
Reinforcement Learning with Stability Guarantees

Theodore J. Perkins

Sascha E. Englebrecht

Andrew G. Barto

Department of Computer Science

University of Massachusetts

Amherst, MA 01003

Technical Report UM-CS-2000-06

Reinforcement Learning with Stability Guarantees

Theodore J. Perkins PERKINS@CS.UMASS.EDU

Sascha E. Engelbrecht SASCHA@CS.UMASS.EDU

Andrew G. Barto BARTO@CS.UMASS.EDU

Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA

Abstract

We present a new approach to improving the reli-

ability and overall performance of reinforcement

learning (RL) control for minimum cost-to-target

problems. In particular, we propose combining

RL with Lyapunov-based control, an analytical

approach from control theory for designing con-

trollers that make dynamical systems stable. By

building Lyapunov-based constraints into a con-

trol architecture, we can prove that the controlled

system will be brought to a desired target state.

At the same time, RL is used to minimize the cost

incurred by the controller. The resulting con-

trollers combine theoretical guarantees on their

behavior with improved practical performance

compared to either standard RL or Lyapunov-

based methods alone. Because the controllers en-

sure stability by design, the guarantees we estab-

lish hold during learning as well as after. In fact,

the guarantees hold independently of many char-

acteristics of the RL method being used, includ-

ing the method of function approximation. We

illustrate our techniques on a pendulum swing-

up task.

1. Introduction

Since at least the 1950’s, control theorists have been de-

veloping methods for provably stable control of dynami-

cal systems based on the analytic techniques of A. M. Lya-

punov – techniques for establishing the stability properties

of dynamical systems. Controllers designed using these

methods are guaranteed to bring a dynamical system to

some desired target state. However, there is usually some

cost to operating a controller, such as expended energy or

materials, wear on controller components, etc. Lyapunov-

based design approaches do not generally address costs in-

curred by the controller; they only guarantee that the sys-

tem will be brought to the target (Vincent & Grantham,

1997).

Reinforcement learning (RL), on the other hand, comprises

a broad set of numerical techniques that explicitly attempt

to minimize the costs incurred while controlling a system.

When a dynamical system can only be in a small number

of discrete states, various algorithms can exactly minimize

cost (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998).

However this is not generally possible when the number of

possible states is large or the system state is described by

continuous variables. In these cases, many RL algorithms

are combined with function approximation, but the theo-

retical guarantees on RL systems using function approxi-

mation are much weaker than in the case of no function

approximation. In fact, it has been shown that some of

the more popular RL algorithms, such as Q-learning and

TD(), can diverge when combined with function approxi-

mation (Baird, 1995; Bertsekas & Tsitsiklis, 1996).

In this paper we present a novel approach to controller de-

sign that combines Lyapunov-based control ideas with RL.

Controllers designed by our approach provably take the

controlled dynamical system to a target state, while simul-

taneously allowing considerable freedom for the minimiza-

tion of the cost incurred.

In our approach, getting the system state to target, i.e. sta-

bility, is ensured by imposing Lyapunov-based constraints

on the available control choices. Because stability is en-

sured by control choice constraints, many aspects of the

RL method being used do not affect stability, including:

the method of function approximation, if any; exploration;

and even whether or not the RL algorithm converges to a

single outcome.

We illustrate our ideas on a pendulum swing-up task –

a standard nonlinear control problem. We demonstrate

the Lyapunov analysis required for producing control con-

straints. Simulation experiments reveal some of the empir-

ical advantages of our techniques, such as improved initial

performance for on-line RL, and improved asymptotic per-

formance compared to Lyapunov-based control alone.

2. Definitions

We consider control problems in which a dynamical sys-

tem’s state is described by a vector . In each state

x, there is an admissible set of controls . The

system evolves in time according to a control differential

equation,

where is the control command.

Any trajectory, , , has an associated cost

where is an instantaneous-cost function, mapping states

and control signals to nonnegative real numbers.

