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Abstract

Most existing machine vision systems perform recognition based on a fixed set
of hand-crafted features, geometric models, or eigen-subspace decomposition.
Drawing from psychology, neuroscience and intuition, we show that certain
aspects of human performance in visual discrimination cannot be explained by
any of these techniques. We argue that many practical recognition tasks for
artificial vision systems operating under uncontrolled conditions critically de-
pend on incremental learning. Loosely motivated by visuocortical processing,
we present feature representations and learning methods that perform bio-
logically plausible functions. The paper concludes with experimental results
generated by our method.

1 Introduction

How flexible are the representations for visual recognition, encoded by the neurons of
the human visual cortex? Are they predetermined by a fixed developmental schedule,
or does their development depend on their stimulation? Does their development cease
at some point during our maturation, or do they continue to evolve throughout our
lifetime?

For some of these questions, the answers have been well established. Simple
cells [10] have receptive fields that resemble two-dimensional Gaussians or oriented
one-dimensional derivatives of Gaussians [13, 38, 15], or Gabor filters [25, 20]. The
development of these receptive fields is influenced by stimulation of the visual system.
Computational models exist that explain how they may develop in response to images
of natural scenes exposed to uncommitted neurons in a properly biased adaptive
visual system [21, 27]. Some visual functions do not develop at all without adequate
perceptual stimulation during a maturational sensitive period, e.g. stereo vision [2, 9].
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Higher-order visual functions such as pattern discrimination capabilities are also
subject to a developmental schedule. It is still debated to what extent feature learn-
ing for pattern discrimination continues throughout adulthood. Recent psychological
studies indicate that humans are able to form new features if required by a discrim-
ination task [31].

In contrast to the human visual system, most work on machine vision has not
used learning at the level of feature detectors. In this paper, we discuss visual ob-
ject recognition by humans and machines, and we argue that low-level learning is
an essential ingredient of a robust and general visual system. The following section
summarizes evidence that children and adults flexibly learn new features for recog-
nition in a task-driven fashion. Section 3 argues that machine vision systems ought
to do likewise. The remainder of the paper discusses our experimental system for
learning discriminative features for recognition.

2 Humans learn new features

How do humans learn recognition skills? Two principal hypotheses can be identified
[24]: According to the Schema Hypothesis, sensory input is matched to internal
representations of objects that are built and refined through experience. On the
other hand, the Differentiation Hypothesis postulates that contrastive relations are
learned that serve to distinguish among the items. Psychological evidence argues for
a strong role of Differentiation learning [24, 33, 39]. What exactly the discriminative
features are and how they are discovered is unclear. It appears that feature discovery
is a hard problem even for humans and takes a long time to learn [7]:

e Neonates can distinguish certain patterns, apparently based on statistical fea-
tures like spatial intensity variance or contour density.

e Infants begin to note simple coarse-level geometric relationships, but perform
poorly in the presence of distracting cues. They do not consistently pay atten-
tion to contours and shapes.

e At the age of about two years, children begin to discover fine-grained details
and higher-order geometric relationships. However, attention is still limited to
“salient” features [35].

e Over much of childhood, humans learn to discover distinctive features even if
they are overshadowed by more salient distractors.

There is growing evidence that even adults learn new features when faced with
a novel recognition task. In a typical experiment, subjects are presented with
computer-generated renderings of unfamiliar objects that fall into categories based
on specifically designed but unobvious features. After learning the categorization,
the subjects are asked to categorize other objects that exhibit controlled variations



of the diagnostic features, which reveals the features learned by the subjects. Schyns
and Rodet [32] employed three categories of “Martian cells.” The first category was
characterized by a feature X, the second by a feature Y, and the third by a feature
XY which was a composite of X and Y. Subjects were divided into two groups that
differed in the order they had to learn the categories. Subjects in one group first
learned to discriminate categories X and Y and then learned category XY, whereas
the other group learned XY and X first, then Y. Subjects of the first group learned
to categorize all objects based on two features (X and Y'), whereas the subjects of
the second group learned three features, not realizing that XY was a compound con-
sisting of the other two. Evidently, feature generation was driven by the recognition
task. For a summary of evidence for feature learning in adults, see a recent article
(31].

