A Constructive Bayesian Approach for Vehicle Monitoring

Y. Xiang and V. Lesser
Department of Computer Science, University of Massachusetts
Ambherst, MA 01003, USA

{yxiang, lesser } @cs.umass.edu

March 15, 2000

Abstract

Vehicle monitoring takes as input the measurements from a surveillance region
which is populated by a number of vehicles, and estimates the number of vehicles
as well as their states in realtime or near-realtime. A key component in developing
successful monitoring systems is uncertainty management. Bayesian networks (BN)
have emerged as a normative and effective formalism for uncertain reasoning in many
Al tasks. Since a priori modeling of the domain into a BN is impractical due to the
vast interpretation space, the BN formalism has been considered inapplicable to this
type of task.

The main contribution of this work is the proposal of a framework in which the BN
formalism is applied to uncertainty management in vehicle monitoring. The framework
is based on domain decomposition, model separation, model approximation, model
compilation and re-analysis. Experimental implementation demonstrated good perfor-
mance at near-realtime. As vehicle monitoring is an instance of a class of problem
known as sensor interpretation, our framework provides a basis for applying the BN
formalism to other problems in this class.

Keywords: Bayesian networks, sensor fusion, tracking.

1 Introduction

Vehicle monitoring (also known as tracking) takes as input the measurements from a surveil-
lance region which is populated by a number of moving objects (vehicles), and estimates
the number of vehicles as well as their type and movement. Measurements entering into a
vehicle monitoring system are the output of a signal processing system which directly pro-
cesses the sensor output. Uncertainty involved in the task includes the unknown number
and types of vehicles, the unknown association of measurements and vehicles, the inaccu-
racy of measurements, potential missing measurements, environmental noise, and “ghost”
measurements.

Traditional engineering approach [2, 1] applies Kalman filtering to the problem, which
normally requires linearity and Gaussian assumptions in modeling. Traditional AT approach

[14, 3, 17] is based on incremental vehicle track construction and ad-hoc measures of uncer-
tainty on hypothesized tracks. It may be argued that if a normative theory is applied to
handle the uncertainty, these systems would perform better in general.

One such theory is the Bayesian probability theory which has been applied to uncertain
reasoning in many Al problems in the form of Bayesian networks (BNs) [16, 11]. The
formalism allows representation of uncertain dependence relations that go beyond linearity
and Gaussian assumptions. For most problems tackled, a domain model in the form of a
BN is constructed before observations are available and inference takes place. For vehicle
monitoring, due to the unknown number of vehicles and the almost infinite number of track
patterns by multiple vehicles, construction of a BN model a priori is impractical. This
difficulty has led to the issue whether the BN formalism is applicable to vehicle monitoring
type of problems [3]. Recently, the formalism has been applied to guide automated highway
vehicles [8] and to identify individual vehicles appearing on highway surveillance cameras
[10], although the issues addressed are different from those in our task, which focuses on
identifying vehicle tracks in open regions.

In this research, we investigate the issue how the BN formalism can be applied to such
problems where direct a priori modeling of the problem domain seems impractical due to
combinatorial explosion. We choose vehicle monitoring as the test domain. We explore
several general ideas: decomposition of the problem into quasi-independent subproblems,
approximation in modeling to reduce complexity, model compilation to speed up runtime
computation, and focused re-analysis for error reduction. We show that by exploring these
ideas, the BN formalism can be applied to uncertainty management in such problems. We
have implemented our modeling method and tested with randomly simulated vehicle scenar-
ios (figure 1) with good performance.

2 Bayesian formulation of vehicle monitoring

We consider the measurements obtained from a surveillance region at k discrete instants
t=1,....,k. We assume k > 3 so that accelerations of maneuvering vehicles can be extracted.
Denote the set of measurements at ¢ = ¢« by D; = {d;;|7 = 1,...,m;}. The total set of
measurements is then D = {D;|i =1, ...k}, which we refer to as a scene. Each measurement
is either produced by a vehicle of a particular type or is due to noise. Noisy measurements
may be unrelated to any vehicles, or may correspond to vehicle movement as in the case of
a “ghost”.

A full trajectory is a set of k measurements r = {dy,,...,dy;, }. A partial trajectory is a
proper subset of a full trajectory. If all measurements in r are produced by the movement of
a vehicle w and no other measurement in D are also produced by w, then r is the track of
w. We assume! that there are no vehicles entering and leaving the region between ¢ = 1 and
t = k. Hence when there are no missing measurements, each vehicle track is a unique full
trajectory from D. Otherwise, each track is a unique full or partial trajectory from D. A
ghost track is similarly defined. Two vehicles may be very closely located at time ¢ so that
they are perceived by the sensors as a single measurement. Without losing generality, we

'How to address the cases where the assumption does not hold is discussed in Section 9.

[
[1=

L=
[

]
"
(1=

[5=
[

[1=

Figure 1: Top: A simulated scene with 20 vehicles over 6 time instants. Bottom: The
interpretation obtained, where each identified track is shown by a different color and is
labeled by a vehicle type code.

regard the measurement as being generated by one of them and regard the measurement at
t as missing for the other vehicle.

An interpretation T of D is a partition of D into a set Y of full or partial trajectories and
a set N of measurements. Each trajectory in Y represents a belicved track and measurements
in NV represent believed noise unrelated to any tracks.

The task is then to find T such that P(T'|D) is maximal among all interpretations, where
P(T|D) reads “the probability of T' being the interpretation of D”. This task corresponds
to the track formation in the tracking literature as opposed to track maintenance where each
new measurement is to be associated with an already established track.

