Extending FLAVERS to Check Properties on Infinite
Executions of Concurrent Software Systems

Gleb Naumovich
Polytechnic University, Brooklyn

Department of Computer and

Information Science
Brooklyn, NY 11201

(718) 260-3554
gleb@poly.edu

1. INTRODUCTION

Finite state verification techniques can be used for detecting
the presence or proving the absence of certain kinds of errors
in software systems. These approaches are based on reason-
ing about a finite, abstracted model of a system’s behaviors.
FLAVERS (FLow Analysis for VERification of Systems) is
a finite state verification approach that uses data flow anal-
ysis techniques to verify user-specified properties of sequen-
tial and concurrent software systems [11, 12]. FLAVERS
is capable of verifying properties about sequences of events,
where the events are recognizable actions in the program and
where the sequences are either translated into or specified
directly as a finite state automaton (FSA). The attractive-
ness of this approach is in its low-order polynomial com-
plexity bounds, its ability to derive the model of executable
behavior automatically from a program’s source code, and
its ability to improve the precision of the analysis by incre-
mentally improving the accuracy of the program model. For
concurrent programming languages, FLAVERS prototypes
have been developed for Ada [11] and Java [16].

To date, FLAVERS has been restricted to considering pro-
grams with only finite executions. This is a serious limita-
tion, because, in practice, distributed systems are frequently
intended to execute infinitely. In this paper we propose two
extensions to the FLAVERS analysis algorithm that allows
FLAVERS to check properties on software systems with in-
finite executions.

Traditionally, verification properties have been classified into
two broad categories: safety and liveness [1, 3]. The dis-
tinction is that safety properties are finitely refutable and
liveness properties are never finitely refutable. Intuitively, a

Lori A. Clarke
Computer Science Department

University of Massachusetts
Ambherst, Massachusetts 01003
(413) 545-2013
clarke@cs.umass.edu

safety property specifies that an undesirable state of the sys-
tem is never reached and a liveness property specifies that
a desirable state of the system is eventually reached on all
executions.

Any property can be represented as a union of a safety prop-
erty and a liveness property [2]. Any property checked only
on finite executions of a system is a safety property, since the
so-called “undesirable” state of the system can be viewed as
the terminal state' where the predicate of interest either
holds or doesn’t hold. Safety properties are also a con-
cern for infinite executions, when the property is finitely
refutable. Thus, a property that can be proved by exam-
ining all finite execution trace prefixes would be such an
infinite safety property. In this paper we focus on extending
FLAVERS to handle both safety and liveness properties for
infinite executions.

Our extension for checking safety properties on infinite exe-
cutions is very simple and requires two small modifications
to the original FLAVERS’ approach: (1) a modification of
the property representation and (2) a simple change in the
analysis algorithm, where property violations are checked
not only in the terminal state of the system but also at rel-
evant intermediate points of system execution.

Our extension for checking liveness properties with FLA-
VERS is based on representing the property of interest as
a Biichi automaton [22] and computing the states that this
automaton can be in at different points of the program ex-
ecution. This computation is carried out by the same data
flow algorithm that FLAVERS uses for checking properties
on finite executions. After that we determine if the graph
contains infinite paths with suffixes on which the property
Biichi automaton never enters an accept state. An existence
of such a path signifies that the property represented by the
automaton does not hold on the execution of the system cor-
responding to this path through the graph. Checking this
is based on computing maximal strongly-connected compo-
nents in the derived representation of the program. This
algorithm could also be applied to safety properties for infi-

'Without loss of generality, we can assume that there is a
single terminal state.

nite executions, but its worst-case bound is larger than that
of the algorithm specialized for safety properties on infinite
executions.

