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Abstract

The Inequality Necessary Condition Analyzer (INCA) is a finite-state
verification tool that has been able to check properties of some very large
concurrent systems. INCA checks a property of a concurrent system by
generating a system of inequalities that must have integer solutions if the
property can be violated. There may, however, be integer solutions to the
inequalities that do not correspond to an execution violating the property.
INCA thus accepts the possibility of an inconclusive result in exchange
for greater tractability. We describe here a method for eliminating one of
the two main sources of these inconclusive results.
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Introduction

Finite-state verification tools deduce properties of finite-state models of com-
puter systems. They can be used to check such properties as freedom from
deadlock, mutually exclusive use of a resource, and eventual response to a re-
quest. If the model represents all the executions of a system (perhaps by making
use of some abstraction), a finite-state verification tool can take into account
all the executions of the system. Moreover, finite-state verification tools can be
applied at any stage of system development at which an appropriate model can
be constructed. Such tools thus represent an important complement to testing,
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especially for concurrent systems where nondeterministic behavior can lead to
very different executions arising from the same input data.

The main obstacle to finite-state verification of concurrent systems is the
state explosion problem: the number of states a concurrent system can reach
is, in general, exponential in the number of concurrent processes in the system.
This problem confronts the analyst immediately—even for small systems, the
number of reachable states can be large enough so that a straightforward ap-
proach that examines each state is completely infeasible—and complexity results
tell us that there is no way to avoid it completely. Every method for finite-state
verification of concurrent systems must pay some price, in accuracy or range of
application, for practicality.

The Inequality Necessary Conditions Analyser (INCA) is a finite-state veri-
fication tool that has been used to check properties of some systems with very
large state spaces. The INCA approach is to formulate a set of necessary condi-
tions for the existence of an execution of the program that violates the property.
If the conditions are inconsistent, no execution can violate the property. If the
conditions are consistent, the analysis is inconclusive; since the conditions are
necessary but not sufficient, it may still be the case that no execution of the
program can violate the property. INCA thus accepts the possibility of an incon-
clusive result in exchange for greater tractability. There are two main sources of
inconclusive results. In this paper, we show how one of these, caused by cycles
in finite state automata representing the components of the concurrent system,
can be eliminated at what seems to be only moderate cost.

In the next section, we describe the INCA approach. Section 3 explains our
technique for improving INCA’s precision, and the fourth section presents some
preliminary data on its application. The final section summarizes the paper and
discusses other issues related to the precision of INCA.

2 INCA

A complete discussion of the INCA approach, along with a careful analysis of
its expressive power, is contained in [8]. In this paper, we will use a small (and
quite contrived) example to sketch the basic INCA approach and show how
certain cycles in the automata corresponding to the components of a concurrent
system can lead to imprecision in the INCA analysis. We refer readers who
want more detail to [8].

2.1 Basic Approach

The basic INCA approach is to regard a concurrent system as a collection of
communicating finite state automata (FSAs). Transitions between states in
these FSAs correspond to events in an execution of the system. INCA treats
each FSA as a network with flow, and regards each occurrence of a transition
from state s to state ¢, corresponding to an event e, as a unit of flow from node
s to node t. The sequence of transitions in a particular FSA corresponding to



events in a segment of an execution of the system thus represents a flow from
one state of the FSA to another.

To check a property of a concurrent system using INCA, an analyst specifies
the ways that an execution might violate the property in terms of a sequence of
segments of an execution. Suppose that an analyst wants to show that event b
can never be preceded by event a in any execution of the system. A violation of
this property is an execution in which a occurs and then b occurs. In INCA this
could be specified as a single segment running from the start of the execution
until the occurrence of a b, with the requirement that an a occur somewhere
in the segment. (It could also be specified as a sequence of two segments, the
first running from the start of the execution until an occurrence of an a, and
the second starting immediately after the first and ending with a b. The former
specification is generally more efficient, but the latter may provide additional
precision in some cases. See Section 2.2.) INCA provides a query language
allowing the analyst to specify various aspects of the segments (called “intervals”
in the INCA query language) of execution.

