The Complexity of Decision-Theoretic Planning for Distributed Agents

Daniel S. Bernstein and Shlomo Zilberstein
Department of Computer Science
University of Massachusetts
Amherst, Massachusetts 01003
{bern, shlomo}@cs.umass.edu

Abstract

Planning for distributed agents with partial
state information is considered from a decision-
theoretic perspective. We describe decentralized
Markov decision processes (DEC-MDPs) and de-
centralized partially observable Markov decision
processes (DEC-POMDPs), which are generaliza-
tions of MDPs and POMDPs, respectively, in
which the process is controlled by multiple dis-
tributed agents. The finite-horizon version of a
DEC-POMDP with at least two agents is shown
to be NEXP-complete. In addition, the finite-
horizon DEC-MDP with at least three agents is
shown to be NEXP-complete. These complex-
ity results illustrate a fundamental difference be-
tween centralized and decentralized control of a
Markov process. We briefly discuss the connection
between the finite-horizon case and the infinite-
horizon case with “synchronization” states, and
we suggest a way of reducing this problem to a
type of centralized planning problem.

Introduction

Among researchers in artificial intelligence, there has
been growing interest in problems with multiple dis-
tributed agents working to achieve a common goal
(Lesser 1998; desJardins et al. 1999). Sometimes, the
agents must go for long periods of time without com-
municating. One problem of this type is that of having
multiple spacecraft complete a mission together (Estlin
et al. 1999). Another problem of this nature, which
has been studied by control theorists, is that of max-
imizing the throughput of a multiple access broadcast
channel (Ooi & Wornell 1996). Solutions to these types
of problems consist of sets of local plans, one for each
agent,.

Although several researchers in distributed AI have
discussed these decentralized planning problems, a
decision-theoretic formalism for them seems to be lack-
ing. By relating these problems to the abundance of
work on Markov decision processes, we may be able
to gain more insight into them. The insight gained
can be used to guide the search for useful algorithms.
There has been some related work in AI. For exam-
ple, Boutilier (1999) talks about multi-agent Markov

DEC-POMDP

RN

DEC-MDP

N

Figure 1: The relationships between the problems.

decision processes (MMDPs). However, in these prob-
lems, the agents all have access to the same infor-
mation; whereas in our model we do not make this
assumption. Models very similar to ours do exist
in the control theory literature (Ooi et al. 1997;
Aicardi, Franco, & Minciardi 1987). However, to our
knowledge, the computational complexity of the prob-
lems involving these models has not been studied. The
most closely related piece of work is that of Tsitsiklis
and Athans (1985), in which the complexity of non-
sequential decentralized decision problems was studied.

The Markov decision process (MDP) framework will
be used as a basis for our model of planning for dis-
tributed agents. Recall that a partially observable
Markov decision process (POMDP) is an MDP along
with a distribution of observations for each state and
action. We will extend the POMDP model to allow for
multiple distributed agents to each receive a local obser-
vation and choose an action. The state transitions and
expected rewards will now depend on the actions of all
of the agents. We call this a decentralized partially ob-
servable Markov decision process (DEC-POMDP). An
interesting special case of a DEC-POMDP satisfies the
assumption that at any time step the state can be com-
pletely determined just from the current set of obser-
vations of the agents. This is denoted a decentralized
Markov decision process (DEC-MDP). The obvious re-
lationships between these four problems are shown in
Figure 1.

We will discuss the computational complexity of find-

ing optimal policies for the finite-horizon versions of
the problems. It is known that solving an MDP is
P-complete and that solving a POMDP is PSPACE-
complete. We will show that solving a DEC-POMDP
with a constant number, m > 2, of agents is com-
plete for the complexity class nondeterministic expo-
nential time (NEXP). Furthermore, solving a DEC-
MDP with a constant number, m > 3, of agents is
NEXP-complete. One consequence of this is that any
algorithm for solving either problem exactly will most
likely take doubly exponential time in the worst case.
These results shed some light on the fundamental dif-
ferences between centralized and decentralized control
of a Markov process.

