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Abstract

In this paper, we formulate agent’s decision process under the framework of Markov de-
cision processes, and in particular, the multi-agent extension to Markov decision process that
includes agent communication decisions. We model communication as the way for each agent
to obtain local state information in other agents, by paying a certain communication cost. Thus,
agents have to decide not only which local action to perform, but also whether it is worthwhile
to perform a communication action before deciding the local action. We believe that this would
provide a foundation for formal study of coordination activities and may lead to some insights
to the design of agent coordination policies, and heuristic approaches in particular. An example
problem is studied under this framework and its implications to coordination are discussed.

1 Introduction
In a multi-agent system, each agent normally only sees a partial view of the whole system. This
implies that an agent only observes part of the global system state. Although agents do have the
ability to communicate with each other, it is usually unrealistic for the agents to communicate
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their local state information to all agents at all times, because communication actions are usually
associated with a certain cost. Yet, communication is crucial for the agents to coordinate properly.
Therefore, the optimal policy for each agent must balance the amount of communication such
that the information is sufficient for proper coordination but the cost for communication does not
outweigh the expected gain.

We propose a decision-theoretic framework to model a multi-agent system. Our focus is on
fully cooperative systems, where all agents share the same goal of maximizing the total expected
reward. This is different from the self-interested agents where each agent maximize its own (local)
utility. In our model, we assume that each agent knows its current (local) state, i.e., the agent’s
local state is immediately (fully) observable. An agent has a set of local actions to choose from, and
associated with each action is a probabilistic distribution of resulting (local) states. This defines
a local Markov process, because the next state depends stochastically only on the current state
and the current action. For cooperative agents, this local Markov process does not have a local
reward function, rather, there exists a global reward function which depends on the global state
(which contains each agent’s current local state), and the joint action (the parallel invocation of
each agent’s local action.) In other words, without knowing the exact local states/actions of other
agents, an agent cannot know the exact cost/reward associated with its local action. However,
note that it is possible for agents to reason (with uncertainty, of course) about the possible local
states/actions in other agents in certain situations.

We assume that such global reward function is known to all agents. This information is static
and may be agreed upon before the agents form the team, i.e., it is assumed to be off-line informa-
tion. Also, we assume that each agent behave rationally and have the same thought process, i.e.,
they will independently (without any communication) reach the exactly same conclusion given a
common problem such as solving a Markov decision process (MDP). This implies that all agents
would follow the same joint action if the agents know the current global state. This is because
in such case all agents are now presented with the same decision problem (given global state and
global reward function), thus they will independently solve the decision problem, reaching the ex-
actly same decision — which is an optimal decision, and each agent then implements the local part
of this decision. Note that all this is done in an independent fashion.

However, an agent cannot observe directly the local state of other agents, which is dynamic
information. Instead, an agent has a choice of performing a communication action just after the
previous action finishes and before the next action is chosen. The purpose of communication is for
one agent to know the current local state of another agent. The content of the communication is
local state information. Exactly how and which content is shared after the communication depends
on the type of communication. For example, one type of communication may simply tell its current
local state to some other agent (not asking for other agent’s state information), but another type of
communication may ask some other agents for their local states, still another type of communica-
tion may share both local states between the two communicating agents. We further assume that
all communications are done in a synchronous fashion, which become a sub-stage in the agent’s
decision-action stage.

Whether the agent chooses to communicate or not, after the communication sub-stage, the
agent will now choose a local action based on all information available to this agent. This includes
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the history (i.e., previous states, previous actions, and previous communications). After the action
is chosen, it is executed and the agent will now move to a next state and start the next stage.

Therefore, the key problem here is to find the optimal decision (whether it is a decision about
regular action or the decision about whether to perform communication or not) based on all avail-
able information to an agent. Obviously, since the agents may choose not to communicate, the
available local information may not always allow the agent to know (or be able to reason with cer-
tainty) the current global state. Thus, the decision has to be based on local information. Also, the
agent cannot assume that other agents know its local information, and therefore each agent’s set of
information are likely to be different, i.e., they are likely to be facing different decision problems
with different local information available.