In particular, our work applies to minimum cost-to-target

problems, in which there is a target region . If a tra-

jectory enters the target region, the cost of that trajectory

is computed only until the time of entry. Effectively, we

are not interested in what happens after the target has been

reached. We take the view that the controller has achieved

the goal of the control problem.

The objective in minimum cost-to-target problems is to

identify a way of controlling the system that takes the sys-

tem’s state from any starting point to the target

region while incurring minimum cost.

A control law is a mapping from system states to admissi-

ble controls, . To say that

the system is controlled according to a control law just

means the system evolves as: .

The above formulation describes continuous-time control

problems, but the controllers we develop have a discrete

time aspect. For each unit of time, also called a “time step”,

these controllers select a particular control law , and the

system is controlled according to that control law during

the time step. We will use the term “control action” to refer

to a control law that controls the system for one time step.

Thus, at the beginning of each time step, our controllers

choose among a set of candidate control actions. Note that

the controllers we design need not themselves be simple

control laws. They may change with time or be stochastic,

basing their control action choices on extraneous random

variables.

There are many different types of stability for dynamical

systems. For example, trajectories may be required to: ap-

proach some target point, stay close to a target point, or

actually enter a target region. When we say a (controlled)

dynamical system is stable we will generally mean that,

with probability one, the system state will enter a specified

target region at some finite, but not necessarily bounded,

time. One exception is section 3, which gives background

on Lyapunov-based control without reference to any partic-

ular definition of stability. All other exceptions are clearly

noted.

3. Lyapunov-Based Control

The original theorems of A. M. Lyapunov were aimed at

establishing the stability of dynamical systems (Vincent &

Grantham, 1997). Proof of stability is made by identify-

ing what has become known as a Lyapunov function for

the system. Lyapunov functions are often thought of as

generalized “energy” functions. They are real-valued func-

tions of the state of the system. Stability is established

by showing that this generalized energy is “dissipated,” i.e.

decreases continuously along trajectories, until the system

settles into an unchanging state of (locally) minimum en-

ergy.

In control engineering, Lyapunov’s theorems and others in

that style are used to design controllers that are provably

stable – i.e. controllers that are guaranteed to bring the sys-

tem state to target. One basic approach is to (1) invent a

control law, and (2) show that the resulting controlled sys-

tem is stable by providing a Lyapunov function (Vincent &

Grantham, 1997). If the Lyapunov function’s state of min-

imum energy is in the target region, then the controller is

guaranteed to bring the system to target. Such controllers

are said to “stabilize the system” and are called “stabiliz-

ing,” or just “stable.”

There is no general procedure for accomplishing either of

the above steps for arbitrary, nonlinear dynamical control

problems. Further, a Lyapunov analysis usually requires

considerable knowledge of the dynamical system – some-

times complete differential equations describing the sys-

tem. Thus, establishing stability by Lyapunov methods can

be difficult.

However, these problems are not insurmountable. There

are general procedures for analyzing linear systems and

certain classes of nonlinear systems (Vincent & Grantham,

1997). For many problems of practical interest, Lyapunov

functions are already known, and there are many control

engineers with expertise in constructing Lyapunov func-

tions. Lyapunov-based design requires domain knowledge

and is an open-ended task in general, but yields the great

benefit of guaranteeing that the system state be controlled

to target.

It is important to notice that, in this basic methodology, the

cost function plays no explicit role at all. Thus, although

the controlled system is stable, the controller may incur

high costs while bring the system to target. The methods

we propose in this paper begin with Lyapunov-based analy-

sis of the dynamical system, but do not end there. The con-

trol architectures we propose are provably stable because

of the way they translate a Lyapunov analysis into control

constraints. But, these architectures still have considerable

freedom to minimize for cost, which we do by using RL.

4. Reinforcement Learning

For purposes of this paper, all that the reader needs to know

about RL algorithms in general is that their goal is to com-

pute cost-minimizing control strategies for control prob-

lems. We will only describe Q-learning (Watkins, 1989)

– a popular RL algorithm and the one we use in our simu-

lation experiments.