It should be noted that the case of a DEC-MDP with
exactly two agents has so far eluded a precise catego-
rization. The extent of our current knowledge is that
the problem is PSPACE-hard and is in NEXP.

Centralized problems

A Markov decision process (MDP) models an agent act-
ing in a stochastic environment to maximize its long-
term reward. The type of MDP that we will consider
contains a finite set S of states, with s; € S as the
start state. For each state s € S, A; is a finite set of
actions available to the agent. P is the table of transi-
tion probabilities, where P(s’|s,a) is the probability of
a transition to state s’ given that the agent performed
action a in state s. R is the reward function, where
R(s,a) is the expected reward received by the agent
given that it chose action a in state s.

There are several different ways to define “long-term
reward” and thus several different measures of optimal-
ity. In this paper, we will focus on finite-horizon opti-
mality, for which the aim is to maximize the expected
sum of rewards received over T' time steps, where T is
the horizon. Formally, the agent should maximize

T

Zr(st,at)

t=0

E

A policy 6 for a finite-horizon MDP is a mapping from
each state s and time ¢ to an action (s, ¢). Thisis called
a nonstationary policy. The decision problem corre-
sponding to a finite-horizon MDP is as follows: Given
an MDP M, a horizon T', and an integer K, is there a
policy that yields total reward at least K7

An MDP can be generalized so that the agent does
not necessarily observe the complete state of the envi-
ronment at each time step. This is called a partially
observable Markov decision process (POMDP). The set
of states S, start state sp € S, table of transition prob-
abilities P, and reward function R are the same as in
an MDP. Additionally, a POMDP contains a finite set
 of observations, and a table O of observation proba-
bilities, where O(o|a, s') is the probability that o is ob-
served, given that action a was taken and led to state
s'. There is a finite action set A, for each observation
o€ .

A policy 6 is now a mapping from histories of observa-
tions o01,...,0¢ to actions in A,,. The decision problem
for a POMDP is stated in exactly the same way as for
an MDP.

Decentralized problems

A decentralized partially observable Markov decision
process (DEC-POMDP) is a generalization of a
POMDP to allow for distributed control by m agents
that may not be able to observe the entire state.
A DEC-POMDP contains a finite set S of states,
with s € S as the start state. The transition
probabilities P(s'|s,a’,...,a™) and expected rewards
R(s,a',...,a™) now depend on the actions of all
agents. Q' is a finite set of observations for agent i,
and O? is the agent’s table of observation probabilities,
where O(o|al,...,a™,s') is the probability that of is
observed, given that the action tuple (a!,..., a™) was
taken and led to state s’. Each agent i has a set of
actions A? for every observation o’ € Q. Notice that if
a centralized agent were able to view all of the obser-
vations at each time step and choose all of the actions,
this problem would reduce to a POMDP.

For each a',...,a™,s’ and agent i, let
wi(a',...,a™,s') denote the set of observations
that have a nonzero chance of occurring given that the
action tuple (al,...,a™) was taken and led to state
s'. To form a decentralized Markov decision process
(DEC-MDP), we add the requirement that for each
at,...,a™, s, and each o' € w!(al,...,a™,s'), ...,
o™ € w™(al,...,a™,s’), the state can be determined
from the tuple (o!,...,0™). Thus, if a centralized
agent were able to view all of the observations at each
time step and choose all of the actions, this problem
would reduce to an MDP.

We define a local policy, 6%, to be a mapping from a
local history of,..., ol to an action a’ € Af)t. A joint
policy, § = (61,...,0™) is defined to be a tuple of local
policies. We wish to find a joint policy that maximizes
the total expected return over the finite horizon. The
corresponding decision problem is stated in the same
way as for an MDP or a POMDP.

Complexity results

To simplify our proofs, we will assume that the observa-
tions O(s’),...,0™(s') are deterministic functions of
the current state. It is possible to convert the general
case to this one with only a polynomial increase in the
size of the state set. The states in the new problem are
(s',0',...,0™) tuples, and the transition probabilities
and rewards are modified appropriately.