Our algorithm for checking safety properties on infinite ex-
ecutions uses a form of FSA-based property specification,
used, for example, in [7] and makes a fairly obvious change
to the original data flow algorithm of FLAVERS. Our algo-
rithm for checking liveness properties is similar to the exist-
ing algorithms used by model checking [9] and reachability
analysis [13, 5] approaches. Despite these similarities, we
make several important contributions. First, our proposed
extensions maintain the current strong points of FLAVERS,
using an efficient data flow algorithm, automatically dealing
with software systems at the implementation level (although
FLAVERS can handle high-level specifications as well [17]),
and giving the analyst the opportunity to improve the preci-
sion of the analysis incrementally by deferring the modeling
of certain features of the system until it becomes clear that
such modeling is necessary. Second, we can use the existing
FLAVERS framework for specifying the appropriate condi-
tions that should be assumed during infinite executions of
the system. Finally, we do not assume that all loops in the
threads of control of the system can execute infinitely. In-
stead, the analyst has the means of specifying which of the
thread loops can or cannot execute infinitely.

For convenience, we introduce the following abbreviations.
We will refer to the original algorithm of FLAVERS [11]
as finite executions, or FE | algorithm; to the proposed algo-
rithm for checking safety properties on infinite executions as
safety infinite executions, or SIE, algorithm; and to the pro-
posed algorithm for checking liveness properties as liveness
infinite ezecutions, or LIE, algorithm.

In the next section we give a brief overview of the exist-
ing techniques for checking liveness properties on infinite
executions of software systems. In Section 3 we describe
the FE algorithm. Section 4 describes the specification of
safety properties on infinite executions and introduces the
SIE algorithm. In Section 5 we describe the specification
of liveness properties and introduce the LIE algorithm. In
Section 6 we discuss some the issues related to fairness con-
ditions and incremental precision improvements. Finally, in
Section 7, we outline directions for future work.

2. RELATED WORK

There exists a considerable amount of work on finite state
verification approaches for verifying concurrent systems.
There are four major approaches to finite state verification:
reachability analysis, necessary conditions, model checking,
and data flow analysis approaches. In this section we de-
scribe the way in which some representative finite state ver-
ification techniques handle properties on infinite executions.

SPIN [13] is a reachability analysis technique that accepts
properties expressed in linear temporal logic (LTL) and fo-
cuses on systems with asynchronous concurrency control.
Each of the threads of control in the software system is
modeled with a Biichi automaton and the negation of a
property is also represented as a Biichi automaton. All
these Biichi automata are combined in a synchronous cross-
product, with the worst-case size of this automaton being

exponential in the number of threads of control. If the lan-
guage of the resulting Biichi automaton is non-empty, it
means that the property can be violated. This can be de-
termined in time linear in the number of states and transi-
tions in the combined Biichi automaton by performing the
Tarjan depth-first search algorithm [20] for constructing all
strongly-connected components. If there exists a reachable
strongly-connected component that contains at least one ac-
cepting state, a reachable acceptance cycle exists, and so the
property violation is found. The complexity of SPIN anal-
ysis is O(S + V), where S is the number of states in the
product Biichi automaton and V' is the number of transi-
tions in this automaton.

Enhanced Compositional Reachability Analysis (ECRA) [§]
works similar to SPIN. ECRA computes a cross product of
Biichi automata in a compositional way, “hiding” some of
the transitions and thus, potentially, reducing the size of the
cross product automaton. For safety properties, ECRA uses
FSAs to represent all threads of control as well as to repre-
sent the property, which is augmented with a special trap
state that represents property violations. After the FSAs for
the property and threads of control are composed into a sin-
gle cross-product automaton, the property is violated if this
cross-product automaton contains a trap state. The analysis
of liveness properties with ECRA is done in a similar way [5],
using Biichi automata instead of FSAs. The property is
considered to be violated if there is a reachable strongly-
connected component in the product Biichi automaton that
does not contain transitions to accepting states of this au-
tomaton. Conversely, if each reachable strongly-connected
component contains at least one transition into an accepting
state of the product automaton, the property holds. The lat-
ter holds true only under a relatively strong fairness assump-
tion that each transition in a reachable strongly-connected
component is eventually executed if this strongly-connected
component is executed forever (the semantics of the dis-
tributed systems for which ECRA is designed make this as-
sumption possible). The worst-case complexity of ECRA is
the same as that of SPIN, but a good decomposition of the
system model in practice may result in significant reductions
in the size of the product automaton.