Q-learning is a discrete-time control method, and is usually

formulated to decide among a discrete, finite set of con-

trol actions. Q-learning works by incrementally computing

, the optimal action-value function, for the control

problem. can be thought of as the cost of a tra-

jectory beginning at state with control according to for

the first time step and optimal control thereafter. satis-

fies the Bellman optimality equation (Bertsekas & Tsitsik-

lis, 1996), which can be written for deterministic systems

as:

where is the cost incurred during the first time step

and is the system state resulting from and the control

action . An optimal control action opt for any state is

easily recovered from :

opt

Q-learning is an “on-line” control method. It maintains es-

timates of , and updates them based on

observed outcomes of controlling the system. Suppose the

system is in state and the system is controlled for one

time step according to control action . Suppose cost ac-

cumulates during that time step, and the system is in state

afterward. Q-learning uses the Bellman optimality equa-

tion as an update rule for its estimate of :

where is a update rate.

When state spaces are very large or continuous, estimates

cannot be maintained for every state . A standard ap-

proach in this case is to use function approximation to rep-

resent (Bertsekas & Tsitsiklis, 1996; Sutton & Barto,

1998). The state and control action are represented by

input features. The right hand side of the above update is

used as a training target for the function approximator.

When combinedwith function approximation,many RL al-

gorithms, Q-learning in particular, have been shown to di-

verge in some cases (Baird, 1995; Bertsekas & Tsitsiklis,

1996). In the minimum cost-to-target problems we study,

there is no guarantee that these RL algorithms would ever

bring the system to target. The control architectures we

propose in this paper protect against such worst-case be-

havior, ensuring at least that the system reaches the target

eventually. The hope, however, is that the RL component

of our control architectures will succeed in minimizing the

costs incurred in taking the system to target.

5. Stable Reinforcement Learning (StaRL)

We now introduce novel control design methods that com-

bine the advantages of Lyapunov-based control and RL. In

particular, we propose control systems that (1) are prov-

ably tabilizing, and (2) minimize cost of control as much

as possible.

We will propose three different ways of constructing a sta-

ble RL controller, but first we state and prove a very gen-

eral stability theorem that will cover all three methods.

Roughly summarized, the theorem states that if a controller

has a fixed chance per time step of moving the system state

downhill on a Lyapunov function for the problem, then that

controller will take the system to target eventually.

Theorem 1 (StaRL Stability Theorem) Consider a dynam-

ical system , for and ,

with target region . Suppose:

1. There is a region of state space with the

property that any trajectory generated by admissible

controls and starting in can only stay in or enter

the target region.

2. is a scalar function on (L plays the role of a

Lyapunov function)

3.

4.

5. Within , the system is controlled so that for some

fixed , , with probability at least ,

for each and for

some fixed . (I.e. during each unit time step,

with probability , decreases by at least .)

Then any trajectory beginning in will, with probability

one, enter the target region at some finite time.

Proof:We show that the probability of never entering the

target region is zero.

During any period of time units, with probability

at least the system will enter the target

region regardless of its state at the beginning of the period.

This is because at the start of the period, and

during each time step there is chance that decreases by

at least . If decreases by for time steps in

a row, we have afterward. This impossible

for , so the trajectory must have entered the target

region.

For a trajectory to never enter the target region, the proba-

bility event described above must not happen for

any of the infinitely many blocks of time units

during the trajectory, which happens with probability zero.

QED.

This theorem proves the stability of controllers under rather

lenient conditions. All a controller needs is to have some

chance of decreasing the Lyapunov function by some

minimal amount per time step. The chance and the amount

of decrease can be quite small, and the rest of the time the

controller can act on the system in any way at all. Still, that

the system will eventually reach the target region is assured

with probability one.

We describe three different “StaRL” control architectures,

which achieve the conditions of Theorem 1 in different

ways. To help us concisely state our control architectures,

we first define the maximum possible change in during

unit time:

where is any controller, is a state of the system,

and is the set of all system states that may result

when controls the system for one time unit starting from

state .

Method StaRL1:

Choose and to satisfy the conditions 1, 2, 3, and

4 of Theorem 1.