By generating the equations describing flow within each FSA (requiring that
the flow into a node equal the flow out) according to the specified sequence of
segments of a system execution, and adding equations and inequalities relating
certain transitions in different FSAs according to the semantics of communi-
cation in the system, INCA produces a system of equations and inequalities.
Any execution that satisfies the analyst’s specification (and therefore violates
the property being checked) corresponds to an integer solution of this system
of equations and inequalities. INCA then uses standard integer linear program-
ming (ILP) methods to determine whether there is an integer solution. If no
integer solution exists, no execution can violate the property, and the property
holds for all executions of the concurrent system. If there is an integer solu-
tion, however, we do not know that the property can be violated. The system of
equations and inequalities represents only necessary conditions for the existence
of an execution violating the property, and it is possible for a solution to exist
that does not correspond to a real execution.

To see more concretely how this works, consider the Ada program shown
in Figure 1. This program describes three concurrent processes (tasks). Task
t1 begins by rendezvousing with task t2 at the entry c. It then enters a loop.
At the select statement, t1 nondeterministically chooses to rendezvous with
t2 at entry a or with t3 at entry b, if both are ready to communicate at the
appropriate entries. If t1 accepts a communication from t2 at entry a, it then
enters a loop in which it accepts rendezvous at entry a until it accepts one at
entry c. If t1 instead accepts a communication from t3 at entry b, it then tries
forever to repeatedly rendezvous with t2 at entry a.

Figure 2 shows the FSAs constructed by INCA for this program. The states
and transitions are numbered for reference. Each transition in this example
represents the occurrence of a rendezvous between two tasks; in the figure, each
transition is labeled with the entry at which the corresponding rendezvous takes
place.

Suppose that we wish to check that an occurrence of a rendezvous at entry



package simple is

task tl is task t2 is
entry a; end t2;
entry b;
entry c; task t3 is
end t1; end t3;

end simple;

package body simple is

task body tl is task body t2 is

begin begin
accept c; tl.c;
loop loop
select tl.a;
accept a; end loop;
loop end t2;
select
accept a;
or
accept c;
exit; task body t3 is
end select; begin
end loop; tl.b;
or end t3;
accept b;
loop
accept a;
end loop;
end select;
end loop;
end ti;

end simple;

Figure 1: A small example

b cannot be preceded by a rendezvous at entry a. As described earlier, we may
specify the violation as a segment of an execution running from the start of
execution until the occurrence of a rendezvous at b and containing a rendezvous
at a. The flow equations for each task will then describe the possible flows from
the initial state of the task to one of the states in which that task could be at
the end of the segment.

Since the segment ends with a rendezvous at the entry b, represented by the
transition numbered 2 in the FSA corresponding to task t1 and the transition
numbered 9 in the FSA corresponding to task t3, we know that the FSA t1
must be in state 3 and the FSA t3 must be in state 8 at the end of the segment.
Our flow equations for t1 therefore describe flow starting in state 1 and ending
in state 3, while the flow equations for t3 describe flow starting in state 7 and
ending in state 8. For t2, the fact that a rendezvous at a occurs in the segment
implies that that FSA must be in state 6 at the end of the segment, so the flow
equations for t2 describe flow from state 5 to state 6.

To produce these flow equations, let x; be a variable measuring the flow
along the transition numbered i. At each state, we generate an equation setting
the flow in equal to the flow out. We must, however, take into account the
implicit flow of 1 into the initial state of each FSA and the implicit flow of 1
out of the end state of the flow. Thus, for example, the equation for state 1 is

1= I

since the flow in is 1 because state 1 is the initial state and the only flow out is
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Figure 2: FSAs for example

on transition 1. Similarly, the equation for state 8 is
Tg = 1

since the only flow in is on transition 9 and there is implicit flow out of 1 since
the flow in this FSA ends in state 9.

To complete the system of equations and inequalities, we must add equations
to reflect the fact that the two tasks participating in a rendezvous must agree
on the number of times it occurs. For instance, we need the equation

T3 + Ty + x5 = T8

saying that the number of occurrences of the rendezvous at entry a in the FSA
for t1 is the same as in the FSA for t2. We also need an inequality to express
the requirement that there is at least one occurrence of a rendezvous at a. We
use
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to state this. The full system of equations and inequalities used to check the
property that a rendezvous at entry b cannot be preceded by a rendezvous
at entry a is shown in Figure 3. (The description here is actually somewhat
oversimplified; INCA performs several optimizations to reduce the size of the



Flow Equations:

State Equation
1 1=
2 Ty +xg = X2 + T4
3 T + T3 = T3 + 1
4 T4+ Ts = T5 + T
5 1= I
6 r7+xg =x8 + 1
7 1=z
8 Tg = 1

Communication Equations:

Entry Equation
a T3 + Ty + x5 = T8
b T2 = Tg
c T+ Tg = Ty

Requirement Inequality:
a occurs g > 1

Figure 3: System of equations and inequalities for example

system of inequalities and the real system of inequalities produced by INCA
would be smaller. For example, INCA would observe that there cannot be flow
along transition 3 in a violating execution (because the segment of execution
must end with transition 2), and would eliminate the variable z3 from the
system. It would also do a form of constant propagation to eliminate other
variables and equations.)