Feature learning does not necessarily stop after learning a concept. Tanaka and
Taylor [34] found that bird experts were as fast to recognize objects at the subordinate
level (“robin”) as they were at the basic level (“bird”). In contrast, non-experts
are consistently faster on basic-level discriminations as compared to subordinate-
level discriminations. Gauthier and Tarr [6] trained novices to become experts on
unfamiliar objects and obtained similar results. These findings indicate that the way
experts perform recognition is qualitatively different than novices. We suggest that
experts have developed specialized features, facilitating rapid and reliable recognition
in their domain of expertise.

3 Machine vision systems should learn new fea-
tures

General theories of vision such as those by Marr [16] and Biederman [3] have sparked
extensive research efforts in both human and machine vision, and have contributed
substantially to our understanding of how visual processes may operate. However,
they have not led to artificial vision systems of noteworthy generality. Why is this
so? Besides the obvious answer that vision is a very hard problem, we believe that
there are at least two reasons:

e These theories address partial aspects of vision in isolation. Psychological
experiments indicate that the human visual system has more than one way to
solve a given task. For example, recognition can be based on global appearance
(face recognition), local appearance (face detection), and/or geometric model
matching, depending on the task. If complementary visual algorithms exist,
how do they cooperate? Part of the answer is probably a corollary of our second
point:

e Most theories of vision do not address adaptation and learning. However, the
real world is very complex, noisy, nonstationary — too variable for any fixed



visual system, too unpredictable for its designer. Today’s functional vision
systems are highly specialized and operate under well-controlled conditions.
They break if the built-in assumptions about task and environment do not
hold.

Consider visual recognition. It is easy to see that there is no particular representation
that can express all perceivable distinctions between objects or object categories
that may later be required of a recognition system. Most existing machine vision
systems perform recognition either based on a fixed set of hand-crafted features,
eigen-subspace decomposition, or geometric model matching. In the first case, the
features are chosen in a best effort in order to express the distinctions required,
but not too much more to avoid overfitting. The same is true of geometric models.
How much detail should be encoded in the models? On the one hand, the level of
detail should be kept low to increase generalization and efficiency; on the other hand,
models should contain sufficient detail to express the distinctions required by a given
task.

Thus, both these methods are restricted to tasks that are well-defined at design
time. We call such tasks closed. In contrast, almost all human visual learning takes
place in open settings, where tasks are open-ended and evolve over time. While
eigen-subspace representations (or related subspace methods that optimally separate
instances by class label) are to some extent consistent with certain aspects of human
recognition (e.g. face recognition), it appears unlikely that such methods can account
for all of biological discrimination learning since they can tolerate only a limited
amount of occlusion and object variability.

Humans are capable of learning an impressive variety of distinctions ranging from
miniscule local features such as a tiny scratch to abstract global features such as
symmetry. In light of the evidence cited in the preceding section, it seems clear that
humans are capable of forming new representations of global and local appearance
characteristics in a task-driven way.

Thus, a key concept for building artificial vision systems of substantially increased

generality and robustness is task-driven learning or adaptation. An adaptive system
should be able to

e optimize its performance on-line with respect to the actual working conditions
by adapting its parameters,
e track a nonstationary environment by adapting its parameters,

e expand its functionality incrementally by building new representations,

e optimize its performance on-line with respect to individual tasks by adapting
its representations and parameters.

In the following sections, we describe our current work on a model of feature
learning for recognition that address all of these issues, building on our previous
work [23].



4 An infinite feature space

We argued above that any fixed hand-crafted object representation is insufficient
for learning arbitrary distinctions. Instead, a very large feature space is required,
along with a method of generating distinctive features from this space. To make
the problem of finding useful features in an enormous feature space more tractable,
we impose a partial order on this space that categorizes the features into various
levels of structural complexity [1]. The underlying assumption is that structurally
simple features are easier to discover and have less discriminative potential than
complicated features, but are still useful for some aspects of the learning problem.
Features are randomly sampled from the feature space, beginning at the lowest level
of complexity. More sophisticated features are considered as required [1].

An obvious way to generate an infinite and partially ordered feature space is
through combinatorics: Primitive features can be composed in various ways to yield
higher-order features, which in turn can be composed. In principle, any type of local
image property can serve as a primitive feature. In the context of an interactive vision
system, this general framework may encompass three-dimensional or temporal cues
in addition to conventional image properties.