It will be necessary to consider only problems for
which T' < |S|. If we place no restrictions on T', then the
upper bounds don’t necessarily hold. With this restric-
tion, it was shown in (Papadimitriou & Tsitsiklis 1987)
that the decision problem for an MDP is P-complete.
In the same paper, the authors showed that the decision
problem for a POMDP is PSPACE-complete, and thus

probably does not admit a polynomial-time algorithm.
We will prove that both the decision problem for a two
agent DEC-POMDP and for a three agent DEC-MDP
are NEXP-complete, where NEXP = NTIME (2"6) (Pa-
padimitriou 1994). Since P # NEXP, we can be certain
that there does not exist a polynomial-time algorithm
for either problem. Moreover, there probably isn’t even
an ezponential-time algorithm that solves either prob-
lem.

In order to prove our completeness results, we will
need a type of logical formula that characterizes NEXP
just as Quantified Boolean Formula (QBF) character-
izes PSPACE. Peterson and Reif (1979) proved that
determining the truth of a formula called a Depen-
dency Quantifier Boolean Formula (DQBF) is NEXP-
complete. To understand a DQBF, first consider the
following QBF formula:

V)(l EIY—]. VXZ EYZ F(X17X27Y—17Y—2)7

where each of X, X5,Y7,Y5 is a tuple of Boolean vari-
ables, and F(Xi, X»,Y1,Y>) is a function over all the
variables.

The aforementioned formula can be rewritten to show
dependencies:

VX1 VX, 3Y;(Xy) 3Ya (X1, Xo) F(X1, Xo, V1, Ya).

A formula of this form is a DQBF. A DQBF consists
of universal variables, existential variables with depen-
dencies, and a Boolean function. The following is an
example of a DQBF that probably cannot be written
succinctly as a QBF:

VX1 VXo VX3 3Y1 (X1, Xo) TYa(Xa, X3) IY3(X1, X3)
F(Xy, X2,X3,Y7,Y3,Y3).

For our reduction, we will use a restricted version of
a DQBF that we call an RDBQF. An RDQBF has the

form:
VX; VX, 3Y1(X1) Y2 (Xs) F(X1, X2, Y1,Y2).

There are exactly two universal tuples and two exis-
tential tuples. We require that each existential tuple
depends on a different universal tuple. Moreover, the
number of variables in X; and X5 must be the same,
and the number of variables in Y; and Y5 must be the
same.

Lemma 1 Determining the truth of an RDQ@BF is
NEXP-hard.

Proof. To prove NEXP-hardness we can use the ex-
act same proof that Peterson and Reif used to prove
the NEXP-hardness of the DQBF problem. This is be-
cause in the proof, the formula to which they reduce
an arbitrary nondeterministic exponential-time Turing
machine computation is actually just an RDQBF. We
refer the reader to their paper for the details of the
reduction. O

Theorem 1 The decision problem for a finite-horizon
DEC-POMDP with m > 2 agents is NEXP-complete.

Proof. First, we will show that the problem is in NEXP.
We can guess a joint policy § and write it down in ex-
ponential time. This is because a joint policy consists
of a finite set of mappings from local histories to ac-
tions, and since T' < |S|, all histories have length less
than |S|. A DEC-POMDP together with a joint policy
is the same as a POMDP together with a policy. This
can be converted to an exponentially large belief-state
MDP with a policy and evaluated, all in exponential
time. From this evaluation, we can find out whether
the policy yields expected reward at least K.

Now we will show that the problem is NEXP-hard.
For simplicity, we consider only the two agent case.
Clearly, the problem with more agents can be no eas-
ier. This proof is similar to Papadimitriou and Tsitsik-
lis” proof of the PSPACE-hardness of a finite-horizon
POMDP. We are given an arbitrary RDQBF

VX:1 VX, 3Y1(X1) Ya(X,) F(X1, Xs,Y1,Ys),
where X1 = zi,...,2}, Xo = zi,...,22, V1 =
y%,...,y;, and Y; = y%,...,yg. Suppose the formula
is in conjunctive normal form (w.l.o.g.) and has d
clauses C1, ..., (4. We construct a corresponding DEC-
POMDP such that T' < | S| and an optimal policy yields
a reward of at least zero if and only if the RDQBF is
true.