Essentially all research on finite-state verification tools can be viewed as
aimed at ameliorating the state explosion problem for some interesting systems
and properties. The approach taken by INCA avoids enumerating the reachable
states of the system and is inherently compositional, in the sense that that the
equations and inequalities are generated from the automata corresponding to
the individual processes, rather than from a single automaton representing the
full concurrent system. The size of the system of equations and inequalities is
essentially linear in the number of processes in the system (assuming the size of
each process is bounded). Furthermore, the use of properly chosen cost func-
tions in solving the problems can guide the search for a solution. ILP is itself
an NP-hard problem in general, and the standard techniques for solving ILP
problems (branch-and-bound methods) are potentially exponential. In practice,
however, the ILP problems generated from concurrent systems have large to-
tally unimodular subproblems and seem particularly easy to solve. Experience
suggests that the time to solve these problems grows approximately quadrati-
cally with the size of the system of inequalities (and thus with the number of
processes in the system).

Comparisons of this approach with other finite-state verification methods [2—



5] show that the performance of each method varies considerably with the system
and property being verified, but that INCA frequently performs as well as, or
better than, such tools as SPIN and SMV. The INCA approach has also been
extended to check timing properties of real-time systems [1,6] and to prove trace
equivalence of certain classes of systems [7].

2.2 Sources of Imprecision

The systems of equations and inequalities generated by INCA represent neces-
sary conditions for there to be a violation of the property being verified. As
noted earlier, however, they only represent necessary, not sufficient, conditions.
A solution of the system of equations and inequalities may not correspond to
an actual execution.

There are two main reasons for this. The first has to do with the order in
which events occur. Strictly speaking, the equations and inequalities generated
by INCA refer only to the total number of occurrences of the various events in
each segment of the execution, and do not directly impose restrictions on the
order in which those events occur within the segment. In fact, the flow equa-
tions for a single FSA typically imply fairly strong conditions on order, but the
communication equations relating the occurrence of events in different FSAs do
not impose strong restrictions on the order of occurrence of events from different
processes. To see why, consider a system comprising two processes. The first
process begins by trying to communicate with the second process on channel
A and then, after completing that communication, tries to communicate with
the second process on channel B. The second process tries to complete the
communications in the reverse order. This system will obviously deadlock, but
the equations generated by INCA would say only that the number of commu-
nications on each channel in the first process is equal to the number in the
second process, allowing a solution in which each communication occurs. (This
is a slight over-simplification. INCA would actually detect the deadlock in this
case, but not in more complicated examples with several processes.) The only
mechanism INCA provides for directly constraining the order of events in dif-
ferent processes is the use of additional segments of the execution. While this is
often enough to eliminate solutions that do not correspond to real executions of
the system, it is expensive and restricts the range of application of INCA. We
will return to this point in the final section of this paper.

The second source of imprecision is the existence of cycles in the FSAs.
Consider the flow equation for state 3 that is shown in Figure 3. Transition 3
is a self-loop at state 3, and flow along that transition counts both as flow into
state 3 and out of state 3. The equation x5 +x3 = x3 + 1 does not constrain the
variable 3 at all; we can simply cancel the z3 terms. Similarly, the variables
x5 and xg are not constrained by the flow equations in which they appear.
These variables are constrained only by the communication equation that says
o + w3 + 5 = wg. Since three of these variables are otherwise unconstrained,
this equation does not restrict the solution set.