Constrain the control choices of an RL controller so

that for all and some .

StaRL1 satisfies Theorem 1 with the particular choice of

for conditions 5. Because is decreased by a min-

imal amount on every time step, a StaRL1 controller is ac-

tually guaranteed to bring the system to target in bounded

time from any starting state. However, the

condition of a minimum decrease in at all times may re-

duce the ability of the controller to optimize cost. The next

StaRL architecture relaxes the requirement of descent at

every time step.

Method StaRL2:

Choose and to satisfy the conditions 1, 2, 3, and

4 of Theorem 1.

Let be any controller satisfying

for all and some .

Constrain the control choices of an RL controller

so that for all .

Choose .

Control the system as follows: at each time step, with

probability let control the system for the next time

step, and otherwise let control.

The RL controller can now be viewed as a subsystem of

an overall controller which switches between the RL and

another controller. Instead of requiring a fixed amount of

descent per time step on , we only require such descent

with some probability, but the RL subsystem is still con-

strained not to ascend on . Our last control architecture

affords its RL subsystem maximum freedom.

Method StaRL3:

Choose and to satisfy the conditions 1, 2, 3, and

4 of Theorem 1.

Let be any controller satisfying

for all and some .

Let be an RL controller, unconstrained except by

the admissibility conditions of the control problem.

Choose .

Control the system as follows: at each time step, with

probability let control the system for the next time

step, and otherwise let control.

The StaRL2 and StaRL3 architectures differ on whether the

RL subsystem must be non-ascending on . This makes

no difference in the stability theorem we have presented,

though it can make a difference in other contexts. For

instance, in some problems one wishes the system to ap-

proach a target point as time goes to infinity or to stay in

the vicinity of a target (system regulation). If a controller

never ascends on , then whenever the system state enters

some level set of we know the trajectory will never leave

that level set again. Because StaRL3 can go up or down on

, we cannot ensure the system state will stay in any par-

ticular region of state space. Thus, StaRL3 does not imme-

diately generalize to approach-the-target or regulation type

problems, as StaRL1 and StaRL2 do.

The StaRL architectures can be expected to differ in their

practical performance. Because StaRL2 never increases ,

it needs to use the controller a total of

times to ensure getting to target. A StaRL3 controller must

use for time steps in a row to ensure

entering the target region. A StaRL1 controller decreases

on every time step, so is certain to reach target within

time from any starting point. If we assume

worst-case behavior of the RL subsystem, we would thus

expect a StaRL1 controller to bring the system to target

!

Gravity

Torque
Applied

!!"

for
Region

!

Target

Figure 1. The pendulum swing-up problem.

most quickly, followed by a StaRL2 controller, and slowest

of all, a StaRL3 controller.

StaRL2 and StaRL3 controllers also have the free param-

eter , which can be used to modulate empirical behavior.

For high , a StaRL3 controller behaves almost as if it is

an ordinary, unconstrained RL controller. For low , ei-

ther of StaRL2 and StaRL3 control according to most

of the time – and has a worst-case time-to-target bound

of .

The three StaRL architectures provide successively more

freedom to the RL controller, creating greater opportunity

for the RL to optimize the quality of control. All, however,

guarantee that the system will be taken to target eventually.

6. Pendulum Swing-Up Example

We illustrate the proposed StaRL methods on a single-link

pendulum swing-up task. The problem is to maneuver a

pendulum so that it is within a specified angle of upright as

quickly as possible (see figure 1). The system is controlled

by applying torques at the fulcrum of the pendulum. The

pendulum is weightless, of unit length, and has a unit mass

at its end. We assume the downward acceleration of gravity

to be of unit strength. The control differential equations

that govern the system are:

where is the angular position of the pendulum, the an-

gular velocity, and the instantaneous control torque. The

target region is defined as target. The control torque

is of bounded magnitude, , so that

the pendulum cannot be driven straight up to the target. In-

stead, the pendulum must be swung back and forth a num-

ber of times until enough kinematic energy builds up to

allow it to swing up into the target region. Because we

are treating this as a minimum-time problem, we define the

cost function as .

