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Abstract

A muscle’s action on a joint not only depends upon the muscle’s size and activation
level, but also upon the mechanical advantage (or moment arm) of the muscle upon
the joint. This relationship is made more complex by the fact that the mechanical
advantage can change drastically with skeletal configuration. Here, we describe a model
of muscle geometry for several muscles involved in elbow and shoulder actuation. The
model captures the gross changes in muscle moment arm while preserving reasonable
computational efficiency which facilitates its use in simulation.

1 Introduction

In constructing a model of muscle action on a limb, we ultimately wish to compute the
torques that are applied to the joints as a function of the current state of the limb (as
described by joint position and velocity) and set of descending motor commands. In Fagg
et al. (2001a) we develop a model of muscle force production with the stretch reflex intact.
We then apply this model to the generation of elbow movements (Fagg et al., 2001b). The
skeleto-muscular geometry is used in two distinct stages of this latter work. First, in order
to make use of the muscle model, it is necessary to know the instantaneous change in muscle
length. This quantity can be computed by knowing how a muscle changes its length as a
function of changes in joint angles (i.e. gg? ). Second, once forces are computed by the muscle
model, the application of torques about the various joints requires knowledge of the muscle
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Figure 1: A simple muscle path model: straight path (A) and wrapped path (B). The critical
parameters are: theta (joint orientation), LA, and LA, (distance from the center of joint
rotation to muscle origin and insertion, respectively), r (the radius of the joint capsule), R
(the muscle moment arm).

moment arms for each joint. For some muscles, this moment arm is constant; in others, the
moment arm varies as a function of skeletal configuration.

In order to compute both of these quantities, it is necessary to take into account the
attachment points of the muscle to the skeletal structure, as well as the path that the muscle
takes between these points. Winters and Stark (1988) suggested a simple model of path in
which the muscle is assumed to follow a straight line between muscle origin and insertion,
except for highly extended positions. In the latter case, the muscle is assumed to wrap
around a spherical joint capsule whose center is also the joint’s center of rotation (figure 1).

The work of Amis, Dowson, and Wright (1979) and others (An et al., 1981) indicates
that this form of path model captures the primary variation of muscle moment arms as a
function of joint orientation for a number of elbow muscles, including the biceps long head
and the triceps lateral head. In the latter case, however, the muscle wraps around the joint
capsule for all feasible joint configurations, and hence the moment arm is assumed to be
constant. Less is known about the geometry of muscles involving the shoulder, we assume
for simplicity that this path model also applies in this case.

In our model, we follow Gribble et al (1997, 1998) in making use of six equivalent muscles
to drive movements of the shoulder and elbow. The primary muscle groups contributing
to movements are assumed to be: the pectoralis (mono-articulate shoulder flexors), del-
toid (shoulder extensors), biceps long head (mono-articulate elbow flexors), triceps lateral
head (elbow extensors), biceps short head (bi-articulate flexors), and triceps long head (bi-
articulate extensors). All three extensors are assumed to wrap around the associated joint
capsule at all times. The mono-articulate shoulder and elbow flexors are assumed to follow
the above path model, and the biarticulate flexor follows a two-joint generalization of this
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model (as has been done by Gribble 1998).

Note that for a given flexor muscle and joint, it can be shown for both the wrap and
no-wrap conditions that g—{; = —R, where R is the muscle moment arm about the joint.!
This relationship changes sign for extensors. This leaves us with the task of computing
the muscle lengths and moment arms for both the mono-articulate and bi-articulate flexor
muscles, which we will do in the following sections.

2 Single-Joint Case

The two conditions for the single-joint case are illustrated in figure 1. We first determine
the joint boundary between these two cases, and then compute the necessary quantities for
each condition.

2.1 Wrap/No Wrap Boundary

The boundary between the wrap and no wrap conditions occurs where the muscle contacts
the joint capsule at a single point, as illustrated in figure 2. The critical quantities are as
follows:
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where r is the radius of the joint capsule, and LA, and LA, are the distances from the muscle
attachment points to the center of joint rotation. ¢ is the joint angle at which the transition
between the two conditions occurs. ay,, oy, LM,, and LM, are constant properties of the
triangles formed by the center of rotation, the muscle attachment point, and the first point
at which the muscle contacts the joint capsule, and will be used for the wrap condition.

2.2 No Wrap Condition

The no-wrap condition applies if 8 > #°. The necessary quantities are computed as
follows (see Figure 1A):

We define an elbow joint angle of zero as full extension and flexion as a positive joint movement.
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Figure 2: Wrap boundary.