This work is related to Boutilier’s work [2], which introduced the multi-agent extension to
standard Markov decision process, namely the Multi-agent Markov decision process (MMDP).
However, in Boutilier’s work, although agents have joint actions consists of individual local agent
actions, they do not have local states, instead, each agent observe the global state directly. As
a result, there is no communication for local state information, and the problem is to find the
optimal local action based on the global state, and the coordination problem there is for the agents
to follow the same optimal joint action when there are multiple optimal joint actions. In this
work we assume local agent states, and agents have to communicate to obtain other agent’s local
state information. This makes our decision problem an inherently decentralized one, which is
fundamentally different from centralized ones which assume the global state knowledge [6, 11].
We focus on primarily how to find the optimal decision, rather than how to deal with multiple
optimal joint actions — by assuming the same thought process in all agents, they would select
the same optimum when multiple optima exist. If agents do not have the same thought process,
then the approaches presented in [2] would complement this work when coordinating agents’ local
actions to follow the exact same optimum.

This work is also very closely related to theoretic works on decentralized control of finite state
Markov processes [1, 7, 8]. There, both partitioned states and partitioned actions are assumed, and
each decision making agent’s decision is based on its local information. However, they do not ex-
plicitly model communication actions, instead a fixed common information structure is assumed,
usually in the form of a delay of nonlocal information, i.e., the global state information will be
available for all agents after stages. Thus, agents still do not need to make decision on commu-
nication. In our work, however, since agents need to make decision on their communication of
nonlocal information, they may not have a fixed common information structure.

The problem of decision making with the cost of communication is also studied in [3, 4, 5],
where communication takes the special form as an agent sensing the environment, where sensing
requires a cost but can provide information to resolve the uncertainty about the environment. Our
work extends to the case when a team of decentralized agents are cooperating.

In the following sections we first present our definition of a decentralized multi-agent Markov
decision process (MMDP), define the problem and notations. Then we study an example system
and discuss the issues associated with solving such a problem. We discuss some heuristic ap-
proaches and study their performances and give some insight on the design of agent coordination
strategies. Finally, we draw some conclusions, and also point out some future directions.

3



2 Multi-agent MDP
As mentioned before, our definition of an MMDP is based on decentralized decision processes.
Each agent has its own Markov process. For clarity, we will assume that the system consists of two
agents and in the following notations. The same notations apply to systems with 3 or more
agents as well by increasing the arity of the vectors.

We define the set of agents = , and = defines the Markov
process in : its local state space is , local action space is , and the local state transition
probability defines the probability of resulting in state when taking action in
state . Clearly, this process is Markovian since the next state depends stochastically only on
current state and current action. Similarly we can define ’s process = .
Clearly, the global state space is and joint action space is .

The global reward function defines the reward the system gets when the global
state is and the joint action is . For simplicity we focus on finite-horizon problems
only, and thus we define the reward at terminal time is . Also, if represents a
terminal state (i.e., we allow the process to finish when certain relationship between and are
met even when the current time is less than ), we also define terminal reward for those terminal
states as , i.e., there is no further actions after .

So far we defined a decentralized Markov process with a global reward function, which implies
a team of autonomous agents doing cooperative work. Now we add communication into this
system. As discussed before, we assume a communication sub-stage where all communications
complete before deciding the regular action. The control flow in one stage in depicted in Figure 1.
Let and denote the content of and ’s communication during the communication phase.

Sub-Stage
Communication Action

Sub-Stage
Previous
stage

Next
Stage

Decide whether to
communicate or not

Decide which action
to perform

Communication
finishes

Action
finishes

Stage t

current state next state

Figure 1: Communication Sub-stage

In particular, if the agent choose not to communicate, the content will be null. Each agent can
initiate communicate independently, we assume that the message format is mutually understood
and that no message is lost/changed during communication.