4.1 Primitive features

In our current system, primitive features are local appearance descriptors represented
as vectors of local filter responses. The filters are oriented derivatives of 2-D Gaussian
functions, with orientations chosen such that they form a steerable basis [5]. Here, the
steerability property permits the efficient computation of filter responses of Gaussian-
derivative kernels at any orientation, given d + 1 measured filter responses for the
dth derivative at specific orientations.

Specifically, our system currently uses two specific variants of such descriptors:

e An edgel is encoded as a 2-vector containing the filter responses to the two
first-derivative basis filters. These values encode the local intensity gradient in
horizontal (G,) and vertical (G,) directions. Using the steerability property,
the orientation of gradients in any direction can be computed. In particular,
the orientation # of the strongest local gradient is given by tan 6 = G,/G,, and

the corresponding gradient magnitude is Go = /G5 + G7.

e A tezel is represented as an 18-vector consisting of the responses to the basis
filters of the first three derivatives at two scales. This represents a local texture
signature. Like edgels, texels have an associated orientation which is defined
by the first derivatives. When the orientation of a texel is steered, the entire
vector containing all derivatives is rotated rigidly with reference to the first
derivative computed at the largest scale [26].



As argued in the introduction, our choice of low-level representations is plausible
of biological early vision. While it is unlikely that any biological visual systems makes
use of steerability, this is to be considered an attractive computational alternative in
the absence of massively parallel hardware. Steerability leads to rotational invariance
which simplifies artificial vision systems at essentially no extra cost. We are not
aware of any conclusive evidence for or against the biological faithfulness of our texel
representation.

4.2 Higher-order features

Primitive features by themselves are not very discriminative. However, spatial com-
binations of these can express a wide range of shape and texture characteristics at
various degrees of specificity or generality. We suggest the following four comple-
mentary types of feature composition:
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Figure 1: A geometric feature of order 3, composed of three primitives. The feature
is defined by the angles ¢ and the distances d, and the orientation of this specific
instance is denoted by #. Each primitive is either an edgel or a texel.

Geometric relations are given by the relative angles and distances between the
participating lower-order features (Figure 1). As long as these are rotation-
invariant, so is their geometric composition. Only primitive features and geo-
metric features can be composed into geometric features. Geometric features
are useful for representing e.g. corners, angles, and collinearity.

e Topological relations here refer to relaxed geometric relationships between com-
ponent features which allow some degree of variability in angles and distances.
Topological compound features are more robust to viewpoint changes than are
geometric features, at the expense of specificity. Only primitive, geometric,
and topological features can be composed into topological features.

e Conjunctive features assert the presence of all component features without
making any statement about their geometric or topological relationship.

e Disjunctive features are considered to be present in a scene if at least one
component feature is detected. This can express statements such as “If I see a
dial or a number pad, I'm probably looking at a telephone.”



Features are computed at various scales, generated by successively subsampling
images by factor two. This achieves a certain degree of scale invariance. Moreover,
many compositions of edgels are inherently tolerant to changes in scale. For ex-
ample, the arrangement shown in Figure 1 applies equally to triangles of any size.
Another desirable property of these features is that they do not rely on explicit con-
tour extraction or segmentation. This avoids these two difficult open problems in
computer vision and should provide robustness to various kinds of image degradation.
In contrast, the human visual system detects meaningful contours with remarkable
robustness and reliability. This capability can probably not be explained entirely
as a low-level visual process, but is supported by pre-segmentation recognition and
task-dependent top-down processes.

Our features constitute an interesting bridge between the two extremes of purely
statistical, shape-less features [28, 18] on one hand, and accurate 2-D or 3-D geomet-
ric models as used in the alignment methods [37] on the other hand. Our primitive
features have about the same expressive power as Mel’s corners and Gabor patches
[18] and are similar to Cho and Dunn’s “local properties” [4]. Schmid’s recent work
[29] contains motivations and techniques similar to ours. In contrast to other work,
our features can be composed into increasingly complex and specific descriptors of
2-D shape, which is consistent with current models of the inferotemporal cortex.

4.3 Asserting the presence of a feature

The presence of a given feature x* at a point ¢ in the image is denoted by its strength
s € [0,1]. For primitive features, this is computed as s = max{0, r(x*,x(7))}, where r
is the normalized cross correlation function. The value x* is a model feature vector,
and the function x(7) returns the corresponding feature vector at location i. For
geometric features, the feature vector of the compound feature is the concatenation
of the individual feature vectors of the constituent features. In the case of topological
and conjunctive features, the strength of the compound feature is the product of the
strengths of its constituents; for disjunctive features, the maximum is used.