In the literature some researchers (e.g., [14, 17]) assume multiple measurements for a
vehicle at each time instant while others (e.g., [2]) assume a single measurement. In this
work, we assume a single measurement for a vehicle at each time instant. Such restriction
does not compromise the generality as multiple measurements can usually be grouped by
their closeness and summerized as a single measurement.

Figure 1 (top) shows a simulated scene of 20 vehicles with & = 6. The total number of
measurements is 123. Some vehicles have missing measurements, e.g., the track at the middle
bottom of the scene. Environmental noise is present in the scene. An easily identifiable one
is at about the center of the scene. A less obvious one is near the lower end of the track
at the right edge of the scene. Figure 1 (bottom) shows the interpretation with the highest
P(T|D) (See Section 10), where each identified track is drawn with a different color (shown
at a different gray level) and noise has been identified and removed.

3 Direct method

A direct method would be to compute P(T'|D) for each T' and then choose the one with the
maximal value. An interpretation 1" is feasible if for every pair of trajectories r and s in T,
r s =0. Otherwise, T is infeasible. If T is infeasible, then P(T'|D) = 0. A feasibility test
hence rules out interpretations with certainty.

How do we go about computing P(T'|D) for a feasible interpretation 77 We can model
the problem in a fashion of hypothesis-causes-features: If T'is the correct interpretation, then
each trajectory in T must behave like a track. Using Bayesian networks as a representation
of probabilistic causal models, it suggests the following: Create a binary hypothesis variable
T € {true, false} with the semantics “T" is the correct interpretation of D”. For each
trajectory r in 1', create a binary child variable r of T with the semantics “r represents a
track”.

Furthermore, the set N of measurements must behave like noise. How can this be rep-
resented in a Bayesian network? We may think of N as (1) not supporting any trajectories
that behave like tracks, and (2) occupying an expected portion of the total measurements.
The behavior (2) can be represented as a discrete child variable N size (cardinality of N)
conditioned on some parents. One obvious parent is T. Other parents may include D size
(cardinality of D) or other parameters that may affect the noise model. The structure of a
BN thus constructed is shown in figure 2. Note that the structure is interpretation specific.
The number of children of T varies for each interpretation. The behavior (1) does not
seem to lend itself to an explicit representation. We claim that it has been encoded in the

Dsize

Nsize

Figure 2: Interpretation model as a Bayesian network.

above structure implicitly. Consider interpretations Ty and T, which are identical except a
trajectory ry in T} is entirely contained in Ny of T,. Suppose r; behaves well like a track
and N; has a well expected proportion of D based on expected frequency of noisy data.
Using the above representation, Ty will have one less positive support (r1) for being a cor-
rect interpretation and one additional negative support (N; out of portion). Consequently,
probabilistic inference using the two corresponding BNs will result in P(T1|D) > P(Tz|D).

To summerize, P(T'|D) can be computed using the BN in figure 2, which we refer to as
the interpretation model.

4 Modeling trajectory

In the BN of figure 2, variables r; are not directly observable. Hence each of these variables
must be elaborated with a trajectory model. Each measurement contains the measured loca-
tion of a vehicle at a given time. It may also contain the energy level of the measurement, the
frequency range (in the case of passive sensing of acoustic signals), and other relevant feature
information. We refer to the corresponding components of trajectory model as movement
model, frequency model, and so on.

First, we consider the location information in the measurements (the movement model).
To simplify discussion, we restrict it to 2D locations. Denote the location of a vehicle by
(z,y). Denote the magnitude and angle of velocity vector by v and w, and the magnitude
and angle of acceleration vector by a and 1. The movement of a vehicle can be represented
as a dynamic Bayesian network in figure 3 (left). The upper layers of each slice models
the acceleration (a,n), velocity (v,w) and location (x,y) of the vehicle at a particular time
instant. Arcs from a slice to the next models how the state of the vehicle depend on the
previous state. The location of vehicle is not directly observable but through the potentially
inaccurate measurements. This is modeled by the measurements (2, y') which are dependent
on the true location (x,y) as well as the measurement error e. In the model, measurement
errors are assumed to be independent, but correlated errors can also be modeled (with
increased inference computation cost).

A trajectory may or may not correspond to a true vehicle track. We convert the above
vehicle model into a trajectory movement model by adding the root variable r, which models
whether the trajectory behaves as a vehicle track. We make r the parent of each variable

X’]
VAl

€1 . €1 :
\ k slices | \ k slices \

Figure 3: Left: a vehicle model as a BN, where a,n are magnitude and angle of acceleration,
v,w are magnitude and angle of velocity, x,y are location of vehicle, 2,4y’ are location
measurements, and e is the measurement error. Right: a trajectory movement model.

a and variable v. The conditional probability distribution P(a|r = true) models the ac-
celeration of a vehicle. The distribution P(a|r = false) models an arbitrarily generated
trajectory. We do not model the angles w and 5 as the children of r due to the the following
assumptions:

We assume that each vehicle of a particular type can only move in a given range of v
values. It can however move at any directions. Within the v range, at any time it may freely
choose acceleration value a in another range with no restriction on the angle n. Strictly
speaking, the freedom on 7 is an approximation as vehicles may have different acceleration
ranges for tangential directions and lateral directions. However, the approximation helps to
simplify our model and it seems to be quite reasonable: A running car cannot make a very
sharp turn, but neither can it speed up or slow down abruptly. We allow total freedom in n
values in our simulated vehicles (see figure 1) and they do not seem unrealistic.

Given the assumptions, the values of w and n provide no differentiating power between
a track and a non-track, and hence are not dependent on r in our model.

In addition to the movement, other information contained in the measurements can also
help evaluate if a trajectory behaves like a track. For example, measurements corresponding
to a true track may have similar energy levels and closely related signal frequencies. For
each feature at each time instant, a child variable of r can be created in the trajectory model
in figure 3 (right) if these features are independent when they are produced by the same
vehicle.