Necessary conditions analysis [10] generates a set of integer
linear inequalities that represents necessary conditions for
the existence of infinite system executions for systems with
synchronous concurrency control. The necessary conditions
express constraints on the number of times certain system
events take place relative to other system events. Some
of the constraints are computed using strongly-connected
components of Biichi automata, where each automaton rep-
resents a thread of control in the system. In case of live-
ness properties, some additional inequalities have to be in-
troduced in the system. The negation of the property is
also represented as a set of inequalities. Integer linear pro-
gramming is used to solve this system of inequalities. If no
solution of the system of the resulting inequalities exists,
the property holds on all executions of the system. This
approach is NP-hard in the size of the system of integer in-
equalities that has to be solved. In practice, this approach
is often very efficient, although it does not appear to be
applicable to asynchronous communication mechanisms.

Model checking [9] does not make a clear distinction be-
tween safety and liveness properties. In this approach, it is
assumed that all executions of the system are infinite and
properties are represented in computation tree logic (CTL).
To prove a CTL formula F, model checking constructs a
Kripke structure [14] for the system. This Kripke structure
represents the set of all reachable states of the system and
thus the number of its states is exponential in the number of
threads of control and modeled variables. The goal of model
checking is to check whether or not formula F' holds in the
start state of the Kripke structure, which signifies the start
of all possible executions of the system.

In general, the complexity of model checking is O(f(V +
E)), where f is the size of the CTL formula representing
the property. The algorithm for checking liveness properties
with FLAVERS that we propose in this paper is quite similar
to this specific case of model checking.

3. THE re VERSION OF FLAVERS

In this section we introduce the FSA-based property speci-
fication used by FLAVERS, give a very high-level overview
of FLAVERS, and then present the FE algorithm.

3.1 Representing FE Properties

FLAVERS uses an event-based view of the software system
being analyzed. In this view, user-selected names, called
events, are associated with observable activities of interest
in the system and then all potential executions of the system
are represented as sequences of these events. For example,
both a variable assignment and a method call could be ex-
amples of events.

A number of formalisms for specifying properties have been
proposed, including temporal logics [9, 19], process alge-
bras [4, 15], and various forms of regular languages and fi-
nite state automata [18, 21]. FLAVERS uses deterministic
finite state automata for specifying properties to be checked
on terminating executions of a system.

A deterministic FSA can be represented as a tuple (S, so,

3,0,A). S is the set of all states of the FSA, including
the unique start state so. X is called the alphabet of the
FSA and includes all events used by this FSA. § is a total
transition function S x ¥ — S that represents all event-
based transitions between the states of the FSA. We deal
with total FSAs, which means that from any state there is a
transition based on each event from the alphabet. We write
d(s,e) = s’ to indicate that there is a transition from state
s to state s’ based on event e. Finally, A is the set of accept
states {a1,az,...,ap}, V1 < i < p,a; € S. A trace of an FSA
on an event sequence w = €1, ez, ..., €, is a sequence of states
S0, S1, .-, Sn, Where s is the start state and for any 7,1 < i <
n there is a transition from s;_1 to s; on event e;. A sequence
of events e, ...,e, is accepted by P if the last state in the
corresponding trace of this automaton is an accept state:
sn € A. An example of an FSA is given in Figure 1. This
FSA has two states so and s1, and so S = {so,s1}. State
So is the start state, which is denoted by an arrow with no
origin. The alphabet of this FSA is {open, close,C}. There
is a transition from state so to state s; based on event open.
Graphically, we may represent several transitions from state
s to state s’ with a single arrow that is labeled with a list of

open

(O~ =0
O " 0

close, C open, C

Figure 1: An example FSA or Biichi automaton

events on which all these transitions are based. For example,
in Figure 1 the self-arrow on state s; is labeled open, C
and thus represents two transitions, d(si,open) = s1 and
0(s1,C) = s1. This FSA accepts the sequence open, C,
close, because it has a trace so, s1, s1, So on this sequence
and the last state in this sequence, so, is an accept state, as
denoted by concentric circles.

We call the set of properties that can be specified as an FSA
reqular event sequencing properties. Such a property holds
for a system if for any terminating execution of this system
the sequence of events observed on this execution puts the
FSA in an accept state.

