTP VERSION
The version of the RTP protocol. The current value is 2.

RTP CONTEXT INC
The increment by which the ContextList is increased if an increase is necessary. The current value is 10.

RTP DEFAULT TTL
The default TTL (time to live field) for a mulicast channel. The default value is 128. The TTL value cannot be
set for unicast communication.

RTP DEFAULT ENCRYPTION
The default form of encryption used. The default is currently RTP ENCRYPTION NONE.

RTP MAX BYE SIZE
Maximum storage allocated for the BYE reason. The current value is 1024.

RTP MAX PKT SIZE
The maximum size allowed for an RTP packet. The default is 10,000.

RTP MAX PORT STR SIZE
The maximum length of a UDP port number when represented as a string. The default is 8, which is an overes-
timate.

RTP MAX PKTS IN COMPOUND
The maximum number of RTCP packets that can appear in a compound packet. The default value is 200, which
is an overestimate. The value is used to create a structure that maintains pointers to the start of each packet,
which does not require much memory.

RTP MAX PAYLOAD TYPES
Number of payload types available. The default is 128.

RTP DEFAULT BANDWIDTH
The default bandwidth that an RTP session is believed to use, given in Kb / sec. The default is 120.

RTP DEFAULT RTCP FRAC
The fraction of bandwidth that should be used by RTCP. The default is .05 (5%).

RTP DEFAULT SENDER BW FRAC
The fraction of the RTCP bandwidth that is to be shared among active senders. The default is .25 (25%).

RTP MAX UNIQUE ID REMAPS
The maximum number of ID remaps that are tracked within a context. An ID is remapped when a collision is
resolved and it is realized that two member structures have been built for a single member (each with a unique
ID). The member with the larger ID is merged into the other member, and is subsequently destroyed. Any
further references to the larger ID will map to the smaller ID, as long as the information is maintained. If the
number of remaps grows larger than RTP MAX UNIQUE ID REMAPS, then earlier remaps are dropped from
memory, and remapping for certain members will fail to take place. The default value is 2,000, which should be
more than the number of remappings that take place in a session.

9

RTP HARD MEMBER TIMEOUT
The time until a hard timeout is a fixedmultiple of the time it takes to soft timeout. RTP HARD MEMBER TIMEOUT
equals this multiple. The default value is 3.

RTP SOFT MEMBER TIMEOUT
The time until a member has a “soft” timeout, or the time that a member who has not been “validated”
(i.e. does not yet have a CNAME or is currently involved in a collision) will be terminated. The value in
RTP SOFT MEMBER TIMEOUT should be multiplied by the time of the current RTCP receiver interval to de-
termine the soft timeout time. The current defaul it 5.

RTP SENDER TIMEOUT
The number of RTCP packets that appear in a row from a particular member (i.e. no RTP packets arrive during
this interval) that cause the member to revert to non-sender status. The current default is 1.

RTP SENDER MAX TIMEOUT
The maximum time until a sender times out (in seconds). The current value is 3,600 (1 hour).

RTCP MIN TIME
The minimum time (period in seconds) in which a member can send RTCP packets. The current default is 5.

RTCP SIZE GAIN
RTCP packet size is computed using an exponentially decaying average. RTCP SIZE GAIN is the fraction by
which the most recent RTCP packet influences the average. The default value is 1/16.

RTP ADDRESS NOT YET KNOWN
The default value for an address of an SSRC before the address can be determined. The current value is 30.

RTP DEFAULT PORT
A default port number. The current value is 5,000.

BIND COUNTER
The maximum number of tries to allocate a dynamic RTP port. The current value is 20.

UDP PORT BASE
Starting UDP port for dynamic ports. The current value is 49,152.

UDP PORT RANGE
The range of UDP dynamic ports. The current value is 16382

GETTIMEOFDAY TO NTP OFFSET
The number of seconds between 1/1/1900 and 1/1/1970. The value is 2,208,988,800

RTP OPAQUE SEND RTCP
The only opaque type currently used by the RTPExecute(). Its value is 1.

5.2 structures
struct little endian rtp hdr

A header equivalent to the RTP header, except that its bit-fields are reversed so that they map to a big endian
ordering on a little endian machine.

struct little endian rtcp hdr
A header equivalent to the RTCP header, except that its bit-fields are reversed so that they map to a big endian
ordering on a little endian machine.

address holder t
This is used to hold addresses to send to for RTP and RTCP packets. It is a linked list of addresses, ports, and
TTLs.

10

RTP CONTEXT
This structure holds information that pertains to a context. It holds or points to all information relevant to the
current session.