6.1 Lyapunov Analysis of the Pendulum

We begin by describing our choices of and for the

pendulum. We define implicitly as the set of all states

reachable by admissible control from the state in which the

pendulum is at rest, , without entering the

target region.

For , we use the negative of the mechanical energy of the

pendulum (potential energy plus kinetic energy). Mechan-

ical energy is zero when the pendulum sits at rest. Suffi-

ciently increasing mechanical energy ensures entering the

target region. We define:

To save space, we do not prove that is bounded above

and below on , conditions 3 and 4 of Theorem 1. These

facts are easily established.

6.2 Stable control of the Pendulum

For a controller to be stable, we at least want it to be non-

ascending on . For fixed and , the time derivative

of is:

So, to achieve , should be of the same sign as .

In other words, torque is applied in the same direction that

the pendulum is moving. This does not ensure stability by

itself; other conditions on control torque are required for

proving stability.

Note that the obvious control law of choosing

or to match the sign of , thus maximizing the

instantaneous decrease of at all times, is not guaranteed

to reach target, and certainly does not produce minimum-

time control.

Theorem 2 If is any admissible controller that satisfies:

1. decreases along all possible trajectories. (I.e.

for any .)

2. Pendulum acceleration is bounded away from zero.

(.)

3. During any unit time step there is a period of duration

at least , , during which control torque

is continuous in time and bounded away from zero.

then for some .

The proof of this theorem is presented in the appendix.

Theorem 2 directly provides the conditions which we use

to constrain the action choices for the RL subsystem in our

StaRL1 controller, which we discuss below. The theorem

also allows us to develop a specific control law to play the

role of “ ” in our StaRL2 and StaRL3 controllers. We

call this control law MEA, for Modified Energy Ascent. It

minimizes at each time instant, unless doing so would

cause to be too close to zero, in which case it chooses a

different torque that makes bigger but still decreases .

Define:

if or and

otherwise

MEA

if

otherwise

Theorem 3 MEA satisfies the conditions of Theorem 2.

For space reasons, we omit proof of this theorem.

6.3 StaRL experiments on the pendulum

We tested the proposed StaRL architectures on the pendu-

lum swing-up task in simulation. For the RL (sub)system

of each, we used the Q-learning algorithm. The StaRL2 and

StaRL3 architectures were tested for several choices of ,

the probability of control by the RL controller : 0.2, 0.4,

0.6, 0.8, and 0.99. We also tried , which corre-

sponds to Q-learning with no ” ” controller.

The Q-learning in the StaRL1 controller was al-

lowed to choose from two control actions:

and . However, we ruled

out a control action if it would cause

. Further, if the condition began to be vi-

olated while executing a control action, the other control

action, which did not violate the condition, was used for

the rest of the time step. These actions and the additional

constraints satisfy Theorem 2, and thus meet the conditions

of the StaRL1 architecture.

For StaRL2, the Q-learning controller had three control

action choices: and

. This ensures non-ascent on . The con-

troller was MEA.

The StaRL3 Q-learner had five action choices:

and

. Again, MEA was used as the controller.

For all of the architectures, the Q-values of each action

were approximated by separate CMACs (Albus, 1981) as a

function of the state variables and . Each CMAC divided

the state variables into 100 bins (10x10) per tiling, and had

50 tilings. The learning rate for the CMAC was 0.1.

Exploration was -greedy, with . That is, when-

ever the Q-learner is given control of the system, with prob-

ability it chooses a random allowable control action, and

otherwise it chooses the control action currently estimated

to be best.

For StaRL2 and StaRL3, the Q-learning backups were

computed from one RL subsystem decision point to the

next. If MEA controlled the system for some time between

RL control, this was interpreted from the Q-learner’s point

of view as uncontrolled transitions of the pendulum. So,

whenever the Q-learning controller had control of the sys-

tem in state , chose a control , and, possibly after

some intervening control by MEA, was again given control

in state having accumulated cost along the way,

the value:

was incorporated into the estimated Q-value .