In fact, although the system of Figure 1 has no execution in which a prefix
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Figure 4: Solution with disconnected cycle

ending with a rendezvous at entry b contains a rendezvous at entry a, there is a
solution to the system of equations and inequalities shown in Figure 3 with
Ts, Ty, Ty, Ty, and xg all equal to 1, and z3, x4, and x4 all equal to 0. In this
solution, the requirement that the number of rendezvous at a be at least 1 is
met by setting the unconstrained variables x5 and zg to 1. Figure 4 shows the
FSAs with the transitions having flow indicated by bold arcs. The flow in the
FSA for t1 has two connected components, one from the initial state to state
3, as expected, and one made up of flow in the cycle at state 4, not connected
to the flow from state 1 to state 3. It is obvious that the flow in each FSA
corresponding to an actual execution must be connected, so this is a spurious
solution, one that does not correspond to a real execution.

This example illustrates the problem but is not of much independent inter-
est. The same problem, however, occurs with some frequency in the analysis of
more interesting systems. For instance, in our recent analysis of the Chiron user
interface development system [2], we encountered solutions with disconnected
cycles in trying to verify 2 of the 10 properties we checked. In those cases,
we were able to reformulate the properties by specifying additional segments,
verifying other properties that allowed us to eliminate some solutions, or choos-
ing other events to represent the high-level requirement. These modifications,
however, represent a considerable expense in increased analyst effort and verifi-
cation time. In the next section, we describe a technique for eliminating these



solutions with more than one component of flow in an FSA.

3 Eliminating Spurious Cycles

3.1 A Straightforward Approach

A related problem is well known in the optimization literature. When formu-
lating the Traveling Salesman Problem as an integer programming problem, it
is essential to ensure that the solution represents a single tour visiting all the
cities, rather than a collection of disconnected subtours each visiting a proper
subset of the cities. A standard approach for eliminating solutions with discon-
nected subtours is to add inequalities that prevent the solution from visiting
cities in a subset U unless the solution includes an arc from a city not in U to
one in U. Thus, if the variable z; ; is 1 if the solution represents a tour in which
the salesman goes directly from city 4 to city j, and 0 otherwise, the standard
formulation of the Traveling Salesman problem would include, for each j, the

inequality
> wij=1 (1)

to enforce the requirement that each city is entered and left exactly once. To
eliminate the possibility of a subtour in the subset U we would add the inequality

igU,jeU
which requires that the salesman travel from a city outside U to a city in U.
(Of course, we need an inequality like (2) for every subset U of size at least 2
and at most N — 2, where N is the number of cities.)

In our case, to prevent a solution in which there is flow in a disconnected
cycle C', we can add an inequality requiring that, when there is flow in C, there
must be flow entering C' from outside. This is a little more complicated than
the situation for the Traveling Salesman Problem. In that case, we know by
(1) that the the solution must enter each city exactly once. In our case, we do
not want to require flow into one of the states making up C unless there is flow
along one of the transitions in C'. For instance, we only want to require flow
on transition 4 in our example when there is flow on transition 5. To do this in
general, we would need a quadratic inequality such as

T4y Z 5. (3)

Integer quadratic programming is, however, very much harder than integer linear
programming and we would like to avoid introducing quadratic inequalities. The
standard technique is to impose an upper bound B on all the variables (i.e.,
to assume that no transition occurs more than B times), and to replace the
quadratic inequality (3) with the linear inequality

Ts — BCE4 S 0. (4)



The integer solutions of (3) having z4,25 < B are exactly the same as those
of (4). (We note that imposing an upper bound on all the variables would
mean that INCA’s analysis is no longer strictly conservative. If the system of
inequalities has no solutions with the z; all less than or equal to B, we only
know that no execution on which each transition occurs at most B times can
violate the property. Since B can be taken to be quite large, such as 10,000 or
100, 000, this restriction is unlikely to be a serious one in practice.)

The problem with these approaches is that they may require too many extra
inequalities. The number of subtours that have to be eliminated in the Traveling
Salesman Problem is essentially the number of subsets of the set of cities and
is clearly exponential in the number of cities. Similarly, the number of cycles
in an FSA can be essentially equal to the number of subsets of its set of states.
We have constructed a small concurrent Ada program with only 90 lines of code
in which the FSA for one task has only 42 states but has 1,160,290,624 distinct
subsets of states each forming at least one cycle. An integer programming
problem with that many inequalities is infeasible. A better method is required.

3.2 A More Practical Method

In this section, we describe a method for preventing spurious cycles that requires,
for each FSA and segment of execution, S+ 7T new variables and S+ 27 — 1 new
inequalities, where S is the number of states in the FSA and T is the number
of transitions.