In principle, given an interpretation of m trajectories, we can complete the interpretation
model in figure 2 by extending each r; node with a trajectory model. Then belief propagation
can be used to compute P(T|D).

5 Decomposition of scene into islands

The direct method discussed in Sections 3 and 4 require the explicit evaluation of all inter-
pretations. Unfortunately, it is intractable even for a scene of a few tracks.

Consider a scene with k& = 6 where 4 measurements per time instant are obtained. The
total number of full trajectories is 4° = 4096. The total number of partial trajectories with
one missing measurement is 4° x 6 = 6144. Hence the total number of trajectories with one
possible missing measurement is 10240. To find the most probable interpretation, a total of
210240 interpretations need be evaluated. Note that although many of these interpretations
are infeasible, a feasibility test (Section 3) has to be explicitly performed for each.

Our first basic idea for making the computation tractable is to decompose the problem
into independent or semi-independent subproblems which are easier to solve. In particular,
we decompose a scene into smaller independent or semi-independent groups of measurements.
Only interpretations within a single group are explicitly evaluated, while interpretations
across multiple groups are ignored as much as possible.

We apply two levels of decomposition. The first level decomposes a scene into independent
groups which we refer to as islands defined below. The second level is presented in Section 6.
Given two (location) measurements d and e, |d — e| denotes the distance between them. Let
MAXD denote the maximum distance any vehicle may travel in one time interval plus twice
the maximum location error.

Definition 1 An island in a scene is a subset L of measurements such that for each | € L

and each d € D\ L, |l —d| > MAXD.

The decomposition computation is only quadratic on |D|, but the computational savings
by using islands can be tremendous. Consider the previous scene of 24 measurements. If
the scene can be decomposed into two islands with 2 measurements per time instant per
island as shown in figure 4, then for each island the total number of full trajectories and
partial trajectories with one missing measurement is 64 4+ 192 = 256 (512 for the scene), a
significant reduction from the previous 10240.

Figure 4: A scene of 4 tracks decomposed into two islands (divided by the straight line).

What will be the error introduced by island decomposition? If there is no missing mea-
surements in the scene, then every trajectory corresponding to a true track is contained in a
unique island. Hence island decomposition introduces no error at all. In fact, use of islands
introduces no error even when limited missing measurements are present as formalized in
the following proposition.

Proposition 2 In a scene with at most missing measurements at t = 1 ort = k, an
exhaustive evaluation based on islands yields the identical result as one without using islands.

Proof:

Since no measurements are missing at ¢ € {2,...,k — 1}, each true track is contained in
one island and will be evaluated.

On the other hand, without using islands, each interpretation 7' containing trajectories
crossing multiple islands will be evaluated. For each such trajectory r, P(r is a track|D) will
be very low due to impossible velocity /acceleration values. This in turn will produce very low
P(T|D), resulting rejection of T" as the final interpretation. O

When measurements are missing at ¢ € {2,....k — 1}, a track with one measurement
missing may be split into two islands and not be evaluated at all. Let the probability of a
missing measurement be g. The probability that an isolated track is split in the middle due
to one missing measurement is (k —2)g. Although its value increases with k, we assume that
k is a small integer in track formation. Measurements obtained after k time instants will
either be used one instant at a time (as in track maintenance) or processed as additional k
length scenes. For k = 6 and ¢ = 0.02, we have (k — 2)q = 0.08.

In fact, the above estimation is a very conservative upper bound. The threshold M AX D
is determined by the fastest possible vehicles to be expected. For a slower vehicle, the
distance traveled in two time intervals may still be less than M AX D and hence the missing
measurement does not cause the track to be separated into two islands. Furthermore, when
multiple tracks are present, two sections of a broken track may be included in an island if
other tracks are close enough to both. In Section 9, we discuss how to further reduce the
error under island decomposition due to missing measurements.

Assuming that each island can be independently interpreted, we obtain

P(T\D) = Py, Ty,T|L1, Lo, ..., L)
= P(Ty|Ta.... T Ly, L) P(To|Ts .., T Lty oo L) . P(Ton| Lo, L)
= P(Th|Ly)...P(Ty|Ly)
where each L; is an island and T; is the interpretation of L;. Hence, we only need to find

interpretation T; for each island such that P(T;|L;) is maximal. We will then have T' = U, T;.
Algorithm 1 outlines the top level control of our scene interpretation system.

6 Decomposition of islands into peninsulas

Although islands are easier to deal with than the original scene, due to possible track crossing,
near-parallel tracks, or other types of adjacency, a large island may still contain measure-
ments of several tracks. When this is the case, the combination explosion illustrated earlier

Algorithm 1 (Scene interpretation)
Input: A scene D.

decompose D into islands;

for each island L; containing at least one trajectory
process L; to get the island interpretation T;;
add T; to the scene interpretation T;

return T

occurs again at the island level. We apply a second level of decomposition within each large
island to make the evaluation of large islands more manageable:

Definition 3 A peninsula is a subset S of measurements in an island L such that the
following conditions hold:

1. For timet =1, S has exactly one measurement dy called initiator.

2. For eacht > 2, S contains each d; € L such that there exists di_1 € S and |d;—d;—1| <
MAXD.

Intuitively, if the initiator of a peninsula belongs to a track, then the entire track is
contained in the peninsula. As an example, consider an island made of two tracks that
are nowhere close except at time ¢{ = k (k = 6). Based on the previous calculation, 22°°
interpretations should be evaluated. The island produces two peninsulas and each contains
only k£ measurements. Hence the total number of full trajectories and partial trajectories
with one missing measurement in each peninsula is 1 + 6 = 7, and the total number of
interpretations to be evaluated for the island becomes 2(27) = 256. Although this represents
the best scenario, in general, whenever the starting segment (¢ is close to 1) of a track is
“clear” (no nearby measurements from other tracks at the same time frames), decomposition
into peninsulas will reduce the number of interpretations to be evaluated.