Recognition is based on the maximum strengths of features found in the scene (or
within a region if interest). Finding the maximum strength of a feature in principle
involves measuring its strength at each point in the image. This is an expensive
operation on a serial computer, but is very rapidly done with local computations on
massively parallel processing elements such as our primary visual cortex.

For efficiency, we restrict our search for the strongest feature to salient “interest”
points that are likely to return a high response. Saliency is measured by Harris
and Stevens’ combined corner and edge detector [8]. Edgels are only considered at
edge points detected by this method. An advantage of this detector over other edge
detection algorithms is that it is based on the local autocorrelation function, and
thus suppresses high-contrast, high-density repetitive line patterns. Texels are only
considered at corner points returned by the Harris/Stephens detector. Such points
are more reliably repeatable across similar images than interest points detected by

7



other methods [30].

5 Bayesian networks for recognition

Recognition is performed on the basis of the feature strengths as introduced in the
preceding section. Mapping feature vectors to class (or object) labels is the problem
of classification, for which many algorithms exist. We chose Bayesian networks for
their attractive properties that are desirable for open-domain recognition problems.
This section introduces a general Bayes net classifier model and shows how it is
applied in our system.

In a Bayesian network, each node represents a random variable. The network
structure specifies a set of conditional independence statements: The variable repre-
sented by a node is conditionally independent of its non-descendants in the graph,
given the values of the variables represented by its parent nodes. In our scenario,
each class is modeled as its own Bayes net. The presence of an object is modeled as
a discrete random variable with two states, true and false. The presence of an object
gives rise to observable features, which are represented by random variables whose
distributions are conditioned on the presence of an object of this class. Assuming
that the features are conditionally independent given the class, the resulting Bayes
net has the topology of a star, with arcs connecting the class node to each of the
feature nodes. Given observed feature values, the class priors and conditional feature
probabilities, the posterior class probabilities can be inferred by simple application
of Bayes’ Theorem to each component network.

If some features are not independent, corresponding arcs must be inserted be-
tween the appropriate feature nodes. For example, in Figure 2, Feature 3 may be
a geometric composition with Feature 2, which is also in the feature set. Then, the
presence of Feature 3 in an image implies the presence of Feature 2. Thus, in the
Bayes net there is an arc from node 3 to node 2. An analogous argument holds for
topological and conjunctive features, such as Feature 5 in Figure 2, which combines
Features 3 and 4. In the case of disjunctive features, the direction of the argument
(and that of the additional arrows) is reversed.

To propagate evidence, more sophisticated mechanisms are needed than in the
simple case of conditional independence. For the purposes of this paper, suffice it to
say that after instantiation of some of the variables (nodes) with actually observed
values, the net can be brought to equilitbrium in which the probabilities and obser-
vations in the net are consistent. For more detail, the interested reader is referred to
the literature on Bayesian networks [22, 11].

5.1 Discretizing features

Recall from Section 4.3 that the feature variables are continuous. However, most
theory on belief propagation in Bayesian networks applies to discrete random vari-
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Figure 2: A Bayesian network for one class. Note some interdependent features. A
network such as this is created for each class.

ables only. One notable exception is the theory on conditional Gaussian distributions
[14]. Unfortunately, current methods place restrictions on the joint probability model
that limits their general applicability. Therefore, continuous distributions are usu-
ally discretized or binned. In our case, we split each feature variable into two bins,
corresponding to “present” and “not present”, using a threshold. This threshold is
determined individually for each feature variable such that its discriminative power
is maximized. The discriminative power of a feature variable given a threshold is
measured in terms of the Kolmogorov-Smirnoff distance (KSD). The KSD between
two conditional distributions of a random variable is the difference between the cu-
mulative probabilities at a given value of this variable under the two conditions. This
separates the instances of the two conditions optimally, in the Bayesian sense, using
a single cutpoint.

5.2 Recognition

Recognition of an image can be performed in the conventional way by first measuring
the strength of each feature in the image, setting the feature nodes of the Bayes nets
to the corresponding values, and computing the posterior probability of each of the
class nodes. In this case, the absence of a feature is meaningful to the system.
Alternatively, robustness to occlusion can be built into the system by setting only
feature nodes corresponding to found features, and leaving the others unspecified.
In this case, the posterior probability of these features being present (but occluded)
can be easily computed.