Before presenting the formal details, it will be in-
structive to expose the intuition behind the construc-
tion of the DEC-POMDP. The universal quantifiers in
the formula are represented by the stochastic “envi-
ronment” in the sequential decision problem. Each of
the two existential quantifiers corresponds to a differ-
ent agent choosing actions. The dependencies in the
RDQBF are encoded in the observation functions of the
agents. Each agent can only “see” the its own universal
and existential variables and their values. A legal way
of assigning values to variables in the RDQBF has an
associated joint policy in the DEC-POMDP.

The process can be thought of as having four
“phases”, one for each quantifier. Before the start of
the first phase, the environment chooses a clause, each
with equal probability. This clause remains fixed for the
remainder of the process. During the first phase, agent
one’s universal variables are randomly assigned values
by the environment, with only agent one observing the
assignments. In the second phase, agent two’s variables
are randomly assigned values by the environment, with
only agent two observing the assignments. The third
phase corresponds to agent one assigning values to its
existential variables, with agent two observing nothing.
In phase four, this process is repeated for agent two.
There is a component of the state that denotes whether
it is a “satisfied” or “unsatisfied” state. The compo-
nent is initially set to unsatisfied. If, in the course of
the process, a variable is assigned a value such that it
causes the current clause to be true, the component is
switched to satisfied, and the process remains in satis-
fied states until the end. If there is a joint policy that
guarantees finishing in a satisfied final state regardless

of which clause and which universal values were chosen,
then the formula is indeed true. Conversely, a true for-
mula is a guarantee that the corresponding joint policy
always causes the process to end in a satisfied state.

Now the construction is expressed more formally. We
first describe the state set, S. In order to avoid a mess
of subscripts and superscripts, we write the states as
tuples. In addition to the start state sg, S contains
six states <X77 T,1,j, k>7 <X77 U,1,7, k>7 <XT7 T,1,j, k>7
<XT7 U7 1,7, k>7 <XF7 T? i, k)? and <XF7 Uv (A k) for
each agent ¢, each universal variable z7, and each clause
C%. The first component denotes whether the universal
variable is about to be assigned a value (z+); has just
been assigned true (z7); or has just been assigned false
(zr). The second component says whether the process
is in a satisfied (T") state or an unsatisfied (U) state.
The third and fourth components determine the par-
ticular variable that is currently being considered, and
the last component is the clause.

In addition, S contains six states (Y?,T,¢,7,k),
<}/?7U72.7.7.7k>7 <YT7Taiaj7k>7 <YT7U7iaj7k>a
(Yr,T,i,5,k), (Yr,U,i,5,k) for each agent i, each
existential variable y;:, and each clause Cy. The
components are the same as described above. Lastly,
there are two end states (T,k) and (U, k) for each
clause C}. The first component says whether this end
state is a satisfied state or an unsatisfied state, and the
second component is the clause.

Next we describe the observation sets and observation
functions. For each agent i and universal variable xé,
Q¢ contains (X+,1,j), (Xr,1,5), and (Xp,i,5). When
the state is <X?7 T? i7j7 k)? <X?7 Uv i7j7 k)? <XT7 T7 7:7 ja k>7
<XT7 U7 1,7, k>7 <XF7 T? i, 7, k)? or <XF7 Uv i, 7, k)? agent
i observes <X77i7j>7 <X77i7j>7 <XT72.7.7.>7 <XT7i7j>7
(XF,i,7), (XF,i,j) respectively and the other agent
observes D (a dummy observation). In addition,
for each agent ¢ and existential variable y;:, 9%
contains (Y-,4,7), (Yr,i,5), and (Yg,i,5). When
the state is <Y’7 T? i7j7 k)? <}/77 Uv i7j7 k)? <YT7 T7 7:7j7 k>7
<YT7 U,1,7, k>7 <YF7 1,1, 7, k>7 or <YF7 U,1,7, k)a agent
i observes <Y:’77’7.7>7 <)/77Z7.7>7 <YT7i7j>7 <YT7i7j>7
(Yr,i,7), (Yr,i,j) respectively, and the other agent
observes D. For each of the (T,k) and (U, k), both
agents observe D. Thus, each agent “sees” only its own
variables and their assignments, and neither agent ever
“sees” the clause k or whether the process is in a satis-
fied or unsatisfied state.