We may extend the definition of peninsula to allow the initiator to be a measurement at
time t = k. The corresponding peninsula is then a backward peninsula (versus the forward
peninsula as defined above).

What error might be introduced by using peninsula? When there are no missing mea-
surements, each track is contained in at least one peninsula and will be evaluated. Hence,
evaluation using peninsula introduces no error at all. However, error may occur when missing
measurements are present. Consider the island shown in figure 5 (a). It contains measure-
ments from two tracks, one of which is drawn in squares and the other in ovals. The time
of each measurement is also shown. The upper track has the measurement at ¢ = 2 missing.
The two forward peninsulas found are shown in (a) as rounded areas. The two backward
peninsulas are shown in (b). None of the peninsulas contains all measurements of the upper
track. Hence this track will not be evaluated.

The following proposition identifies an error-free condition when using peninsulas.

Proposition 4 If an island only has missing measurements at t =1 ort = k, each track is
either contained in a forward peninsula or a backward one.

(a) (b)

Figure 5: (a) Forward peninsulas in an island. (b) Backward peninsulas in the island.

Proof:

Let r be a track with measurements {dy,....,dx} \ {d;} (¢t = 1 or i = k). If 1 = 1,
all measurements are contained in the backward peninsula with initiator d. If 1 = k, all
measurements are contained in the forward peninsula with initiator d;. a

Proposition 4 suggests that we may generate both forward and backward peninsulas for
all measurements at ¢ = 1 and ¢ = k. Evaluation using these peninsulas is resistant to at
least a percentage of 2/k of errors due to one missing measurement in a track. The value
2/k is a lower bound because a track with a missing measurement at ¢ such that 1 < ¢ < k
may still be contained in a peninsula due to the presence of measurements from other tracks
in the same island.

Our decomposition using islands and peninsulas can be equivalently formulated using an
adjacency graph where there is a link from a point to another if the distance in between is
less than M AX D. Whether to maintain and search such a graph explicitly or implicitly is
a design choice.

7 Model separation

After using peninsulas to generate trajectories for an island, we can evaluate each interpre-
tation T' (we overload the notation 7" here for the island) using a completed interpretation
model (Sections 3 and 4). Since a trajectory may participate in multiple interpretations,
this method will duplicate evaluation of a given trajectory multiple times.

To reuse the evaluation of each trajectory, we evaluate T' using a set of BNs: a top level
BN as in Section 3 and one trajectory BN for each trajectory as in Section 4. The evaluation
of each trajectory BN is performed separately. After evaluation of each trajectory in T'is
completed, the results are used in the evaluation of the top level BN to produce P(T'|D). The
evaluation result of a trajectory r can then be reused for the evaluation of each interpretation
that r participates.

Evaluation computation can be performed in several ways. We briefly describe the cluster
tree method [11]. The method groups variables in a BN into overlapping subsets called
clusters. The clusters are organized into a tree. Probabilistic inference is performed by
message passing (belief propagation) along the tree. With one round of inward propagation

10

towards an arbitrary cluster followed by another round of outward propagation away from
the cluster, the updated probability for each variable can then be obtained in any cluster
containing it. More details can be found in the above reference.

Since each trajectory BN shares a single variable r; with the top level BN, if we convert
each BN into a cluster tree and join each trajectory tree with the top level tree at the cluster
containing rj, the resultant cluster tree is equivalent to that created without model separation
(figure 6). Since we are only interested in the posterior distribution on variable T which is

oplev!

//{ ‘\ cluster tree
\

‘\

cluster tree cluster tree
for trajectory rl for trajectory rm

Figure 6: Belief propagation in cluster trees. Each oval represents a cluster. The tree on the
top is converted from Figure 2.

contained in the top level tree, belief propagation consists of only inward propagation toward
a cluster containing T (as shown by arrows in figure 6).

Most trajectories in a scene are not due to actual tracks and will receive very low evalua-
tion. The separation of trajectory evaluation and interpretation evaluation also allows those
trajectories to be eliminated so that the interpretations they participate in are effectively
discarded without being explicitly evaluated.

An additional advantage of model separation is that it allows variables shared by different
models to be represented at the right degree of coarseness at each model. Fach variable r is
shared by the interpretation model and a trajectory model. In the trajectory model, r can
be given the domain {not_track,type0_track,typel track,...}. The differentiation of vehicle
types is not only an interesting result, but also facilitates model building.

On the other hand, in the interpretation model, it is sufficient for r to convey only
whether the correponding trajectory is a track. The type of the vehicle is not important. In
fact, having to differentiate vehicle types in the interpretation model will be an unnecessary
burden in model building. Separation of model evaluation allows each r in the interpretation
model to be represented as a binary variable. During inference, the trajectory model can
sum its posterior distribution first before feeding to the interpretation model.

Based on island decomposition and model separation, the island level control of our scene
interpretation system is outlined in Algorithm 2.

The interpretation generation/evaluation is outlined in Algorithm 3.