The class with the highest posterior probability gives the result of recognition. If
more than one class may be present in an image, one can take as the recognition result
all classes with a posterior probability greater than a given confidence threshold, e.g.
0.5.

Instead of computing all feature values at the outset, we compute them one by
one and update the Bayesian network after incorporating each feature. One can quit
as soon as confidence in the recognition result exceeds some threshold. Features are
processed in decreasing order of informativeness. The informativeness of a feature
is defined by the mutual information between a feature and the class node, i.e. its
potential to reduce the entropy in the class random variable. In practice, only a



fraction of all features are computed, even if no confidence value on the recognition
result is used, because the entropy in the class nodes diminish before all features
have been queried. This phenomenon suggests a straightforward, but very effective
forgetting procedure: We delete any features that cease to be used during recognition.

6 Adaptive feature generation

As an agent (e.g. an animal, a human or a robot) interacts with the world, it uses
vision (and maybe other sensory modalities) to acquire state information about the
world, and performs actions appropriate in this state. This requires that the agent’s
visual features discriminate relevant aspects of the state of the world. We posit that
such features are generated in response to feedback received during interaction with
the world. For example, McCallum’s U-Tree algorithm [17] resolves hidden state in
a Partially Observable Hidden Markov Process by selecting features from a finite
set, enabling an agent to improve its performance on-line during interaction with the
world. This algorithm could be adapted to generate features from an infinite feature
space like that described above.

For simplicity, we restrict the following discussion to a conventional supervised-
learning scenario: The actions of the agent consist of naming class labels, the sensory
input is an image, and the feedback received from the world consists of the correct
class label. We further assume that the agent can retrieve random example views of
known classes. This assumption is realistic in many cases. For example, an infant
can pick up a known object and view it from various viewpoints; or a child receives
various examples of letters of the alphabet from a teacher.

6.1 Learning the training set

Initially, the agent does not know about any objects or features. When it is presented
with the first object, it simply remembers the correct answer given by the teacher.
When it is shown the second object, it will guess the only category it knows about.

When the agent gives a wrong answer, it needs to learn a new feature to discrim-
inate this object category from the mistaken category (or categories). This is done
by random sampling, with a bias for structurally simple features. We employ the
following heuristic procedure, where each step is iterated up to a constant number
of times:

1. Pick a random feature from some other Bayes net (corresponding to another
class) that is not yet part of this Bayes net (corresponding to the true class).
This promotes the usage of general features that are characteristic of more than
one class.

2. Sample a new feature directly from the misrecognized image by either picking
two points and turning them into a geometric compound of two edgels, or by
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picking one point and measuring a texel feature vector.

3. Pick a random feature that is already part of this Bayes net and expand it
geometrically by picking an additional image point close by.

4. Pick two random features from this Bayes net and combine them into a con-
junctive feature.

5. Pick two random features from this Bayes net and combine them into a dis-
junctive feature.

After each new feature is generated, it is evaluated on a small set of example images
(retrieved from the environment as described above) that contains examples of the
true class and the mistaken class(es). If it has any discriminative power, it is then
added to the Bayes net of the true class using the conditional probabilities estimated
on the example images. If the image is now recognized correctly by the expanded
Bayes net, the feature learning procedure stops; if not, the feature is removed from
the net, and the learning procedure continues. Note that it is possible for this
procedure to terminate without success.

During operation of the learning system, an instance list of all classes encountered
and features queried is maintained. Periodically, all feature cutpoints, class priors
and conditional probabilities in the Bayes nets are updated according to this list.

6.2 Finding better features

Feature learning does not have to stop after learning a training set perfectly. The
system can continue to search for better features. The quality of a feature is its
discriminative power at a given stage during a recognition procedure, again given by
the KSD. We can train our system to develop better features by imposing a mini-
mum KSD on all features that are used during a recognition procedure. If a feature
does not meet this requirement, the system has to learn a new and better feature.
The minimum KSD can iteratively be raised, until the system fails to find adequate
features. As a consequence, fewer (but superior) features will be queried while rec-
ognizing a given image, and many of the inferior features will become obsolete. We
suggest this procedure, called feature upgrade, as a crude model of expert learning,
as outlined in Section 2.