The basic idea is essentially as follows. Suppose we have a solution to the
system of equations and inequalities originally generated by INCA. For each
FSA and each segment of execution, we attempt to construct a subgraph with
the same vertices as the FSA but whose edges are a subset of those that have
positive flow in the solution. We require that (i) if there is flow into a vertex
v in the solution, some edge terminating in v must occur in the subgraph, and
(ii) each vertex of the subgraph can be assigned a “depth” in such a way that
the depth of a given node is greater than that of any of its predecessors in the
subgraph.

If the original solution has no disconnected cycles, we can choose for our
subgraph a spanning tree for the edges with flow and take the depth of a vertex
to be the distance from the root of the tree to the vertex. If the solution has
a disconnected cycle C', however, we cannot construct such a subgraph. To see
why, suppose we could construct the subgraph, and let v be a vertex in C' for
which d, < d, for all w € C. Since there is flow into v in the solution, v must
have some predecessor u in the subgraph. Since the cycle C' is disconnected
from the flow starting at the initial state of the FSA, the state u must also lie in
C. But if u is a predecessor of v in the subgraph, we have d, > d,,, contradicting
the minimality of d, on C.

Of course, we do not want to consider the possible solutions to the system
of equations and inequalities generated by INCA one at a time, attempting
to construct the subgraph separately for each solution. Instead, we add new
variables and inequalities, leading to an augmented system of equations and
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inequalities whose integer solutions correspond exactly to the integer solutions
of the original system for which the appropriate subgraph can be constructed.

We describe the procedure for generating this augmented system for the case
of a single FSA F' and a single segment of execution. For each variable z; in the
original system corresponding to a transition in F', we introduce a new variable
s; with bounds

0<s <1 (5)

This variable will be 1 if the corresponding edge is in the subgraph, and 0
otherwise.
For each state v in F', we introduce a new variable d, with bounds

0<d, <N, (6)

where N is some integer which is at least the maximum length of any non-
self-intersecting path through the FSA. For instance, N can be taken to be the
number of states in F'. The variable d,, will be the depth of v.

We then generate inequalities involving these new variables. Each variable
s; corresponds to a transition from some state u of F' to a state v. We generate
the inequalities

Ti > 8 (7)

The first inequality says that s; must be 0 if z; is 0, so that the corresponding
edge can be in the subgraph only if the solution has positive flow along that
edge. The second inequality requires that d, be greater than d,, if the edge from
u to v is in the subgraph. If the edge is not in the subgraph (i.e., if s; is 0), the
inequality reads d,, > d,, — N, and the bounds on d, and d,, make that vacuous.

Finally, let In(v) denote the number of transitions into the state v. For each
state v of F', other than the initial state, we generate the inequality

BIn(v)Zsj > ij, (9)

where the sums are taken over all transitions into the state v and B is an upper
bound on all the variables. (As noted earlier, B can be taken to be quite large.)

The argument sketched at the beginning of this section proves the following
theorem, showing that this method eliminates only solutions with disconnected
cycles.

Theorem. Let P be the system of equations and inequalities generated by INCA
to check a particular property of a given concurrent system. Let P’ be the
augmented system constructed from P as described above. A solution of P’
assigns values to all the variables in P as well as additional variables; we thus
obtain an assignment of values to the variables in P from a solution to P’ by
projection. The set of integer solutions of P with all variables taking values at
most B and no disconnected cycles is exactly equal to the set of projections of
integer solutions of P' with all variables taking values at most B.
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In fact, the method described in this section can be applied to any subset of
vertices in the FSAs, thereby eliminating solutions in which there is a discon-
nected cycle in that subset of vertices. For given a subset W, one can form a
new graph as follows. Add two new vertices to W: a start and an end vertex.
Keep all edges that originally joined two vertices in W. For any edge origi-
nating outside W and terminating in W, reconnect that edge so it originates
in the start vertex. For any edge originating in W and terminating outside of
W, reconnect the edge so that it terminates in the end vertex. Now apply the
algorithm to this new graph, and the same arguments apply.

4 Preliminary Experiments

The method described in the previous section generates an augmented system
of equations and inequalities whose size seems to be only moderately larger than
that of the original system. The time it takes to solve an ILP problem, or to
conclude that the problem has no integer solutions, is not a simple function of
the number of variables and equations or inequalities. To evaluate the cost of
applying our method, we must apply it to a variety of examples. We report
here the results of some preliminary experiments suggesting that our method
does not make a large difference in the time it takes to solve the ILP problems
generated by INCA.