Now we describe the rewards, actions, and transition
probabilities. All actions yield zero reward, except for
those out of the states (U, k), which yield —1. At s,
each agent has only one action, and the state transitions
to each of (X;,U,1,1,k), 1 < k < d with equal proba-
bility. This corresponds to the environment choosing a
clause and the first phase beginning. There will be two
steps for each variable considered. First, the variable is
assigned a value by the environment. More precisely, for
each state (X»,U, 1,7,k), 1 < j < p, each agent only has
one action, and the state transitions with equal proba-

bility to (X, U, 1, 4, k) and (Xg, U, 1, j, k); and for each
state (X»,T,1,7,k), 1 < j < p, each agent only has one
action, and the state transitions with equal probabil-
ity to (Xr,T,1,5,k) and (Xp,T,1,5,k). In the sec-
ond step, it is determined whether the next state will
be a satisfied state or an unsatisfied state. Formally,
from the <XT7 T? 1,7, k>7 <XF7 T7 1,7, k)? <XT7 U7 1,7, k)v
(Xr,U,1,4,k), each agent only has one action, and the
state transitions deterministically to (X, T, 1,5+ 1,k),
<X?7T7 1L,j+1, k>7 <X?7 U,1,7+1, k)v <X?7 U,1,j+1, k>
respectively, with the following two exceptions: If x}
appears positively in Cf, then (Xr,U,1,7,k) transi-
tions to (X7, T, 1,7+ 1, k) instead of (X+,U, 1,5+ 1,k);
and if z} appears negatively, then (Xr,U, 1, j,k) tran-
sitions to (X»,T,1,7+1, k) instead of (X-,U,1,j+1,k).

From the states (X7, T, 1,p, k) and (X+,U, 1, p, k), the
two steps are essentially the same as above, but now the
resulting states after the two steps are (X7,T,2,1,k)
or (X»,U,2,1,k), and the second phase begins. This
whole process repeats for the “agent two” states until
(X+,T,2,p,k) or (X2,U,2,p,k) is reached. From these
states, the two steps are again the same as above, but
the resulting states are (Y7,7T,1,1,k) or (Y»,U,1,1,k),
and the third phase begins.

The third and fourth phases of the process are sim-
ilar to the first and second, with two steps for each
variable, except that now the agents are assigning val-
ues to variables rather than the environment assign-
ing values. Out of states of the form (Y, T,1,7,k),
instead of a random transition, agent i has two ac-
tions (the other agent has only one) which lead to ei-
ther (Y7, T,1,j,k) or (Yr,T,1,j, k) with certainty; sim-
ilarly, out of states of the form (Y>,U,1,j, k), agent i
has two actions (the other agent has only one) which
lead to either (Y7, U,1,4,k) or (Yr,U,i,7,k) with cer-
tainty. Aside from this change, these phases are exactly
the same as the first two.

At the end of the four phases, all variables have been
considered. The transition out of the last step of phase
four takes the process into either (T, k) or (U, k). Out
of the states (T, k) and (U, k), each agent has only one
action, and the transition is to some new state. Recall
that the transition from (U, k) yields a reward of —1 and
is the only transition that results in a nonzero reward.
To complete the construction, the horizon, T, is set to
4p + 4g + 1 (exactly the number of steps it takes the
process to reach one of (T, k) or (U, k)).