L = \/LA2+ LA} +2LA,LAcos(6),
LA, + LA, cos(9)>
L )

K = arccos(
R = LA;sin(k),

where R is the moment arm for the muscle about the joint.

2.3 Wrap Condition

The wrap condition is shown in Figure 1B. The relevant quantities are:

/B = 71—_e_CEa_Ckba
L = LM, +rB+ LM,
R =

where ag, ap, LM,, and LM, are computed in equations 1-5.

2.4 Monoarticular Example

For the biceps long head, Amis et al. (1979) report that the distance from biceps insertion
to center of elbow rotation (our LM,) as being approximately 4 ecm. We assume a joint
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Figure 3: Mono-articulate muscle length (A) and moment arm (B) as a function of joint
angle.

capsule radius of 2.5 e¢m (which is consistent with that measured by Amis et al. 1979).
Although the origin of the biceps is located on the scapula, the path constraints imposed
by the surrounding tissue are such that the effective origin is located near the tip of the
intertubercular groove (Hogfors et al., 1987). We thus take LM, to be 32 cm. ? These
parameters have been also used by Gribble et al. (1998), and are similar to those used by
van Zuylen et al. (1988) in their model of moment arm variation of the biceps (LA, = 31 cm;
LA, = 4.5 em). Furthermore, An et al. (1981) report similar parameters in their study of
human moment arm variation (r & 1.5 em; LA, ~ 3.5 cm). The muscle length and moment
arm variations for this set of parameters are shown in figure 3.

For the shoulder, less is known about the effective origin and insertion for the muscle.
We assume for the purposes of our model that LA, =5 cm, LA, = 5.1 ¢cm, and r = 3.5 cm.

3 The Biarticulate Case

The biarticulate case, in which the muscle can wrap around both the shoulder and elbow
joint capsules is a generalization of the single-joint case. However, we now have four separate
cases to consider: whether or not the muscle wraps around each joint.

3.1 Parameter/Variable Definitions

Figure 4 shows the basic structure of the model. Given parameters: L; (length of the
upper-arm segment), r; and r» (the radii of the shoulder and elbow joint capsules, respec-

2The distance between the centers of rotation of the shoulder and elbow are taken to be 34 cm
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Shoulder

Figure 4: Model Structure

tively), and LA; and LA, (the distance from the point of rotation to the muscle attachment
point); and the variables 6; and 6y (current orientation of the shoulder and elbow, respec-
tively), we must compute: R; and R, (the moment arms about the shoulder and elbow),
and L (the length of the muscle).

3.2 Joint Space Partition

The joint space is partitioned into four regions, as shown schematically in figure 5. The
location of the boundaries depends upon the arm and muscle attachment parameters.
3.2.1 Double-Wrap Boundary

The most extreme point of the double-wrap region occurs when the muscle glances both
joint capsules (figure 6). In other words, contact with each capsule is a single point, with no
wrapping of the muscle. The associated quantities are computed as follows:

Qa; = arccos (—LA1> , (6)
Qay = arccos (Lr—jl) ) (7)
¥ = arccos (7’1; r2> , (8)

1
0 = m—oq—7, (9)
05 = 7 Qy, (10)
LM1 = LA1 sin (Ckl) , (11)
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Figure 5: Partitioning of the joint space as a function of whether the muscle wraps around
the two joint capsules.

LM2 = LA2 sin (Ckz) , (12)
LM, = L;sin(y), (13)
L = LM, +LM,+ LM,,

where 6f and 65 are the joint angles at which this condition occurs. As long as 6, < 6 and
6, < 05, the muscle wraps around both capsules. LM; and LM, represent the distance from
the muscle’s point of attachment to the corresponding joint capsule contact point; LM, is
the distance between the two contact points.

The double-wrap condition exists if 6; < 6 and 0, < 65.

3.2.2 Shoulder Wrap Boundary

As long as the double-wrap condition does not occur, and 6; — 6§ < 6, — 65, then the
possibility exists that the muscle will wrap around the shoulder joint capsule. However,
the boundary varies as a function of 5. Therefore, the strategy that we take is to assume
no wrapping, compute the shoulder moment arm, and then compare that moment arm to
the radius of the joint capsule. If Ry < ry, then we have the case in which the muscle
is wrapping around the shoulder joint capsule. These moment arm computations for the
no-wrap condition are illustrated in figure 7. The process is illustrated below:

o = Lycos(6;)+ LAsycos (6 + 6s), (14)
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Figure 6: Defining the double-wrap boundary.