The current version of INCA consists of about 12,000 lines of Common Lisp.
INCA writes out a file describing the system of equations and inequalities in
a standard format (the MPS format), and we then use a commercial package
called CPLEX to read this file and solve the system. (We also use a separate
program to translate Ada programs into the native input language of INCA).
The optimizations INCA uses to reduce the number of variables and inequalities
make the introduction of new variables and inequalities somewhat complicated,
and integrating our method into INCA will involve a substantial programming
effort. For our initial exploration of the effect of applying our method, we have
therefore chosen to proceed by modifying the MPS file produced by INCA. We
have written a Java program that reads this file, and another file of information
on the FSAs that INCA writes out, and produces a new MPS file representing
the augmented system of equations and inequalities. We can then compare the
performance of CPLEX on the original system and the augmented system. At
this stage, however, we cannot measure how long it would take INCA to generate
the augmented system of equations and inequalities.

For these experiments, we used INCA version 3.4, Harlequin Lispworks 4.1.0,
and CPLEX version 6.5.1 on a Sun Enterprise 3500 with two processors and
2 GB of memory, running Solaris 2.6. The upper bound B representing the
maximum number of times an edge may be traversed in a violating execution
was taken to be 10,000. We used the default options on CPLEX, except for the
following changes: mip strategy nodeselect was set to 2, mip strategy branch
was set to 1, and mip limits solutions was set to 1. (The first two affect choices
made in the branch-and-bound algorithm and the third stops the search as soon
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as an integer solution is found.) For each ILP problem, we ran CPLEX five
times and took the average time. The times reported here were collected using
the time command, and include both user and system time.

4.1 A Scalable Version of the Example from Section 2

For the first experiment, we created a scalable version of the simple example
described in Section 2.1. Given an integer n > 1, we modified the Ada program
in Figure 1 to have n copies of task t2 and to have n + 1 alternatives in the
select statement. Each of the new copies of task t2 calls the same entries in t1.
(In detail, we replaced task t2 with n copies of itself, calling these tci, ... ;tcn.
In the body of t1, we replaced the first accept c line with n copies of itself and
replaced the body of text beginning with the first select a and ending with
the last or with n copies of itself.)

As before, we wish to verify that a rendezvous at entry a can never precede
a rendezvous at entry b. INCA constructs an FSA for t1 in which there are
2n + 4 nodes and 4n? + 3 edges. (The picture is slightly different from what
one might expect because we have added a start vertex and an end vertex, and
INCA performs some trimming of the FSA.) There are 2" +n—1 distinct subsets
of the vertex set for t1 which form cycles.

For each n, INCA finds a spurious solution involving a disconnected cycle
in t1. Applying the algorithm in Section 3.2, however, yields an ILP problem
that CPLEX reports has no integer solutions, thus verifying that an a can never
precede a b.

For n > 3, the number of variables in the INCA-generated ILP system is
4n? 4 2n, and the number of constraints (equations and inequalities) is 5n + 1.
The number of variables in the new system is

(4n® +2n) + (4n®> +2n +7) = 8n® +4n + 7,
and the number of constraints is
(5n + 1) + (8n* 4+ 2n 4+ 9) = 8n* + Tn + 10.

The time that it takes CPLEX to find a spurious solution to the original
system and the time it takes to determine the inconsistency of the augmented
system are shown in Figure 5. These times are very modest, all under 10 seconds,
and are in fact dwarfed by the time it takes INCA to generate its internal
representations of the problem and the original ILP system. (For n = 30, this
was about 30 minutes.) It seems, however, that for large n, the substantial
increase in the number of constraints in the augmented system, due to the large
number of edges in the FSA for t1, does begin to have a significant impact on
the time to solve the ILP problem.