11

Algorithm 2 (Island interpretation)
Input: An island L.

if L is not too large

evaluate each trajectory;

get interpretation T' of L from highly evaluated trajectories;
else

decompose L into peninsulas;

for each peninsula S

evaluate each trajectory;

get interpretation T' of L from highly evaluated trajectories;

return T';

Algorithm 3 (Interpretation evaluation)
Input: A set R of trajectories.

for each interpretation T from R
perform feasibility test on T,
if T passed
construct interpretation BN model;
compute P(T|D) using the BN;
if P(T = correct|D) is the highest so far, store T;

return stored interpretation;

8 Movement model reduction

Fach feasible trajectory in each peninsula can be evaluated using the trajectory model (Sec-
tion 4). P(r|D) can be computed using any one of several common inference algorithms
(see [4] for a recent survey). We consider the complexity using the cluster tree method [11].
For k = 6, a good cluster tree has about 31 clusters. About one third of them each has
a size of 7 variables. If the domain size for acceleration (a), velocity (v), location (z,y)
and measurement (2’,y’) is at least 10, then the belief state space of many clusters will be
huge. Even if the inference computation is affordable, when it must be repeated for each of
hundreds or more of feasible trajectories, it is very expensive and near real-time monitoring
becomes impossible. Although a query DAG [5] can be used to speed up the inference, its
complexity is comparable to the original algorithm used to generate the query DAG. Hence,
a query DAG does not provide the magnitude of computational savings needed.

Instead, we explore the following alternative: since we are primarily interested in P(r),
we try to reduce the model such that only r and observables are left. However, using
and y’ as observables will end up with a model where every variable is strongly dependent
on every other. The cluster tree of the model will have a cluster of huge state space. The
alternative is to use observed velocity/acceleration. FEach observed velocity is computed
using two adjacent location measurements and each acceleration is computed using three as
follows (assuming unit time interval):

o) = /(2 — 21)? + (v} — y})?

12

ah = \J(ah — 20 + a1 + (vh — 24+ 1)
After replacing location and measurement variables (z,y,2’,y’), we have the reduced model

in figure 7 (a).

cl
s
|

C3

(b) (c)

Figure 7: (a) Replacing location measurements in movement model. (b) Approximate move-
ment model. (¢) Clique chain for movement model evaluation.

Each observed velocity is dependent on two measurement errors and each observed accel-
eration is dependent on three measurement errors. Due to this dependence, a; and a3 are not
independent given r,ws,, v2, az (using d-separation to (a)). However, if the value of velocity
and acceleration (|v| and |a|) are large enough than the value of measurement error (|e]), this
dependence is not strong. If we ignore this dependence, then we obtain the Markov property:
ay and as are independent given r, ws, vy, az, and vy and v3 are independent given r, wsy, vy, as.
By approximating the true value of velocity/acceleration with the observed value (effectively
clumping v with v" and a with @’) and removing other unobservables, we obtain the model
in figure 7 (b). From (b), we obtain the cluster chain (c¢) which can be evaluated efficiently
as derived below:

Conceptually, we follow the cluster tree method [11]. After initialization, the cluster
C; is associated with the distribution table P(v,a},v),r). Other clusters have its table
similarly assigned. After observations v} = 14, ai = «a; (1,5 = 1,2,...,k) are obtained, they
are entered into the corresponding cluster belief tables. For example, the table with C}
becomes P(r, v}, a}, vh|in, aq,12). For each observation, instead of entering it to one cluster
as normally performed [11], we enter into every cluster table that contains the corresponding
variable. For example, 1, will be entered into tables in both (7 and (5.

To compute P(r|vy, ..., V51,01, ..., Qp_2), we perform belief propagation from cluster Cy
downwards. The message from C; to C is

Zv{,a’l P(rvvivallvvéhjlvoélﬂ/?)

P(r, v3)

13

This is a distribution over r and v}. At (s, its local table is updated into the product with
the message
>t P(r vy, ap, valvn, an,)

P(r, v3)

Since vy has been entered into (5, the message from ' to (5 could be just

P(I‘,UQ,CL/Q,U;JI/Q,OQ,I/?)).

Z ral ’P(rvvivallvvéhjlvoélv’/?)

V1:91.Y2
Zvé P(I‘,Ué|l/2) ’

which is a distribution over r only. That is, we have

Zui,a’l P(I‘,Ui,all,vé|l/1,0é1,l/2)

P(r, v3)

P(I‘,UQ,CL/Q,U;JI/Q,OQ,I/?))

Dl Plrs vy, ah, 05l a5 15)

Zv2 P(I‘, U§|V2)

Note that if we had not entered 15 into Cy, the above equality would not hold. Second,
since v} has a large domain size (we used 12 in our experiments) while the new message is a
distribution over r only, the size of the message from 4 to € is reduced significantly and
correspondingly the amount of computation associated with the message passing.

Finally, we observe that

P(I‘,UQ,CL/Q,U;JI/Q,OQ,I/?)).

Z P(rvvivallvvéhjlvoélv’/?) =c P(I‘|I/1,Oz1,l/2)

! ! !
’U1 ,al ,’U2

and

ZP Vhlve) = d P(rlvs),

where ¢ and d are normalizing constants. Hence we have the following efficient algorithm for
computing P(r|vy, ..., Vp—1, 01, ooy Qp—2) =

Algorithm 4 (Evaluation of full trajectory by movement)
Input: vy, ...,vp_1,0Q1,...,ap_2 of a full trajectory.

B(I') = P(I‘|I/1,0é1,l/2)
fori=2tok—2
B(r) = B(r)P(r|vi, i, vi41)/ P(r|1)
normalize B(r) to get P(r|v1, ..., Vk—1, 01, ..y Op—2)
return P(r|vy, .o, Vg1, 01y ooy Qp—2)

Using this algorithm, it is no longer necessary for the on-line inference computation
to actually maintain the cluster chain. This contributes significantly to realtime or near-
realtime evaluation as a large number of evaluations must be performed. To obtain the
parameters required by Algorithm 4, we off-line compute P(r|v}, a}, v ;) and P(r|v{) using

14

the accurate model in figure 7 (a). For our experiment (reported in Section 10), the off-line
computation took about 12 hours using a SUN Ultra60.