5.3 global variables
RTP CONTEXT **ContextList

An array of pointers to contexts. The contexts are constructed when they are needed (via a call to RTPCre-
ate()). The context’s cid is the index of in this array of the context.

long RTP context above used
Points to the smallest index that pertains is larger than the cids of any active context.

long RTP contexts in use
Counts the number of contexts in use.

rtperror RTP cur err
Keeps track of the most recent error that occured during a session.

char RTP err msg[200]
Keeps track of the error message associated with the most recent error that occured during a session.

int RTP PAYLOAD CLOCK CONVERSIONS[RTP MAX PAYLOAD TYPES]
Holds clock conversion rates (NTP ticks in terms of an RTP tick) for various payload types.

5.4 functions
void InitRandom()

Initializes random number generators with a random seed. If RTP SEMI RANDOM is #defined, then no
initialization is performed. Otherwise, the drand48() generator is initialized via the time of day ().

u int32 random32(int type)
Returns a 32 bit random number. If RTP SEMI RANDOM is #defined, it simply calls rand(). Otherwise,
it calls md 32(),

static u long md 32(char *string, int length)
The random number generator code presented in [2].

void SetDefaultPayloadRates(RTP CONTEXT *the context)
Set the default payload rates. This currently sets the rates as is specified in draft-ietf-avt-profile-new-01 from
May 15, 1997.

rtperror ValidRTPContext(context cid, char *calling func)
Validate that a putative RTP context actually exists. If not, set error message and return appropriately.

rtperror GetMemberForContext (context cid, person p, member **the member p,
char *calling func)

Retrieves the member for a putative person with a given context, or complains.

int IsMulticast(struct in addr addr)
Determines if an IPv4 address is a multicast address.

struct timeval AddTimes(struct timeval *time1, struct timeval *time2)
Adds two timevals. Does not handle the overflow of tv sec (year 2038 problem).

int TimeExpired (struct timeval *init time, struct timeval *cur time,
struct timeval *interval)

Returns TRUE if init time + interval cur time, i.e. if an expiration period has elapsed.

11

struct timeval ConvertDoubleToTime(double interval)
Convert a double value to a struct timeval structure. The value interval is in terms of seconds.

static ntp64 ConvertTimevalToNTP(struct timeval tv)
Converts a struct timeval structure to an NTP timestamp.

double RTPTimeDiff (RTP CONTEXT *the context,
struct timeval *later time,
struct timeval *earlier time,
int8 payload type)

Returns the time difference on an RTP scale between two NTP timestamps. The result is in milliseconds, and
should be an integer.

static double InternalComputeRTCPSendDelay (RTP CONTEXT *the context,
int sender)

Returns the current delay interval (in seconds) betweenRTCP packets for the session described bythe context.
The sender boolean variable determines whether or not the results should be returned for a sender, whose rates
are different from a non-sender.

double ComputeRTCPSendDelay(RTP CONTEXT *the context)
Compute the local member’s RTCP interval, dependent on whether or not the member is a sender.

double ComputeSenderRTCPSendDelay(RTP CONTEXT *the context)
Compute the RTCP interval for any sender.

double ComputeReceiverRTCPSendDelay(RTP CONTEXT *the context)
Compute the RTCP interval for any non-sender.

void ComputeBlockInfo (RTP CONTEXT *the context, member *the member,
rtcp report block *cur block, u int32 *expected ptr)

Compute the values for SR or RR packets for the member, based on statistics that have been observed during
the session. This function is called by BuildBlockInfo() as well as the various API calls that enquire about
member statistics. Those fields which are computed here are:

cumulative number of packets lost that were sent by the member.
fraction of packets lost that were sent by the member.
highest sequence number received
jitter
lsr
dlsr

static void BuildBlockInfo (RTP CONTEXT *the context, u int32 ssrc,
rtcp report block *cur block)

Build a report block which appears in an SR or RR packet for the member with SSRC ssrc, based on statistics
that are collected from local observation. If the member with SSRC ssrc does not exist, it is created. If
a previous report block does not exist, it is created. Otherwise, the information is computed via a call to
ComputeBlockInfo(). Also, update those fields that track the values since the last sent RTCP packet (since
this is part of the process to build and send such a packet). Finally, the local information about this member is
updated as if an RR or SR packet had arrived.

static int AddPad(char* cur, int cur tot len)
Adds padding to the end of a stream with total length cur tot len such that the length of the stream with
the padding is . The ending of the stream with length cur tot len is at cur (before the padding is
added). The padding is all 0’s, except for the last byte, which is set to a value that indicates the number of bytes
(including itself) that make up the padding.