Yo = Lysin(6y)+ LAysin(0; + 62), (15)
wi = atan2 (Yg, re + LA;)

Ry = LA;sin(w), (16)
We = 2—91—92‘1%01,

Ry = LAjcos(ws), (17)

where < z,,y, > denotes the location of the muscle attachment to link 2 relative to the
center of rotation of the shoulder, and R; and R, are the moment arms.

Returning to the question of whether the muscle wraps around the shoulder joint capsule
— this is the case as long as Ry < r; and ¢; < 7. The latter condition is necessary because
when the shoulder is flexed to a large degree, the moment arm drops below the r; threshold,
and yet the geometry is such that the muscle does not wrap around the joint capsule.

3.2.3 Elbow Wrap Boundary

Determining the boundary for the elbow wrap case follows in the same manner as the
shoulder. Given that the double-wrap condition does not apply, the elbow-wrap case applies
if 0y — 67 <0y — 05, Ry <1y, and B, < § (where R, is the same as in equation 17).

3.3 Computing Muscle State

Now that we have determined the wrapping state for a given arm configuration (<
61,0 >), we can now compute the muscle moment arms (R; and Ry) and muscle length
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Figure 7: No joint capsule wrapping.

(L)-

3.3.1 No Wrap Case

Refering to figure 7, the muscle length, L is simply:

L = y/(zo+ LA + 42,

where z, and y, are from equations 14 and 15. The muscle moment arms are exactly what
have been computed in equations 16 and 17.

3.3.2 Shoulder Wrap Case

The shoulder wrap case is illustrated in figure 8. The corresponding quantities are com-
puted as follows:

b = L} + LA} + 2L, LA, cos (63),

( rl )
= arccos | —
T’ b Y

<L1 + LA, cos (02)>
@ = arccos ; ,

Bl = 7T—77—90—a1—91,
T
A= §—a1—51—91,
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Figure 8: Wrap around shoulder joint capsule.

L
Ry
Ry

LM + 1By + bsin (),
T1,
r1 + Ly sin (A),
(18)

where oy and LM are from equations 6 and 11, respectively.

3.3.3 Elbow Wrap Case

The elbow wrap case is illustrated in figure 9. The associated quantities are computed

as follows:

B

L
Ry
Ry

VI3 + LA} + 2L, LA, cos (6y),

. 2
arcsin | —= |},
b

<LA1 + Ll COS (91))
arccos S y

b

m
5—91—92—%‘1‘,0‘*’5,

\/ 62 — 7’% + 527’2 + LMz,
LA1 sin (p+ f) )

T2,

where ay and LM, are from equations 7 and 12, respectively.
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Figure 9: Wrap around elbow joint capsule.

3.3.4 Double Wrap Case

The double wrap case is illustrated in figure 10. The relevant quantities are computed
as follows:

b = m—a; —0—7v

fa = 7—ay—0;

L = LM+ piry + LMy, + Bors + LM,
Ry = m
Ry = 1

(20)

where a1, as, v, LMy, LM,, and LM, are as computed in equations 6-13.

3.4 An Example

We use the following parameters for the biarticulate flexor:

LA, = 5ocm,

LAy, = 4cm,
rn = 3.5cm,
ro = 2.5cm,

L; = 34cm.
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Figure 10: Wrapping around both joint capsules.

Figure 11 shows the arm and muscle in a no-wrap configuration, and the joint space
boundaries defined by the muscle wrapping state. Variations of the muscle length and joint
moment arms are shown in figures 12 and 13. Note that for both joints, at the extreme
limits (s = 7 for the left panel, and §r = 7 for the right panel), the moment arms become
negative. In these cases, the muscle applies torques in the direction that is opposite from
normal (for the biceps short head, this situation cannot occur physically due to joint limit
constraints, however it is known to happen for other arm muscles).

3.5 Practical Issues

In practice, we have found that it is more efficient to use the equations presented here to
construct a lookup table for muscle length and moment arm as a function of joint angle(s)
rather than using the equations directly during a dynamic simulation. We then perform
interpolation using elements of the lookup table.

4 Extensor Parameters

We assume that the extensors maintain a constant moment arm. The monoarticulate
shoulder and elbow muscles, we assume moment arms of 3.5 ¢m and 2.5 c¢m, respectively.
For the biarticulate muscle, we assume a moment arm of 4.0 ¢m and 2.5 ¢m for the shoulder
and elbow, respectively. These values are consistent with those used by Gribble et al. (1998).
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Figure 13: Biarticular moment arm as a function of joint angle for the shoulder (A) and
elbow (B).
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