Note that Algorithm 4 can be easily extended to include processing of other observations
(e.g., frequency). It can also be easily modified to evaluate partial trajectories. The extension
and modification are straightforward and we omit the details.

9 Re-analysis

In Algorithm 2, the operation “evaluate each trajectory” was performed for each small island
and each peninsula in a large island. The operation can be performed to evaluate every
full and partial trajectory. Normally, there are more partial trajectories than full ones (see
examples in earlier sections). When there are no missing measurements, processing of partial
trajectories is completely wasted. Even when they are infrequent, most of the processing
on partial trajectories is still wasted. To achieve near real-time scene interpretation, it is
desirable to reduce such processing as much as possible.

To this end, we explore re-analysis in the following way: For each small island and
each peninsula, we only evaluate full trajectories initially. We then select highly evaluated
trajectories and get the best possible interpretation T for the island L. If P(T|L) is not
satisfactory measured by some predetermined threshold, then the trajectory evaluation is
considered inadequate and partial trajectories are evaluated before a second round of inter-
pretation evaluation is performed.

As an example, consider Figure 5. If we search for peninsulas as defined in Definition 3
(effectively assuming no missing measurement at 1 < ¢ < k), a mistake will be made since the
four measurements in the upper track will be considered as noise (as they are not qualified
as a partial track). This will enlarge the noise set N to an unexpected level, which in turn
lowers P(T'|L) for the best interpretation obtained. The low P(T'|L) will trigger a re-analysis
looking for peninsulas with a missing measurement, which will identify the partial trajectory.

The re-analysis can be applied to a more general context: Due to the intractability of an
exhaustive analysis, as we perform a bottom-up analysis (e.g., from trajectory to island to
scene), we only analyze according to the most likely cases initially (e.g., the full trajectories)
to make the analysis tractable. As we move up the abstraction levels, we watch for signs of
failure of early analysis (e.g., the low P(T|L) above) since the reality may happen to be one of
those unlikely cases. When such signs are identified, we go back to a lower abstraction level,
re-analyze more thoroughly and go up the abstraction levels again. Such re-analysis allows
the initial analysis to be performed efficiently and allows mistakes made to be corrected with
limited and focused additional computation.

In Section 2, we assumed that no entering/leaving vehicles between ¢ = 1 and ¢ = k.
These vehicles produce tracks that are partial trajectories, some of which can already be
interpreted correctly. However, if such a trajectory is too much shorter than a full one, it is
likely to be interpreted as noise. Using re-analysis, the corresponding measurements can be
conf{bonsitler tthéhewer dvielks on igitrec8nwhochllpaccwec sdatespretativh.t = 1,...,6 and s
with ¢ = 7,...,12. The upper track corresponds to a vehicle stopping in s’ and the lower
track corresponds to a vehicle starting in s. The measurements from the upper track at
t = 7,8 are likely interpreted as noise for s'. Using the upper track r in s (from ¢t = 1

15

g B B B
. B 5 6 7 8
o g 4
t=1 2 3
LT BRI S T
|] n x]

Figure 8: Two tracks across two scenes.

to 6) as expectation, these measurements can be re-analyzed with focused processing. The
measurements from the lower track at ¢ = 5,6 in s can be similarly re-analyzed using the
lower track r' in s’ as expectation.

10 Experimental results

To test the ideas and algorithms presented, we implemented a scene simulator and a scene
interpretor. The simulator generates randomly a scene which is used as the input to the
interpretor. The performance of the interpretor can then be evaluated by comparing its
interpretation with the simulated tracks.

Each measurement simulated contains a 2D location plus a signal frequency as would
appear in passive sensing. The simulator allows us to specify the size of the region, the
number of tracks in a scene, the velocity /acceleration distribution of each type of vehicles, the
amount of measurements due to environment noise, and the chance of missing measurements.
This allows testing of the interpretor under different conditions.

Figure 1 (top) shows a typical simulated scene in a 200 x 200 grid region? of 20 vehicle
tracks with two types of vehicles. The temporal length of the scene is k = 6. The interpre-
tation generated (figure 1 (bottom)) matched the simulated tracks with 100% accuracy.

Figure 9 summarizes the interpretation results of 280 scenes of different degrees of diffi-
culty. The 280 scenes were divided into 14 batches. Each batch has 20 scenes of the identical
size (the number of simulated tracks). The x-axis of each graph in figure 9 is labeled by the
size (from 5 to 18) of the scenes in each batch. The larger the size, the higher the density of
measurements and the more difficult to interpret the scene. Each vehicle track consists of at
most k = 6 measurements. Hence the total number of measurements per scene ranges from
about 30 to 108 plus measurements due to noise (about 8% on average) and minus missing
measurements (each measurement may be missing with a 0.02 probability).

The top left graph shows the average CPU time in interpreting each scene in a given
batch. Our implementation is in Java and the experiment was run using jdk1.1.8 in a
Pentium IT 400 under Window98. No additional runtime optimization was applied. Near-
realtime performance was obtained for a wide range of scene sizes. As the complexity of the
scene increases, the interpretation time used increases gradually. Significant increases are

ZNote that the size of the grid is insignificant to the performance, but the density of the vehicles is.

16

observed after the scene size is larger than 16 as very larger islands are frequently detected
in the scenes.