4.2 Spurious Cycles in Chiron

The second experiment involves the Chiron user interface system [9]. A Chiron
client comprises some abstract data types to be depicted, artists that main-
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Conclusive result with cycle elimination —+—
Spurious solution without cycle elimination —--x---

time (seconds)

Figure 5: CPLEX times for scaled simple example

tain mappings between these ADTs and the visual objects appearing on the
screen, and runtime components that provide coordination. In particular, cer-
tain events indicating changes in the state of the ADTs are defined, and an
ADT Wrapper task notifies a Dispatcher task whenever an event occurs. The
Dispatcher maintains an array for each event that records which artists are in-
terested in being notified of that event. (Artists register and unregister for an
event to indicate their current interest in being notified.) After receiving the
event from the ADT Wrapper, the Dispatcher then loops through the artists
in the appropriate array and calls an entry in each notifying it of the event.
The Chiron architecture is highly concurrent and even a toy Chiron interface
represents about 1000 lines of Ada code. In [2], we compared the performance
of several finite-state verification tools (FLAVERS, INCA, SMV, and SPIN) in
checking a number of properties of a Chiron interface with two artists and n
events, for n ranging from 2 to 70.

One of the properties we wish to verify about this system, called Property 4
in [2], is that the Dispatcher notifies the artists of the right event. For example,
if the Dispatcher receives event el from the ADT Wrapper, we wish to show
that it does not notify any artist of event e2 until it has notified the appropriate
artists of e1. To formulate this property as an INCA query takes 2 intervals.

We were in fact able to verify this property using INCA, but only in systems
where n < 5. (FLAVERS and SMV were able to verify this property up to
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n = 40 and n = 36, respectively.) To scale the problem further with INCA,
we needed to decompose the Dispatcher task into a subsystem. This entails
creating a new task Dispatch_ei, for ¢ = 1,...,n, which maintains the array
for event ei. The Dispatcher task itself is left as an interface which just passes
register, unregister, and notification requests on to the appropriate Dispatch_ei
in a way such that no additional concurrency is introduced. (If the internal
communications of the Dispatcher subsystem are hidden, the new system is
observationally equivalent to the original one.) This decomposed system has
the advantage that as n increases, the size of each Dispatch_ei FSA remains
constant, although the number of these tasks increases. While in general this
decomposition greatly improves the performance of INCA, for this property
INCA yields an inconclusive result. The problem is a disconnected cycle in the
task Dispatch_el in the second interval.

To get around this problem, we reformulated the property using different
events to represent the high-level property. This depended on the prior ver-
ification of other properties relating the events used in the original and new
formulations and was cumbersome and time-consuming. (Once the property
was reformulated, however, the performance of INCA on this decomposed sys-
tem was considerably better than that of the other tools. By n = 30, the INCA
time was already roughly an order of magnitude better than the times for the
other tools and INCA could verify the property for much larger values of n. The
differences in performance of the tools on this property, for the two versions of
the Chiron system, are typical of what we observed on other properties. The
implications of this are discussed in [2].)

Using the cycle elimination algorithm described here, we were able to verify
the original property directly, for 2 < n < 70. In this case there are 23 nodes
and 63 edges in the problematic task/interval for all n. Hence for each n our
algorithm adds 86 variables and 148 constraints to the ILP system. For n > 3,
the number of variables in the original system is

82n + A(n),

where A(n) is 58, 118, or 84, according as m is congruent modulo 3 to 0, 1,
or 2, respectively. (This reflects the way we chose to have artists register for
events as we scaled up the number of events.) The number of constraints in the
augmented system is

(133n + &(n))/3,

where similarly the value of x(n) is 195, 281, or 235. In this case, eliminat-
ing spurious cycles adds a constant number of variables and constraints as n
increases. The CPLEX times for each n, for the original system for which
CPLEX found a spurious solution and the result of the analysis was inconclu-
sive, and for the augmented system for which the property was conclusively
verified, are given in Figure 6. Again, the times are all under 5 seconds and
represent a very small portion of the total analysis time. (For n = 70, this was
about 2.5 minutes.) The spike at n = 55 in the CPLEX time for the augmented
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Figure 6: CPLEX times for Chiron Property 4

system seems to be due to the occurrence of certain numerical problems for this
particular system.

4.3 The Cost of Unnecessarily Preventing Spurious Cycles

We also tried adding the cycle elimination variables and constraints to a system
which already yielded a conclusive result. This might yield insight into the
marginal cost of having INCA add cycle elimination by default for any problem.