For this minimum-time problem, C is just the time elapsed

between being in state and state . In this way,

Q-learning attempts to learn the optimal policy given the

fact that the other controller, MEA, is sometimes in control

of the system.

For each architecture and each choice of , 20 independent

learning runs were performed. Each consisted of 100,000

learning trials. In each learning trial, the pendulum began

at rest, . Trials ended when the pendulum

entered the target region. Every training trial, we

turned off the learning and exploration of the Q-learning

and performed 20 test trials to evaluate the current learned

behavior of the StaRL controller.

6.4 Results

We begin by comparing four algorithms, the MEA con-

troller alone, StaRL1, StaRL2 with , and

StaRL3 with . Figure 2 summarizes the mean

times to goal of each at the beginning and end of learn-

ing, averaged across the independent runs. The upper left

panel plots the time to goal during the first block of 100

learning trials, and the upper right panel corresponds to the

first block of 20 test trials (which immediately followed the

1 2 3 4
0

50

100

150

Early learning

T
im

e
 t
o
 t
a
rg

e
t

MEA, StaRL1, StaRL2, StaRL3

1 2 3 4
0

50

100

150

Early testing

T
im

e
 t
o
 t
a
rg

e
t

MEA, StaRL1, StaRL2, StaRL3

1 2 3 4
26

27

28

29

30

Late learning

T
im

e
 t
o
 t
a
rg

e
t

MEA, StaRL1, StaRL2, StaRL3

1 2 3 4
26

27

28

29

30

Late testing

T
im

e
 t
o
 t
a
rg

e
t

MEA, StaRL1, StaRL2, StaRL3

Figure 2. Performance summary of MEA, StaRL1,

StaRL2 (p=0.99), and StaRL3 (p=0.99)

100 learning trials). The lower plots correspond to the last

block of 100 learning trials (trials 99,901-100,000) and the

final 20 test trials.

Early in learning, StaRL1 and StaRL2 perform nearly iden-

tically. This is not surprising. Given our parameter choices,

both controllers are nearly just Q-learners constrained to

descend on our Lyapunov function. StaRL3 has much

worse initial performance, corresponding to its greater free-

dom in control choices. Late in learning, the story is simi-

lar, although all the learning controllers are now better than

the Lyapunov-based controller MEA alone. The asymp-

totic performance during test trials tells a different story.

Here, we see the expected ordering of algorithms, with the

least constrained controller, StaRL3, producing best perfor-

mance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

30

40

50

60

70

80

90

100

110

120

Selection probability, p, of RL subsystem

M
e
a
n
 t
im

e
 t
o
 g

o
a
l

StaRL2 during learning

StaRL2 during testing

StaRL3 during learning

StaRL3 during testing

Figure 3. Early performance of StaRL2 and StaRL3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
27

27.2

27.4

27.6

27.8

28

28.2

28.4

28.6

28.8

29

M
e
a
n
 t
im

e
 t
o
 t
a
rg

e
t

Selection probability, p, of RL subsystem

StaRL2 during learning

StaRL2 during testing

StaRL3 during learning

StaRL3 during testing

Figure 4. Late performance of StaRL2 and StaRL3

The next two figures, 3 and 4, summarize the effect of

the selection probability in the StaRL2 and StaRL3 con-

trollers. We have included data points for , just

MEA, and . StaRL3 with amounts to

ordinary, unconstrained Q-learning.

Early in learning, the effect of is clear and as expected.

Increasing dependence on the little-experienced RL sub-

system decreases performance. StaRL3 performs much

worse than StaRL2 because its RL subsystem is uncon-

strained.

Late in learning (figure 4), StaRL2 has monotonically im-

proving performance in . StaRL3’s time to goal during

learning trials is strangely unaffected by , hovering around

the performance of MEA. However, StaRL3’s test perfor-

mance improves with increasing as expected, reaching

the best performance of any of our learned controllers, and

improving on MEA’s time to goal by about 6%.