The top right graph shows the percentage of fully matching tracks in each batch. An
interpreted track r’ fully matches a simulated track r (which may have missing measure-
ments) if r’ matches each measurement in r. The bottom left graph shows the percentage of
partially matching tracks in each batch. An interpreted track r’ partially matches a simu-
lated track r if ¥’ matches each measurement in r except one. The bottom right graph shows
the percentage of both fully and partially matching tracks in each batch. As the number
of tracks per scene increases from 5 to 18, the percentage decreases gradually from 100% to

91%.

Fully matching tracks (%)

CPU time (s)
50

T T T T T T T T T T 98 I) S B B B R B . . B
45 F 4 &
40 - - 96 - -
35 | “ o
30 5 94 - &0 <& 5
25 . ORS¢ OO
20 - - 92 - o O -
15 O <&
10 | & - 90 -
5 SO & O o O & |
0 <> | | <> | | | | | | | | 88 | | | | | | | | | | | |
5 6 7 8 9 1011121314 1516 17 18 5 6 7 8 9 1011121314 1516 17 18
No. tracks per scene No. tracks per scene
Partial matchil}g\ tracks (%) Total matching tracks (%)
AT T T T T T T 11 100 T T T T T T T T T T 1
99 - O -
3.5 1 -
98 OR$) .
3F <& < 97 -
2.5 - . 96 - 7
95 OR$) & & .
24 OO & 94 + S0 OO0
15 L | 93 - O A
92 - -
1 | I N LA L AN AN AN AN 91 | | | | | | | | | | | |
5 6 7 8 9 1011121314 1516 17 18 5 6 7 8 9 1011121314 1516 17 18

No. tracks per scene

No. tracks per scene

Figure 9: Summary of experimental results. X-axis: number of simulated tracks per scene in
each batch. Top left: Average CPU time per scene. Top right: Percentage of fully matched
tracks in each batch. Bottom left: Percentage of partially matched tracks in each batch.
Bottom right: Percentage of both fully matched and partially matched tracks in each batch.

Examination of interpretation errors (between 0% and 9%) identified the following sources:

1. Separation of a track into two islands due to a missing measurement in the middle of
the track (analyzed in Section 5).

17

2. Separation of a track into different peninsulas due to a missing measurement in the
middle of the track (analyzed in Section 6).

3. Combination of measurements from different tracks and from noise formed a trajectory
r’ that behaved as a highly likely track. On the other hand, one of the corresponding
real track r took an extreme (possible but infrequent) acceleration. The consequence
was P(r) < P(r'), which may also be due to the use of reduced movement model
(Section 8). Since only interpretations made of trajectories of top P(r') values were
evaluated (Section 7), the “true” interpretation that contains r was not evaluated.

All three sources are due to the use of partial (versus exhaustive) evaluation of the in-
terpretation space, which is necessary given the intractability of an exhaustive evaluation.
Some measures may lead to further reduction of errors: Errors due to the first two sources
may be reduced through re-analysis (Section 9). The re-analysis can be triggered when the
errors significantly lower the evaluations of the best candidate interpretations for the islands
involved. FErrors due to the last source were the most frequent, and they cannot trigger
re-analysis based on the current scene only. However, they may be recognized by evaluat-
ing the current interpretation in a larger temporal context. For example, when trying to
extend the interpretation into the next temporal period, errors may be recognized as some
believed tracks cannot be reasonably extended. This can then trigger re-analysis. We intend
to quantify the proportion of errors caused by each source and to explore error reduction by
re-analysis in the future research.

11 Conclusion

Uncertainty management is a key aspect in developing vehicle monitoring systems. Bayesian
networks (BN) have emerged as an normative and effective formalism for uncertain reasoning
in many Al tasks. However, because an explicit encoding of the vehicle monitoring domain
into a BN a priori is impractical due to the vast interpretation space, the BN formalism
has been in the past considered inapplicable to this type of task. The major contribution
of this work is to show that by applying domain decomposition (islands and peninsulas),
model separation, model approzimation (movement model reduction), model compilation and
re-analysis, the interpretation task can benefit (see below) from a normative approach for
uncertainty management, and realtime or near-realtime performance can be obtained.

Several benefits of this approach can be identified: First, due to the intractability of
exhaustive evaluation of the entire interpretation space, an interpretation system must be
able to focus its attention to promising subspaces. A normative approach to uncertainty
management provides the best possible guidance in this effort. For example, in island in-
terpretation, the number of interpretations are exponential on the number of trajectories.
Hence, only interpretations made of promising trajectories can be explicitly evaluated. A
normative evaluation (e.g., using P(r|D)) should outperform add-hoc evaluations in the long
run.

Second, this work focus on the track formation while a practical system must also include
track maintenance. As tracks/interpretations formed in the formation stage is still uncertain,
the uncertainty should be taken into account in the track maintenance. For example, we have

18

assumed that there are no vehicles starting and stopping during time 1 to k. Measurements
due to starting/stopping vehicles will then be evaluated as environment noise. This belief
should be updated if new measurements at ¢ > k indicate otherwise. A Bayesian approach
treats evaluation during formation as the prior belief to the maintenance stage and has a
principled way to combine it with new measurements. Further research is needed to extend
the current work into track maintenance.

Third, the error introduced due to various decomposition or approximation may be rig-
orously analyzed or bounded. Although this is not the main contribution of this work, some
error (or error-free) conditions have been analyzed in this work. The framework arguably
allows more complete error conditions/bounds to be analyzed as well.

Bayesian approach to tracking has been pioneered in the engineering field [2, 1]. How-
ever, their application is based primarily on Kalman filtering, which normally requires liner-
ity (domain expressed as a set of linear state equations) and Gaussian assumptions. Our
track and interpretation modeling using BNs is not subject to such restriction. For exam-
ple, the frequency of a measurement may be dependent on the acceleration (e.g., in passive
sonar sensing) according to some nonliner relation. This can be represented in our trajec-
tory model, which will provide more accurate evaluation. The extension to Algorithm 4 is
straightforward, and the additional computational burden is insignificant. Hence, our ap-
proach arguably provides a more powerful framework to apply the Bayesian approach to
tracking.