3.2 Overview of the FE Approach

FLAVERS models the software system under analysis as a
Trace Flow Graph (TFG). The TFG is based on the control
flow graphs (CFGs) for the components of the system, where
the nodes in the TFG may be labeled with events. We call
the collection of all events with which the nodes of the TFG
are labeled the alphabet of this TFG. To reduce the size of
the representation, the CFGs are refined to remove all nodes
that are not labeled with an event or that do not affect
the sequencing of events. Thus, the resulting refined CFGs
correctly capture all possible sequences of events associated
with their corresponding component. At present, FLAVERS
handles interprocedural systems by in-lining called routines.
Since nodes with events are usually a small subset of all the
nodes in the original CFG, the refined CFG is typically much
smaller than the original CFG. Thus, in our experience, in-
lining of refined CFGs usually does not cause a severe blow-
up in the size of the CFG representation.

The TFG for a concurrent system is obtained by connect-
ing the refined, in-lined CFGs for all threads of control with
additional nodes and edges. Unique initial and final nodes
represent the start and the end states of the system respec-
tively. In addition, depending on the concurrency semantics
of the system being modeled, the TFG may include spe-
cial nodes that represent communication among the threads
of control. In all cases, special edges that represent inter-
leavings of events from the threads of control executing in
parallel are added to the TFG. Each path from the initial
to the final node in the TFG represents a sequence of events
that occur on the nodes along this path. The TFG is a
conservative representation of the sequences of events that
could occur along a system execution. That is, any sequence
of events in the TFG alphabet that could occur during ex-
ecution of the system is represented by some path in the
TFG with a corresponding event sequence. However, the
converse is not true, since CFGs and thus TFGs may con-
tain a number of infeasible paths, which do not correspond

to any system executions.

Formally, a TFG is a labeled directed graph G = (N, E,n
initialy Nfinal, B¢, L), where N is the set of graph nodes, E is
the set of edges, Ninitiat € N,Nfina € N are the initial and
final nodes, Y is an alphabet of event labels associated
with the graph, and L : N — Xg is a function that labels
some of the nodes of the graph with an event drawn from
this alphabet. For convenience in introducing the algorithm,
with each node n in the TFG we associate a set Pred(n)
containing all predecessors of n.

A property specified as an FSA holds for a system if this
FSA accepts event sequences for all paths through the TFG
for this system. FLAVERS uses the data flow based FE
analysis algorithm to solve this problem. This is done by
associating states of the property FSA with the nodes of
the TFG. We use a forward flow data flow algorithm where
states are propagated from one node to another, depending
on the FSA transition function associated with the events
that are encountered in the TFG. Thus, a state s is asso-
ciated with node n if and only if there is a path from the
initial node of the TFG to n that encounters a sequence of
events that drives the property FSA to state s when the path
reaches n. Note that since multiple paths may exist from
the initial node to node n, a set of property states may be
associated with each node. The iterative worklist algorithm
continues to propagate states to nodes in the TFG until it
reaches a fixed point, where no additional states can be as-
sociated with TFG nodes. The outcomes of this analysis are
either that (1) the set annotating the final node of the TFG
contains only accept states of the FSA, indicating that the
property holds on all executions of the system or (2) the set
annotating the final node of the TFG contains at least one
non-accept state of the FSA, which means that the property
may not hold on some executions.

The alphabet of the property must be a subset of the events
in the alphabet of the TFG: ¥ C ¥¢. To represent the
fact that the property “ignores” the events not in 3, we can
modify the transition function of the FSA to contain self-
transitions on all states of the property for all events that
are in the TFG alphabet but not in the FSA alphabet: Vs €
S,Ve € B¢ \ X,0(s,e) = s. As a result of this modification,
the alphabet of the property becomes equal to the alphabet
of the TFG: ¥ = X¢.