12

char *Build SR Packet (RTP CONTEXT *the context,
char *buffer, struct link **first sender link)

Builds an SR packet, or builds an additional SR packet. The packet is built at memory location buffer.
If first sender link is set to NULL, then the initial SR packet is built. If the function returns with
first sender link set to a non-NULL value, then an additional SR packet is required to describe all senders
in the current session (SR packets can describe a limit of 31). The function returns a pointer to the end of the
buffer of the current SR packet that was built, so that a function to build an additional RTCP packet within the
compound packet can be given the starting location of the next packet.

char *Build RR Packet (RTP CONTEXT *the context,
char *buffer, struct link **first sender link,
int build empty)

Builds an RR packet, or builds an additional RR packet. The packet is built at memory location buffer.
If first sender link is set to NULL, then the initial RR packet is built. If the function returns with
first sender link set to a non-NULL value, then an additional RR packet is required to describe all senders
in the current session (RR packets can describe a limit of 31). The function returns a pointer to the end of the
buffer of the current RR packet that was built, so that a function to build an additional RTCP packet within the
compound packet can be given the starting location of the next packet.

int PlaceSDESInfoForMember (member *the member, char *buffer,
int init buffer offset)

Builds an SDES packet at location buffer for the member the member. buffer points to the start of the
SDES packet, and init buffer offset gives the offset from the point of buffer where the current info
should be placed. If all of this member’s SDES fields are NULL, then no information is placed into the buffer,
and the value returned equals init buffer offset.

char *Build SDES Packet (RTP CONTEXT *the context, char *buffer,
int lastpkt and encrypt)

Builds an SDES packet which contains information for the local member and each sender that has at least one
non-NULL SDES field. The parameter lastpkt and encrypt should be set to TRUE if the SDES packet
is the last packet in the compound RTCP packet and the packet is being encrypted. This way, padding will be
added.

char *BuildByePacket (RTP CONTEXT *the context, char *buffer,
int bye for csrcs, int lastpkt and encrypt, char *reason)

Builds a BYE packet. If bye for csrcs is TRUE, then the csrcs in the csrc list will be included the BYE.
The parameter lastpkt and encrypt should be set to TRUE if the BYE packet is the last packet in the
compound RTCP packet and the packet is being encrypted. This way, padding will be added. reason points
to the buffer that contains the reason for leaving the session (should be terminated with a , or set to NULL if
no reason is desired.)

int SendRTCPPacket(RTP CONTEXT *the context, int special)
Builds and sends an RTCP packet, but only after performing reconsideration (if it is enabled) which confirms
whether or not it is currently the time to send. Returns TRUE if the packet was sent, FALSE otherwise. The
time for the next RTCP packet to be sent is also scheduled here (or the time for the current packet to be sent
is rescheduled if reconsideration caused the packets sending to be delayed). The parameter special is used
to perform partial encryption. If partial encryption is enabled in the context, the setting special = 0 sends
the encrypted SDES packet, and setting special = 1 sends the non-encrypted portion of the compound RTCP
packet. Thus, the function must be called twice when partial encryption is in use. When partial encryption is
not in use, special should be set to 0.

rtperror RemapPerson(RTP CONTEXT *the context, person *p)
Given a unique ID, p, returns the canonical identifier for that member. (Person IDs can be remapped after a
collision resolution where two member structures that describe the same member (but have different canonical
IDs) are mapped into a single structure).

13

int SplitAndHostOrderLengthCompoundRTCP(char *rtcppacket, char *indpkts[],
int len)

This function is identical in all respects save one as the RTPSplitCompoundRTCP() function that is pro-
vided to the application programmer, and is described in [1]. The only difference is that the length field in
each RTCP packet within the compound packet is converted into host byte order. This conversion should only
be performed once per arriving compound packet, and is therefore called internally by the library upon packet
arrival. The function is identical to RTPSplitCompoundRTCP() on Big Endian machines.

void FixRTPByteOrdering(char *the packet, int pktlen, int is nw to host)
Converts a network-byte-orderedRTP packet into a host-byte-orderedRTP packet when is nw to host is set
to TRUE. Otherwise, converts the RTP packet in the opposite direction.

void FixRTCPByteOrdering(rtcp packet *the packet, int is nw to host)
Converts a network-byte-ordered RTCP packet into a host-byte-ordered RTCP packet when is nw to host
is set to TRUE. Otherwise, converts the RTCP packet in the opposite direction.

void Flip24(char *the 24bit thing)
Flips a 24-bit value from host to network byte order, or vice versa. This is used for the cum packets lost
field in the RTCP report block, which is a 24-bit quantity.

void ReverseRTPHeader(rtp hdr t *the hdr)
Takes an RTP header in Big Endian format and converts it to Little Endian format.

void ReverseRTCPHeader(rtcp overlay *the hdr)
Takes an RTCP header in Big Endian format and converts it to Little Endian format.

void StraightenRTPHeader(rtp hdr t *the hdr)
Takes an RTP header in Little Endian format and converts it to Big Endian format.

void StraightenRTCPHeader(rtcp overlay *the hdr)
Takes an RTCP header in Little Endian format and converts it to Big Endian format.