As discussed before, there exists many communication types which define different content
exchanges. These are some simple examples:
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tell: in this type of communication, each agent simply send a message telling its current local
state to the other agent. The sender will not know the receiver’s local state as a result of the
communication. In this type of communication, an agent knows the other agent’s local state
only when the other agent voluntarily decides to tell.

query: here when an agent sends a query message, it is expected to get the other agent’s lo-
cal state when the communication completes (in reality, this usually means that the receiver
sends a feedback message). However, the sender agent does not reveal its local state infor-
mation to the other agent. In other words, in this type of communication, an agent can know
the other agent’s local stage whenever it wants to do so, but there is no way to voluntarily
tell other agent about its current local state.

sync: this is the combination of the above two, in that when an agent performs a sync com-
munication, it reveals its own state to the other agent, and at the same time obtain the other
agent’s local state. As a result of sync (regardless of which agent initiates the communica-
tion), both agents now know the global state (and the knowledge that the other agent knows
the same as I do).

Obviously, the choice of which communication type to choose usually is constrained by the
actual communication ability of the agent. For example, if the agent’s only communication means
is to broadcast, then only the tell type is possible. However, it is very important to know that each
type has different complexity. For example, with the sync type, the agents know that whenever they
communicate, they know the global state, and as a result the previous history often becomes less
important because the agents do not need the history information to reason under the uncertainty
about the other agent’s state and belief.

Let and denote the cost of communication in each agent given a particular
time and current state. In the simple case that a communication action has a fixed cost regardless
of the time and state, a single function (or ) will suffice, where if is null, the cost
is zero, and otherwise, a fixed value .

In summary, a decentralized multi-agent Markov process is defined by , , reward function
and terminal conditions, communication actions and type, and communication cost . It is

Markov because the global state depends stochastically only on current state and current actions,
although now actions include communication.

Now we try to define the decision process. First, for each stage, each agent first observe
its current state, then make decision about communication, and then choose an action. Thus,
we can use and to represent all events occurring at this stage, and thus

for the global events. Thus, a global episode for this process can be
described as:

(1)
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Here we assume that initially both agents know each other’s initial states thus there is no need
for (they would both be null), and satisfies the terminal state conditions (includ-
ing the case when ).

For such an episode, its total reward is,

(2)

And the probability for that episode to happen (i.e., the probability of having the state sequences
and is,

(3)

This is because communication does not change agent local state, and each agent’s action is
independent of the other agent’s action.

As discussed before, each agent’s decision about communication could be based on all locally
available information, and this include the history. Let be all the information available to
agent before it makes the decision about communication, then,

(4)

Similarly, all information available just before the agent makes the decision about the local
action is,

(5)

Here, we see that the difference between a communication action and a regular action: a com-
munication action is observed by both agents while a regular action is only known to the local
agent.

Thus, the local decision problem for agent is to find out a policy that consists of two
parts:

(6)

Here, defines a mapping from all local information to a communication decision, and
defines a mapping from all local information to a decision about the next action. Together,
encodes all decisions needs to make.

, , , , can be defined similarly so we omit them here.
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Now we are ready to define the decision process. Based on a pair of local policies: ,
all possible episodes are defined by the set , where

(7)

(8)

Thus the total global expect reward for the policy pair is,

(9)

The MMDP decision problem is, therefore, to find the optimal pair of such that it
maximizes .

Obviously, calculating optimal policy is not going to be computationally feasible in most cases.
Decentralized decision problems are NP hard in general [10], and in our case since optimal policy
is history dependent, the size of a policy (i.e., all possible histories) is too large to handle even
for small problems. Thus, in most cases we cannot afford to calculate the exact optimal policy
but rather needs an approximation. For example, we can develop policies that uses not all local
history but only a part of it (presumably only some most recent information), therefore reduces
the size of the policy drastically. However, even in those cases the complexity of the appoximated
policies may still be too high, especially when there is no efficient algorithm such as dynamic
programming to apply. On the other hand, heuristic solutions exist and are often easy to compute,
and by examining a family of heuristic solutions we may indeed gain insight for designing good
policies for agent coordination.