If the analysis finds that a property holds on all paths through
the TFG, then it is guaranteed to hold on all possible exe-
cutions of the system. When the analysis indicates that the
property does not hold on some paths through the TFG, this
may be because the system is in error or it may be because
all the paths in the system model that violate this property
correspond to infeasible paths. FLAVERS provides a means
for selectively removing infeasible paths from consideration
by allowing the analyst to add feasibility constraints, finite
state automata that model semantic restrictions on the sys-
tem’s execution that are not reflected in the TFG. For exam-
ple, CFGs, and the TFGs constructed from them, typically
do not model the values assigned to variables during exe-
cution. Thus, paths through the TFG may not represent
feasible executions because these paths do not respect the
values of some variables. A feasibility constraint could be

constructed to track the possible finite values or ranges of
values of such a variable, thereby eliminating some or all in-
feasible paths. Formally, a constraint automaton is an FSA
C = (Sc¢,sc,Xe,dc,cc), where c¢ is a unique crash state.

Each feasibility constraint has a distinct crash state, which
signifies that the sequence of events applied to the constraint
does not correspond to any legal behavior of the system. The
crash state of a constraint indicates that this constraint is
violated. For any state ¢ € Sc and any event e € X¢,
dc(t,e) = co if and only if observing event e at state ¢
does not correspond to any legal behavior of the constraint.
The crash state is a sink, which means that there are no
transitions from this state to any other state in the con-
straint. When feasibility constraints are used, the FE algo-
rithm propagates tuples of states where each tuple has an
element that represents a state of the property and an ele-
ment for a state of each of the constraints. More precisely,
tuple T = (p,ci1,...,ck), where p € Sp,¢; € S¢;,V1 < i<k
and the start tuple Tp is the tuple (sp,scy, ..., s¢,). If one
of the elements in a tuple represents a crash state for a con-
straint, this tuple is not propagated beyond this node.

Similar to the case where no feasibility constraints are used,
the FE algorithm runs until it reaches a fixed point, after
which the states of the property annotating the final TFG
node determine whether the property holds on all executions
of the system.

In the following, we refer to the collection consisting of the
TFG, property automaton P, and the constraint automata
Ci,...,Cy as an analysis problem. We require that the al-
phabets of the property and all constraint automata be con-
tained in the alphabet of the TFG: ¥p C X¢,Vi,1 < ¢ <
k,Xc;, C Xq.

We refer to the collection of all possible tuples for a given
analysis problem as Tuples:

Tuples = U U U (p,c1y .y Ch)

PESpc1€Se, cr€Scy,

A tuple transition function A : N x Tuples — Tuples de-
scribes propagation of tuples through TFG nodes. It is de-
fined as follows:

Vn € N, T = (p,ci,...,ck) € Tuples,

A(na T) = ((SP(pa L(n))a 601 (Cla L(n))a) 6Ck (Cka L(n)))

3.3 The FE Algorithm
The FE algorithm of FLAVERS is a forward flow data flow
algorithm over the TFG with the power-set of Tuples as the
lattice. The function space is provided by function €2 :
gTuples o N —5 2TuPles hased on the tuple transition function
A:
Vn € N, A € 27vples a
Q(A,n) ={T|3T" € A,A(T',n) =T}

The FE algorithm associates two sets with each node n in
the TFG, IN(n) and OUT(n). The IN set for node n rep-
resents the possible states of the system immediately before

this node is executed. This set is computed as the union
of all possible states in which the system can be after the
predecessor nodes for n are executed:

U ourwm (2)

PE Pred(n)

IN(n) =

The OUT set for node n represents the possible states of the
system immediately after this node is executed. This set is
computed by applying the transition function to n and the
tuples in its IN set and removing from the result all tuples
that contain at least one constraint crash state:

OUT(TL) :(U A(TL, T)) \ {T = (p’ €1, "'ack) €
TEIN(n) (3)

Tuples|3i,1 <i < k,c; = co, }

The algorithm is initialized by setting the OUT set of the
initial TFG node to contain the start tuple and setting all
other IN and OUT sets to be empty.

The algorithm repeatedly recomputes IN and OUT sets of
the TFG nodes in an arbitrary order, until a fixed point is
reached. To determine if the property holds on all terminal
executions of the system, all tuples in the OUT set of the
final TFG node are investigated. The property holds if all
states of the property FSA in these tuples are accept states:
VT = (p,c1,-..,ck) € OUT(Nfina) : p € Ap. If this condition
is not true, FLAVERS concludes that the property does not
hold.