Although building a BN domain model a priori is the traditional way in applying BN
technologies, recent advances on knowledge-based BN construction have allowed more flex-
ible situation specific representations (e.g., [9, 15]). In their tasks, it is usually sufficient to
construct and evaluate one model after observations and the query variables are given. Our
work has been influenced by their approach but the task we attack poses additional repre-
sentational and computational challenge by requiring construction and evaluation of a very
large number of models in realtime or near-realtime. Most of the techniques we presented
are developed to meet this challenge.

Our work has focused on the vehicle monitoring problem as a concrete test domain.
The problem, however, is an instance of a class of problems known as sensor interpretation
problems [3]. In this class of problems, a set of sensor data is to be explained with some
events or interpretations at higher abstraction levels. The data are generated by multiple
events (e.g., multiple vehicles), but the number of events (e.g., number of vehicles), the
nature of each event (e.g., type of vehicles), and which pieces of data are produced by a
same event are unknown.

Our solution to vehicle monitoring provides a framework in which Bayesian networks
as a normative uncertain reasoning formalism can be applied to other sensor interpretation
problems. Domain decomposition separates the problem domain into independently or semi-
independently evaluable subdomains each of which contains a subset of target events. Model
separation allows submodels to be constructed at different abstraction levels and their evalu-
ation to be reuse and combined coherently. Model approximation/compilation helps to reduce
the amount of computation to be performed within the allowable time frame. Re-analysis
allows more efficient computation at lower abstraction levels and allows mistakes made to
be corrected with limited and focused additional computation. Farlier work [7, 6, 12, 13]
applied approximate bottom-up processing to produce a set of likely high level models which

19

were used to drive focused and more detailed processing in heuristic problem solving. The
current work extends these under a Bayesian formalism.

Future work include extension to track maintenance, handling starting/stopping vehicle
tracks, grouping of tracks into patterned tracks or tracks paired with ghost tracks, quantifi-
cation of interpretation errors due to different sources, formalizing re-analysis and applying
re-analysis to other stages of analysis (e.g., island decomposition), and distributed tracking.

Acknowledgements

This work is supported by the Research Grant OGP0155425 from the Natural Sciences and
Engineering Research Council (NSERC) of Canada, by the National Science Foundation
(NSF) under Grant No. 115-9812755, and by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-99-2-0525. This work is conducted while the first author is on
sabbatical from University of Regina.

References

[1] Y. Bar-Shalom, editor. Multitarget Multisensor Tracking: Advanced Applications.
Artech House, 1990.

[2] Y. Bar-Shalom and T.E. Fortmann. Tracking and Data Association. Academic, 1988.

[3] N. Carver and V. Lesser. A new framework for sensor interpretation: planning to resolve
sources of uncertainty. In Proc. National Conference on Artificial Intelligence, pages

724 731, 1991.
[4] B. D’Ambrosio. Inference in Bayesian networks. Al Magazine, 20(2):21-36, 1999.

[5] A. Darwiche and G. Provan. Query DAGs: a practical paradigm for implementing
belief-network inference. In E. Horvitz and F. Jensen, editors, Proc. 12th Conf. on
Uncertainty in Artificial Intelligence, pages 203-210, Portland, Oregon, 1996.

[6] E.H. Durfee and V.R. Lesser. Incremental planning to control a time-constrained,
blackboard-based problem solver. IEEFE Trans. on Aerospace and FElectronic Systems,
24(5):647-662, 1988.

[7] L.D. Erman, F' A. Hayes-Roth, V.R. Lesser, and D.R. Reddy. The Hearsay-II speech-
understanding system: integrating knowledge to resolve uncertainty. Computing Sur-

veys, 12(2):213-253, 1980.

[8] J. Forbes, T. Huang, K. Kanazawa, and S. Russell. The batmobile: towards a bayesian
automated taxi. In Proc. Fourteenth International Joint Conf. on Artificial Intelligence,

pages 1878-1885, Montreal, Canada, 1995.

20

[9]

[10]

[11]
[12]

R.P. Goldman and J.S. Breese. Integrating model construction and evaluation. In
D. Dubois, M.P. Wellman, B. D’Ambrosio, and P. Smets, editors, Proc. 8th Conf. on
Uncertainty in Artificial Intelligence, pages 104-111, Stanford University, 1992. Morgan
Kaufmann.

T. Huang and S. Russell. Object identification: a Bayesian analysis with application to
traffic surveillance. Artificial Intelligence, 103:77-93, 1999.

F.V. Jensen. An introduction to Bayesian networks. UCL Press, 1996.

F. Klassner, V.R. Lesser, and H. Nawab. Combining approximate front end signal
processing with selective reprocessing in auditory perception. In Proc. of AAAI pages

661-666, Providence, Rhode Island, 1997.

F. Klassner, V.R. Lesser, and H. Nawab. The role of data reprocessing in complex
acoustic environments. In Proc. of AAAI pages 997-1003, 1998.

V.R. Lesser and D.D. Corkill. The distributed vehicle monitoring testbed: A tool for
investigating distributed problem solving networks. Al Magazine, 4(3):15-33, 1983.

S.M. Mahoney and K.B. Laskey. Constructing situation specific belief networks. In
Proc. 14th Conf. on Uncertainty in Artificial Intelligence, pages 370-378, 1998.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

R. Whitehair. A framework for the analysis of sophisticated control. PhD thesis, Uni-
versity of Massachusetts, 1996.

21