3 An Example
Now let’s study an example and discuss the issues in MMDP. Assume two robots, and , in a 4
by 4 grid world, as shown in Figure 2. An agent’s local state is its position, from 0 to 15, and their
local actions (move left, right, up, down, and stay where it is.) If an agent chooses to move, there
is probability that it moves to the neighbour cell in the direction of the move, chance
resulting in any of other neighbour cells, and the rest of times it does not move (i.e., get stuck in
the current cell). Agents cannot move off the grid. Both agents know the map of the grid, know
its own position in the grid (local state is observable), but they do not know the current position
of the other agent unless they communicate (nonlocal state not observable but can be obtained via
communication.)

The goal is for the two robots to meet (stay in the same cell) as early as possible, and within a
deadline time . Once the two robots meet, the process finishes even if the time is not yet . We
have a very simple global reward function : any move is free and receives no reward. If they meet
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Figure 2: A Grid World Example

in steps, the terminal reward is , where is a constant and is a time discount factor. If
at time the robots still have not met, the terminal reward is 0. As for communication, each robot
can initiate communication, and each communication costs a constant .

The initial condition is that is in position 0 and in 15, and they both know each other’s
initial position, and thus they are facing the same decision problem of finding an optimal .

This is a very simple MMDP as we defined earlier. However, even with this problem, finding
a best policy based on all local information, i.e., optimal is computationally infeasible.
Since in each stage, each agent can take 5 actions, each local action can have up to 5 resulting
positions, and have 2 communications choices, while the other agent may have 16 different pos-
siblities in its message content, that means a up to fold increase of local
information history in each stage (since ). Obviously, this means
an explosion of the size of the local policy, and therefore is infeasible to compute a truely optimal
policy.

Thus, we seek to reduce the size of the policy by defining approximation policies that based
on only a subset of and , and use heuristic approaches. At one extreme, agents can
communicate (assuming sync type is used) at every stage regardless of the history. In this case,
global states are known to both agents at all times, and thus we can regard it as a centralized
problem where global states are observable. Thus, we are facing a standard MDP, and we can
use the standard value iteration algorithm to solve the optimal global policy and then partition the
global policy into local policies, in other words, simulating a central controller. This is obviously
not very good since many of the communications are redundant (too much coordination). At the
other extreme, both agents can be totally silent and performs random actions (no coordination).
Obviously this is also bad since they can do much better if they have a plan.

Thus, we modify these two extremes and compare two heuristic approaches. Both heuristics
correspond to some popular social analogies. In one policy, agents select an optimal plan based on
their last observed global state (i.e., the state where they last performed a sync communication),
and they communicate (sync) whenever their current plan cannot be achieved (so that a new plan
can be selected), but does not communication if the plan is still achievable. This corresponds to
the so-called “No news is good news” type of social convention, where if both parties are making
progress as intended, they do not communicate (no news), however they will negotiate a new plan
if the progress is not as intended. An example in this grid world problem is that assuming both
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agents first choose to meet at position 3 (top-right corner), and they will not communicate if in
each step they are getting closer to block 3. However, if slipped into block 4 when it tries to
move to block 1, will sync with and reselect a best position to meet, possibly block 6.

The other policy, in which no communication is needed, basically divide the problem into two
independent parts and then each agent is committed to perform their part. In this case, this division
of work may have high probability of success (i.e., in some cases agent may be able to recover from
adverse outcomes), however they cannot change their plan dynamically, partly because they choose
not to communicate at all. Of course, this approach depends on both agents knowing their initial
global state so that they can choose the best division. We call this “silent commitment” approach.
This approach also has its social counterpart, where when two parties decide to coordinate, they
divide the work, set up a deadline when each party’s work has to be completed, and then work on
their own. Normally the deadline should be far enough so that both party feel comfortable. In our
grid world problem, the agents may agree to be both at block 3 by time (the deadline). Thus,
even if ’s first move to the left resulted in block 4, will try to correct that and possibly still be
able to enter block 3 by time .

4 Comparison of the Two Heuristics
Here we compare the two heuristics mentioned above, namely the “No news is good news” (NN)
one and the silent commitment (SC) one.