For this experiment, we used another property from [2]. In this case, we used
Property 1b, which says that an artist never unregisters for an event unless it
is already registered for that event. As in [2], we restricted ourselves to a single
artist and event. The resulting property requires 2 intervals for its formulation
as an INCA query. Using the decomposed dispatcher version of the client code,
INCA verified this property without any need for cycle elimination, for n < 70.
The number of variables in the INCA-generated ILP system (for n > 3) is

100n + a(n),

where a(n) is 77, 146, or 107 according as n is congruent modulo 3 to 0, 1, or
2, respectively. The number of constraints is

51n + B(n),
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where similarly §(n) is 69, 96, or 81.

We then applied the cycle-elimination algorithm to all of the n+6 FSAs and
both intervals. (In the experiment discussed in the previous section, we only
applied the algorithm to one FSA.) This entailed adding

(457n + p(n))/3
new variables to the system, where u(n) is 552, 833, or 682, and adding
(790n + v(n))/3

new constraints, where v(n) is 897, 1391, or 1123. The times required by CPLEX
to find the conclusive result in each case are graphed in Figure 7.

Although the ILP systems in the augmented case are quite large (18,087
variables and 22,563 constraints for n = 70) for the larger n, it still appears
that CPLEX can determine the inconsistency of the system in a very short time
(less than 4 seconds). If this example is typical, the real cost in introducing
cycle elimination in INCA might lie in generating the new ILP system, not in
solving it.
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5 Conclusions and Future Work

Some finite-state verification tools always provide a conclusive result on any
problem they can analyze. A tool that walks a graph of the reachable states of
a concurrent system will never report that the system might deadlock when in
fact the system is deadlock free. But such a tool must be able to store the full
set of reachable states, and is unable to report any results for a system whose
reachable state space exceeds the storage available. Other tools, such as INCA,
deliberately overestimate the collection of possible executions of the system,
and thus accept the possibility of inconclusive results (or spurious reports of the
possible faults), in order to increase the range of systems to which they can be
applied.

For INCA, there are two main sources of imprecision in the representation
of executions of the system. The first of these is the fact that semantic restric-
tions on the order of occurrence of events in different concurrent processes are
generally not represented in the equations and inequalities used by INCA. The
second source of imprecision is the fact that the equations and inequalities allow
solutions in which the flow in the FSA representing a concurrent process may
have cycles not connected to the initial state. In this paper, we have shown how
imprecision caused by this second source may be eliminated.

Specific cases of inconclusive results can often be addressed by careful re-
formulation of the property being checked, although this may require the veri-
fication of additional properties to justify the reformulation. This process can
require very substantial amounts of effort on the part of the human analysts,
as well as considerable costs to carry out the necessary verifications. We have
also sometimes addressed inconclusive results by manually inserting special in-
equalities to prevent disconnected flow on a small number of specific cycles.
The problem with generalizing this approach is that the number of cycles may
well be exponential in the size of the concurrent system, and each of the cycles
requires a separate inequality. Even if it were feasible to automate the genera-
tion of these inequalities, the resulting ILP problems would be far too large to
solve. The numbers of new variables and inequalities introduced by the method
presented in this paper are linear in the number of states and transitions in the
FSAs representing the processes of the concurrent system being analyzed.

We have reported here the results of some preliminary experiments aimed
at assessing the cost, in increased time to solve the systems of equations and
inequalities, of applying our method. These experiments suggest that the cost
is relatively small, especially when the effort of the human analysts is taken into
account. We plan to carry out additional experiments of the same type, and to
integrate our technique into the INCA toolset so that we can also evaluate the
time needed to generate the additional variables and inequalities.

We are also investigating approaches to eliminating some of the impreci-
sion caused by not representing restrictions on the order of events in different
processes. Fully representing the restrictions imposed by the semantics of the
programming language or design notation may not be practical and might limit
the applicability of INCA in the same way that having to store the full set of
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reachable state limits the applicability of tools based on exploring the graph of
reachable states. We are therefore exploring methods that allow the analyst to
control the degree to which restrictions on order are represented. For exam-
ple, one approach that we are considering is to formulate some of the flow and
communication equations in such a way that they hold at every stage of an exe-
cution, not just the end. These reformulated flow and communication equations
therefore enforce some of the restrictions on the order of events in different pro-
cesses. They also determine a region in n-dimensional Euclidean space, where n
is the number of variables in the system of equations and inequalities. We then
look for a point satisfying the full system of equations and inequalities that can
be reached by taking certain integer-sized steps through this region. Success-
fully reducing this kind of imprecision will be important in applying the INCA
approach to many systems where interprocess communication is only through
access to shared data.
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