Now we will show that there exists a joint policy with
expected reward zero if and only if the formula is true.
Suppose such a policy exists. Notice that the envi-
ronment chooses a k at the beginning of the process,
and the clause component of the state remains & un-
til the end. Thus, the joint policy must have expected
reward zero for each choice of k. Hence the joint pol-
icy must guarantee that the process ends up in (T, k)
for all choices of k. Note that this requires that the
joint policy cause the process to end in (T, k) regard-
less of what branches are taken out of the (z»,T,1, j, k)

and (z2,U, 1, j, k) states (i.e., regardless of which values
are assigned to the universal variables). Otherwise, the
expected reward will be less than zero.

Consider what ending in (7, k) entails. It means that
at some point in the process, a switch was made from
unsatisfied states to satisfied states. In other words, at
least one of the following had to happen: For some vari-
able z; in clause C}, the variable was set by the envi-
ronment to true and appeared positively in the clause,
or it was set to false and appeared negatively in the
clause; or, for some variable y;'., the joint policy, using
only information about xi,...,z},yi,...,y% ; (recall
the way we defined the observation function), caused
y* to be set to true and it appeared positively in the
clause, or caused it to be set to false and it appeared
negatively in the clause.

Putting it all together, we know that the joint pol-
icy causes the process to end in (T, k) for any choice
of clause and any assignment of values to the universal
variables. Therefore, for any clause and any assignment
of values to the universal variables, the joint policy, us-
ing only information specified by the dependencies of
the formula, can assign values to the existential vari-
ables so that the clause evaluates to true. Thus, the
joint policy gives a legal assignment that causes the en-
tire formula to evaluate to true.

We should note that because adjacent existential
quantifiers can be commuted, the existential variables
for a given agent in the RDQBF can actually be as-
signed values in any order. So, a strategy for assigning
values to the y¢ only needs to “remember” z¢,..., m;
and the index j of the existential variable currently un-
der consideration. However, since the third and fourth
phases of our decision process are deterministic, a pol-

icy that uses information about z},...,z%,yi,...,yi_;
to determine an action is the same as a policy tflat
uses information about only z7,...,z; and a sequence

of dummy observations of length j — 1 (because the
yi,..-,y4_; are implicitly determined). Thus, the type
of policy we describe is no more “powerful” than a
legal strategy for assigning values to variables in the
RDQBF.

Now for the converse, suppose the formula is true. It
follows that there is a way to set the existential vari-
ables, using only information about the variables on
which they depend, such that the formula is satisfied.
This way of assigning values to variables is equivalent
to a joint policy for the DEC-POMDP. For every clause
and every choice of values for the universal variables,
the assignment strategy guarantees that at least one
variable in every clause is set to true and appears pos-
itively, or is set to false and appears negatively. Thus,
in the DEC-POMDP, for any choices the environment
can make, the joint policy guarantees that the satisfied
states are entered at some point and hence the process
always ends in one of the (T, k). Therefore, the policy
yields expected reward zero. O

Theorem 2 The decision problem for a finite-horizon

DEC-MDP with m > 3 agents is NEXP-complete.

Proof. (Sketch) Inclusion in NEXP follows from the
fact that a DEC-MDP is a special case of a DEC-
POMDP. For NEXP-hardness, we can reduce a DEC-
POMDP with two agents to a DEC-MDP with three
agents. We simply add a third agent to the DEC-
POMDP and impose the following requirement: The
state can be determined from the just the third agent’s
observation, but the third agent always has just one ac-
tion and cannot affect the state transitions or rewards
received. It is clear that the new problem qualifies as
a DEC-MDP and is essentially the same as the original
DEC-POMDP. O

Discussion

Using the tools of worst-case complexity analysis, we
exposed some fundamental differences between cen-
tralized finite-horizon control problems and decentral-
ized finite-horizon control problems. In particular,
we showed that the decentralized versions of both
POMDPs and MDPs (except for the aforementioned
two agent case) are NEXP-complete, and thus proba-
bly take doubly exponential time to solve in the worst
case.

A natural next step in the study of these decentral-
ized control problems is to analyze the infinite-horizon
cases. It has already been shown that the inifinite-
horizon POMDP problem is undecidable (Madani,
Hanks, & Condon 1999) under several different opti-
mality criteria. Since a POMDP is a special case of a
DEC-POMDP, the corresponding DEC-POMDP prob-
lems are also undecidable. Furthermore, it is straight-
forward to reduce a POMDP to a DEC-MDP by adding
a second agent that observes the entire state but can
have no effect on the state transitions or rewards ob-
tained. Thus, the DEC-MDP problems are undecidable
(even in the two agent case).