7 Experiments

To illustrate that our algorithm is able to produce discriminative features, we per-
formed pilot experiments on two example tasks (Figure 3). In the COIL task, the
images of the first four objects from the COIL-20 database [19] were split into two
disjoint sets such that no two neighboring viewpoints were represented in the same
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set. As a result, each image set contained 36 images, spaced 10 degrees apart on
the viewing sphere, at constant elevation. We performed a 2-fold crossvalidation on
these two sets: In one run, one set served as a training set and the other as the test
set; in a second run, the roles were reversed. In the PLYM task, there were eight
geometric objects on 15 artificially rendered images each, covering a small section of
the viewing sphere!. We performed a 10-fold stratified cross-validation on this data
set, with random subdivision of the 15 images of each class into 10 subsets of 1 or 2
images each.

Figure 3: Objects of the COIL task (top) and the PLYM task (bottom).

Task expert avg. # features Training Set: Test Set:
level queried correct wrong other | correct wrong other
COIL 0 44 0.98 0.02 0.81 0.19
1 36 0.85 0.11 0.04 0.73 0.23 0.05
2 23 0.97 0.03 0.83 0.16 0.01
3 11 0.83 0.14 0.03 0.67 0.27  0.06
PLYM 0 19 1.00 0.72 0.28
1 21 1.00 0.76 0.21 0.03
5 13 0.95 0.03 0.02 0.71 0.09 0.20

Table 1: Summary of experimental results. The “expert level” column gives the
number of feature upgrade iterations. The “other” columns contain cases where the
system returned an ambiguous answer, or no answer at all.

The results of the experiments are summarized in Table 1. While the recognition
results fall short of current machine recognition technology, they were achieved by an
uncommitted visual system with a strong bias toward few and simple features that
had access only to a small number of random training views at any given time during

Thttp://www.cis.plym.ac.uk/cis/levi/UoP_CIS_3D_Archive/8obj set.tar
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an incremental training procedure. Most of these properties are contrary to current
computer vision technology, but are characteristic of biological vision systems.

In accord with our biased search strategy, most learned features were isolated
texels and simple geometric compounds of edgels and/or texels. Smaller numbers of
the other compound types of features were also found. In most cases, the training
set was not learned perfectly. This is because our system currently gives up after
10 iterations through the training set. Clearly, more effective techniques for finding
distinctive features are called for.

As the minimum KSD required of a feature is increased during feature upgrade,
it is increasingly difficult for the system to find appropriate features in order to
learn the training set perfectly. However, feature upgrade has the desired effect of
decreasing the number of features queried during recognition, and where the training
set is learned well, it also tends to reduce the number of false recognitions while
marginally increasing the correct recognition rate on the test set.

8 Conclusions

There is overwhelming evidence that humans learn features for recognition in a task-
driven manner. Biological learning is on-line and incremental. We have presented
an artificial vision system that follows these characteristics, based on an infinite
combinatorial feature space and a generate-and-test search procedure for finding
discriminative features. Our method successfully learns to discriminate objects. We
also proposed that developing visual expertise involves the construction of better fea-
tures. Our system models this by increasing the minimum KSD required of features
during recognition.

While our system reflects certain aspects of human vision, it is not a complete
model. Our system focuses on appearance-based discriminative features. Biological
vision systems are probably composed of several complementary algorithms. For
example, there is evidence that humans can perform 2-D and 3-D geometric model-
based matching [36]. Also, it seems unlikely that all recognition is based on top-down
feature search. Our model does not model bottom-up attentional mechanisms and
is not well suited for indexing.

As a model of feature learning for discrimination, the main limitation of our
system is the undirected search for features in images that is only guided by a few
simple heuristics. A more faithful (and more practical) model requires a developmen-
tal schedule that initially constrains the search for features to increase the likelihood
of finding useful features fast, while temporarily restricting generality. Over time,
these restrictions should be relaxed, while the system learns better heuristics from
experience. This is an area of further research.

Another critical limitation of our current system is the restricted expressiveness
our feature space which encodes only high-contrast edge, corner and texture infor-
mation. As such, our model roughly corresponds to the human visual system during
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early infancy [7]. A more complete model should at least encode color and blob-type
features. In addition, more sophisticated recognition requires higher-level features
such as qualitative (“Gestalt”) features (e.g. parallelism, symmetry, continuity, clo-
sure) and multiplicity (a triangle has three corners; a bicycle wheel has many spokes).
We hope to address these in future work.
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