6 rtp collision. h,c
These files provide support that is specific to detecting and resolving collisions between member identifiers (SSRCs)
within a session.

6.1 functions
void ComputeNewSSRC(RTP CONTEXT *the context)

This function is called by the local member to choose a new SSRC. The function attempts to retrieve a member
with an identical SSRC, and if one is located, the process is repeated. This guarantees that the new SSRC is
unique at the time of its creation. The local member’s state is then updated to reflect that it is no longer colliding
with any other members.

void HandleSSRCCollision (RTP CONTEXT *the context, member *the member,
struct sockaddr *new addr, char *new cname)

This function is called after an SSRC collision has been detected. It constructs a new member (whose entry
to the session has induced the collision), updates fields in all colliding members that indicate involvement in a
collision. If the collision involves the local member, then the collision callback is called, and a BYE packet is
sent.

static void MergeLocalInfo(rtp sndr local *prev local, rtp sndr local *new local)
This function takes two type rtp sndr local parameters, and merges their fields into the prev local
parameter. Fields that count events are added together, and fields that represent maximums and minimums take
the max / min respectively of the respective field between the two parameters. This function is only called by
MergeMembers() and has no scope outside the file rtp collision.c.

14

member *MergeMembers (RTP CONTEXT *the context, member *prev member,
member *new member)

This function takes two separate copies of a member (due to an SSRC change after which certain events occurred
with the new SSRC before it could be determined that this new SSRC resulted from a change) and merges them
into a single member, and returning the merged member in prev member.

7 rtp encrypt. h,c
These files provide support for encryption of RTP/RTCP packets. Note that the encryption techniques aren’t supplied
themselves, but allows an application programmer to interface an encryption package with the library.

7.1 functions
rtperror DoEncryption (context cid, struct iovec *pktpart, int pktlen,

int IsRTP)
This function takes an IO Vector that contains a packet and performs the necessary operations that result in
sending an encrypted packet into the network. The function copies the IO Vector into a buffer 2, prepends the
random 8 byte header, calls the encryption routines supplied by the application programmer, and sends the
packet over the appropriate socket.

rtperror DoDecryption (context cid, char *decrypt buff,
long decrypt bufflen)

This function takes an encrypted stream and applies the decryption function supplied by the application pro-
grammer, and strips off the encryption header.

int IsValidRTPPacket(RTP CONTEXT *the context, rtp packet *the pkt)
Performs some checks that can often detect non-RTP or improperly decrypted RTP packets. The function
currently examines the version byte in the packet and makes sure it matches RTP VERSION. It also makes sure
that the packet isn’t an RTCP packet. Currently, it skips payload checks and valid sequence number checks.

int IsValidRTCPPacket (RTP CONTEXT *the context, char **pktpos,
int num parts, long totlen)

Performs some checks that can often detect non-RTCP or improperly decrypted RTCP packets. The function
currently examines a compound RTCP packet, and looks at the version byte in the packet and makes sure it
matches RTP VERSION. It also makes sure that the first packet, which should be an SR or RR packet, doesn’t
have its padding bit set. Finally, it ensures that each packet’s length in the compound packet is set correctly..
Currently, it skips payload checks.

8 Other Files
Several files that are used by the library are not discussed in this document. They are either discussed elsewhere, or
standard components of other software packages and are not discussed here. Specifically, the files are:

tclHash. h,c : These files were extracted from Tcl 8.0p2 to use Tcl’s hash table functions, and are stripped down
versions of tcl. h,c and tclInt. h,c .

config.h: Generated automatically by configure (part of make), setting #defines that are machine specific to the
compiling platform.

global.h: A small set of #defines that are used if the compiler supports function argument prototyping.

md5. h,c : Part of the RSA Data Security package. These functions are used by the library to perform random
number generation.

2This was under the assumption that the encryption package would not support encryption over iovec structures. Future revisions will assume
that the encryption library can support encryption over such structures.

15

hpt.c: Provides a single function,hpt(char *h, stuct sockaddr *sa, unsisgned char *ttl), which
parses [host]/port[/ttl].

rtp api. h,c : Provides an interface to the application programmer. Details of the code in these files are discussed in
[1].

References
[1] On-line documentation of the Bell Labs/Columbia/UMass RTP Library, available at

http://www.cs.columbia.edu/ jdrosen/rtp api.html.

[2] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A Transport Protocol for Real-Time application,
Internet Draft draft-ietf-avt-rtp-new-00.ps, December 1997.

16