To get around these undecidability results, we are
currently studying a restricted version of the infinite-
horizon problem in which the agents are allowed to
request simultaneous access to the underlying state.
Thus, the agents can occasionally “synchronize”. A
similar model was introduced in (Ooi et al. 1997). In-
tuitively, this problem seems like an infinite sequence of
finite-horizon problems, one for each of the periods be-
tween synchronization states. We are currently working
on formalizing this notion and designing an algorithm
that will solve this problem exactly under certain cir-
cumstances.

However, the only solution we can get in a reason-
able amount of time is an approximate solution. Fortu-
nately, a principled approach to approximation lies in
the discovery that this problem is essentially the same
as the problem of centralized planning in a semi-Markov
decision process (SMDP) with a very large set of tem-
porally extended actions. The states of the SMDP are
the synchronization states, and the action set is the set
of all joint policies for getting from one synchronization

state to the next. By reducing the number of actions, a
simplified version of the SMDP can formed. This easier
problem can be solved (possibly in a reasonable amount
of time) to optimality using standard techniques. The
solution translates back into an optimal way of dynam-
ically switching between heuristics in the decentralized
problem.

Acknowledgments

The authors wish to thank Andy Barto, Neil Immer-
man, Victor Lesser, Ted Perkins, and Ping Xuan for
helpful discussions. Support for this work was pro-
vided in part by the National Science Foundation under
grants IRI-9624992 and IRI-9634938 and an NSF Grad-
uate Fellowship to Daniel Bernstein.

References

Aicardi, M.; Franco, D.; and Minciardi, R. 1987. De-
centralized optimal control of Markov chains with a
common past information set. IEEE Transactions on
Automatic Control AC-32(11):1028-1031.

Boutilier, C. 1999. Multiagent systems: Challenges
and opportunities for decision-theoretic planning. ATl
Magazine 20(4):35-43.

desJardins, M. E.; Durfee, E. E.; Ortiz, C. L.; and
Wolverton, M. J. 1999. A survey of research in dis-
tributed, continual planning. Al Magazine 20(4):13-
22.

Estlin, T.; Gray, A.; Mann, T.; Rabideau, G
Castaifio, R.; Chien, S.; and Mjolsness, E. 1999. An in-
tegrated system for mulit-rover scientific exploration.
In Proceedings of the Sizteenth National Conference on
Artificial Intelligence, 541-548.

Lesser, V. R. 1998. Reflections on the nature of multi-
agent coordination and its implications for an agent ar-
chitecture. Autonomous Agents and Multi-Agent Sys-
tems 1:89-111.

Madani, O.; Hanks, S.; and Condon, A. 1999. On the
undecidability of probabilistic planning and infinite-
horizon partially observable Markov decision process
problems. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence.

Ooi, J. M., and Wornell, G. W. 1996. Decentralized
control of a multiple access broadcast channel: Perfor-
mance bounds. In Proceedings of the 35th Conference
on Decision and Control, 293—-298.

Ooi, J. M.; Verbout, S. M.; Ludwig, J. T.; and Wor-
nell, G. W. 1997. A separation theorem for pe-
riodic sharing information patterns in decentralized

control. IEFE Transactions on Automatic Control
42(11):1546-1550.

Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The
complexity of Markov decision processes. Mathematics
of Operations Research 12(3):441-450.

Papadimitriou, C. H. 1994. Computational Complez-
ity. Reading, MA: Addison-Wesley.

Peterson, G. L., and Reif, J. R. 1979. Multiple-person
alternation. In 20th Annual Symposium on Founda-
tions of Computer Science, 348-363.

Tsitsiklis, J. N., and Athans, M. 1985. On the com-
plexity of decentralized decision making and detection

problems. [EEFE Transactions on Automatic Control
AC-30(5):440-446.