7. Conclusions

We have proposed new methods for designing RL con-

trol systems with provable performance guarantees. The

StaRL control architectures ensure that the controlled sys-

tem will be brought to a target state by building Lyapunov-

based constraints into the controller. At the same time, RL

is used to optimize the quality of control according to a cost

function. The StaRL stability guarantees hold indepen-

dently of many characteristics of the RL, such as method of

function approximation, and apply during learning as well

as after learning.

We demonstrated the StaRL approach on a simple pendu-

lum swing-up problem. Simulation experiments revealed

some of the empirical benefits, such as dramatically im-

proved initial performance compared to standard RL meth-

ods. The experiments also showed that the constraints

built into the StaRL controllers, while providing stability

guarantees and good initial performance, sometimes limit

asymptotic performance.

We believe these methods improve the suitability of RL for

on-line learning and control in real-world systems – sys-

tems where costs can be high, and prolonged learning or

outright failure must be avoided.

It is interesting to note that there is nothing about the

StaRL-type architectures that actually requires the use of

RL. Any heuristic controller that seems to work well for a

problem could be interleaved with a provably stable con-

troller to achieve good practical performance with stability

guarantees. This heuristic need not be a learning controller

at all. The ideas of constraining control choices and inter-

leaving control seem to have wide application in making

stable control systems from components that are not neces-

sarily stable by themselves.

8. Future Work

All of the StaRL control architectures proposed here poten-

tially suffer from reduced asymptotic performance in ex-

change for stability guarantees. We are now investigating

architectures that would not be limited in this way. One

simple idea is to use a StaRL3 architecture but let chance

that the RL subsystem is in control, , go to 1. On any

particular trial, ensures stability, but in the limit the

controller is unconstrained.

We are also developing StaRL architectures and stability

theorems for problems in which conditions as strong as

those in Theorem 1 cannot be met, and for other types of

control problems, such as regulation problems, where the

system state is to be kept near to a desired point.

Acknowledgments

This work was supported by the National Science Founda-

tion, grant ECS-9980062; the Air Force Office of Scientific

Research, grant F49620-96-1-0254; and a fellowship from

the McDonnell-Pew Program in Cognitive Neuroscience,

grant JSMF 96-25. We also thank Michael Rosenstein,

Daniel Bernstein, and Doina Precup for very helpful com-

ments on the manuscript.

References

Albus, J. S. (1981). Brain, behaviour and robotics, chap. 6.

Byte Books.

Baird, L. C. (1995). Residual algorithms: Reinforcement

learning with function approximation. In Proc. of the

Twelfth Int. Conf. on Machine Learning, pp. 30–37.

Morgan Kaufmann.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic

Programming. Athena Scientific, Belmont, MA.

Sutton, R. S., & Barto, A. G. (1998). Introduction to Rein-

forcement Learning. MIT Press/Bradford Books.

Vincent, T. L., & Grantham, W. J. (1997). Nonlinear and

Optimal Control Systems. John Wiler & Sons, Inc.,

New York.

Watkins, C. J. C. H. (1989). Learning from Delayed Re-

wards. Ph.D. thesis, Cambridge University, Cam-

bridge, England.

Appendix

Proof of Theorem 2: We want to show that

for some fixed and all .

For any , let be any arbitrary

possible trajectory generated by applying controls .

Condition 3 assures us that there is a period of duration at

least during which is continuous and bounded away

from zero. Let us assume wlog that this period begins at

t=0. Since is always decreasing (condition 1), we can

throw away the part of the integral after .

The last step comes from being bounded away from

zero and decreasing, hence matches in sign.

If stays above some small , then we can bound

the integral by substituting for , yielding the bound

. Otherwise, goes below , but

we show that it can only remain small for a short time.

How does change over time? is

bounded away from zero, and since and are changing

continuously in time, must maintain the same sign for the

whole period . Thus is either monotonically

increasing or decreasing. During a period when ,

can change by at most – from to or vice versa.

Since this change happens at rate , can remain

less than for no longer than . For sufficiently small

, we have , so we get the bound

by breaking the integral into cases where is less than or

greater than . QED.