In NN, X’s local policy uses only part of the history information, namely the time they last
communicated, and the global state they discovered at that time (using the sync type of communi-
cation), i.e., reduces and to (and of course current information ), where is
the last time that null or null, and is X’s local state at time , and is Y’s local
state at time (transmitted as part of the content of or ).

The NN policy is based on a heuristic function , which decides a best short-term goal:
a global state , and progress functions for current state tells if X (or Y) has
made sufficient progress at current toward the the goal state ( ). For our example, simply
tells the mid-point of a shortest path between the two agents, and tells if the distance from the
current local position to the mid-point has been shortened as planned (i.e., reduced by ). Thus,
the policy is,

sync if is false
null otherwise

would choose the best local action so that the short term goal is mostly likely to be
reached.

On the other hand, the SC heuristic chooses a completely different subset from local history:
only the initial global state! It uses a heuristic function – note the initial global state here
– which also decides a goal state , in our case the mid-point of a shortest path between X
and Y’s initial states. The difference between NN and SC is that now in SC the agents have time
to reach its own goal state, but in NN a progress function imposes stronger constraints and thus
becomes a dynamic plan.
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SC never communicates, thus, is always null. then chooses the best action so that
may be reached. Note that this policy is independent of time, i.e., similar to a stationary policy

for infinite horizon problems.
We can see that in both heuristics the size of policy is significantly reduced so that it is com-

putationally feasible. Also, we note that the calculation of involves optimization, but in both
cases the optimization is completely local, i.e., both try to maximize the probability that (or )
to be reached. In other words, a local utility measure is introduced. In NN the utility measure is
a short-term, dynamic one, and in SC it is a fixed one. As a result, the local optimization problem
in each is now a standard Markov decision process and thus can be solved using typical dynamic
programming such as backward induction (in finite-horizon problems.)

In the following we evaluate the example problem and try to discuss the implications of these
heuristics with regard to multi-agent coordination. Communication in multi-agent system is of-
ten associated with negotiation in addition to information sharing. However, we notice that the
reason for negotiation is that agents having different information and also different belief about
other agents, therefore when agents have the same decision process, negotiation really reduces to
information sharing since each agent could individually reason the same result of negotiation after
the information sharing.

Using our example, we study how the expected global rewards change with the two heuristics,
when we vary the deadline , the cost of communication , and the time discount factor , and
the certainty factor . We assume . To define our heuristic functions and when there
exists more than one shortest path, we use the path that closest to the straight line between X and
Y, i.e., the mid-point is the one that closest to the straight line mid-point between X and Y.
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Figure 3: Communication Cost

First we study the expected rewards of NN and SC with respect to the communication costs, as
in Figure 4. In the left sub-figure , and the right one . Both use deadline , and

. Evidently, in SC, the expected reward (y-axis) does not change at all, because this policy
never utilizes communication. The NN policy has better performance when communication is free,
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but it does not scale with communication cost, thus we see the crosspoint when communication
cost increases. This illustrates the general intuition: communication is a rational thing (will achieve
better performance) unless the cost of communication is too much. In our case, communication in
NN indicates a change of short-term goal (de-commitment or goal modification in typical multi-
agent coordination language). This is rational as long as the communication cost is low. Otherwise,
SC (where commitment cannot be changed and the agent always tries to honor the commitment
despite local failures) would be a better solution.

How soon the cost of communication outweighs the benefit of more information depends on
the uncertainty in the system. Clearly, with a higher q, meaning the robots’ movements are more
reliable, the amount of uncertainty in the system is not much, and hence the increase of perfor-
mance due to the reduction of uncertainty via communication is not much. Therefore, we can see
that the crossing in the left sub-figure come quite earlier than in the right sub-figure.
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Next, in Figure 4 we vary the time discount factor and see how these heuristics react. The
smaller is, the quicker the reward decreases, thus the agents have an interest to achieve the goal
as soon as possible (if =1 then the reward is the same as long as they meet before the deadline.)
First we note that in general NN is better (unless c is too large), since by resolving the uncer-
tainty via communication they agents can adapt quicker. Also, it is interesting to note that when

decreases, performance of SC decreases slower than the NN policy, and depends on the cost of
communication, the SC line can meet with NN:c lines, where c is the communication cost. The
reason here is that, when decreases, the cost of communication becomes more and more compa-
rable with the reward, since the communication cost is fixed. In the extremely case, the reward can
be discounted so much that it is smaller than the cost of communication. Obviously in this case
the rational decision is not to communicate. The implication is that, in a time critical system, the
agents should choose to communication earlier than later, since the weight of communication may
become greater when time passes.

Next, in Figure 5 we vary deadline and see how they perform from very time-constrained (3)
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to having plenty slack time (6). Here is fixed at 0.95. We notice that when deadline is tight, SC is
slightly better than NN since agents do not have time for an alternative plan when their initial plan
fails. Of course, when the deadline is not so tight, reduction of uncertainty and the use of dynamic
goal adaption can certainty help agents achieve their group goals therefore NN (communication
whenever there are uncertainty about the current commitment) in a timely fashion. Finally, when
the deadline is far away, both NN and SC would allow agents to reach their eventual goals (in
the case of SC, agents have enough time to recover from earlier failures), thus in this case their
performance again becomes close. (Of course, close to 1 still needed).

With higher uncertainty ( ) the agents needs to communicate much more often in NN
policy, and thus we see that the performance difference between SC and NN is smaller than the
case when .
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Finally, it is interesting to see how SC and NN differs with the certainty factor – the indicator
that how reliable the agent’s actions are. In Figure 6, we again see that when the uncertainty
is low, both policies achieve about the same performance (possibly close to the optimum). If
communication cost is zero or low, when uncertainty increases NN is much better than SC. But
the time constraints play an very importance role here: in the left figure the SC line is close to
the NN:5 line, but in the right figure (with a longer deadline) SC becomes better than NN:5. The
underlying reason is that when agents have enough time to perform local recovery (as in SC) with
any communication, the lost of performance due to not being able to de-commit can be offset by
not spending on communication, especially when the cost of communication is quite high, and the
amount of communication needed could be quite large when uncertainty is high.

Overall, these two policies give us some intuition about when to use a policy that relies heav-
ily on communication, and when to use a policy that relies little on communication. In general,
frequent communication (such as NN) often means short-term/dynamic commitments, while low
communication policies (such as SC) often use long-term, unchangeable, commitments. The op-
timum may be somewhere in the middle, although the computation demand is prohibitive. One
of the future directions in developing the heuristics may be to combine the both policies and to
develop a situation-specific policy.

5 Summary and Future Work
In this paper we defined a decentralized framework of a multi-agent MDP, described how commu-
nication and the cost of communication should be modelled into such a framework, and what is op-
timality in this framework. Although the optimality problem usually is computational prohibitive,
approximation and heuristics exist and can give us very important insights into the problem of
multi-agent coordination.

The study on the foundation of coordination in multi-agent system has become more and more
important, and we believe that a decentralized approach provides a formal foundation and captures
the complexity of the problem of coordination. A lot of work remains to be done. First, since the
optimal policy is history-dependent, it would be very interesting to see that under what situations
an approximation still maintains the optimality, i.e., under what conditions it is safe to ignore a
large part of the history information?

We are still in search for efficient algorithms for approximation approaches. Since in general
dynamic programming (hence the standard value iteration and policy iteration algorithms) cannot
be used [12] in decentralized decision problems, we need to know if there exist special cases that
dynamic programming is possible, and if there exists other efficient computation techniques that is
suitable for multiagent MDP.

Also, learning may be a very importance approach in this problem. It is already proved to be a
very good approach for traditional MDPs POMDPs, such as in [9], and may be a feasible solution
for MMDP as well.

Finally, MMDP may be extended so that it covers infinte-horizon processes and also be able to
deal with the case where the agents do not have the same static global understanding (for example,
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the robots do not have the complete map). Also, it will be very interesting to study communication
when agents are clustered in a multi-agent agents. This would be very important when the system
scales up.
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