4. THE sie VERSION OF FLAVERS

By making a simple modification to the FE algorithm, FLA-
VERS can check safety properties on infinite executions.
The most important change is in the representation of prop-
erties. Although we still use FSAs to represent safety prop-
erties to be checked on infinite executions, these FSAs have
somewhat different semantics from those used in the FE
algorithm.

Any event sequencing safety property can be formulated in
a form that describes undesirable behaviors of the software
system under analysis. The reason for this is that safety
properties are finitely refutable statements and so they can
be represented as sequences of events that should be ob-
served to refute the property. The refutation event must
be explicit and thus represents a certain point in the event
sequences. Similar to the approach of [6], in FSAs mod-
eling safety properties, we define a special violation state
v, which represents the property being refuted. v is a sink
state, which means that there is a transition from v to v on
any event in the alphabet of this FSA. We say that sequences
of events that correspond to traces of this FSA that contain
the violation state v violate the safety property represented
by this FSA. The following theorem offers a proof that any
regular event sequencing safety property can be represented
as an FSA with a violation state.

Theorem 1. Any regular event sequencing safety property
can be represented as an FSA with a unique violation state
v, such that the property does not hold on an event sequence
if and only if the trace of the FSA corresponding to this
sequence contains v.

The converse is true as well: any FSA with a violation state
represents a safety property.

Proof. Due to the space limitations, we do not present the
full formal proof, which is based on the formal definition of
safety [1].

O

The SIE algorithm of FLAVERS uses FSAs with a violation
state to represent properties. This algorithm proceeds in ex-
actly the same way as the F'E algorithm, with the exception
that instead of checking the final node of the TFG for vio-
lations, we check all nodes. It is not sufficient to check only
the final node, because it represents the terminal state of
the system, in which all threads of control terminated. This
terminal state is never reached if at least one thread enters
an infinite loop. Thus, the SIE algorithm checks if any node
n of the TFG contains a tuple T such that the property in
this tuple is in the violation state; this represents a violation
of the property.

S. THE rie VERSION OF FLAVERS

In this section we first describe the representation of liveness
properties used in our LIE FLAVERS algorithm, present an
overview of the approach, and then give the details of the
LIE algorithm itself.

5.1 Representing Liveness Properties

Since FSAs can encode only finite event sequences, we need
a different formalism to describe infinite behaviors. w-auto-
mata [21] provide such a formalism. Usually, for an infinite
trace sequence o to be accepted by an w-automaton, some
infinite pattern of accept states of this automaton must be
observed on the traces of this automaton on ¢. In particu-
lar, we use a well-known subclass of w-automata, Biichi au-
tomata. A deterministic Biichi automaton is an automaton
(SB,sB,XB,0B,AB), where Sp is a set of states, sp € Sp
is a start state, X p is the alphabet, Ap is a set of accept
states, and dp is the transition function Sp x ¥p — Sp.
A trace of a Biichi automaton on an infinite event sequence
o = e1,ez,... 1S an infinite sequence of states so, s1, ..., where
so is the start state and for any ¢ > 1, there is a transition
from s;_1 to s; on event e;. A Biichi automaton accepts
an infinite sequence of events e1, e, ... if the corresponding
trace contains an infinite number of accept states. For ex-
ample, the automaton in Figure 1 can be viewed as a Biichi
automaton. An infinite event sequence of alternating open
and close events open, close, open, close, ... is accepted
by this automaton because the corresponding trace of this
automaton so, 1, So, ... contains an infinite number of occur-
rences of accept state sp.

An arbitrary Biichi automaton cannot be used as a live-
ness property in our approach. The reason for this is that
in in FLAVERS formulation, if the event associated with
a node is not in the alphabet of a (property or constraint)
automaton, the automaton does not change state when the
transition function for tuples is used to compute the OUT
set for this node. Thus, it is possible that an execution trace

b a,b

Figure 2: An example property before transforma-
tion

has a suffix in which all tuples have the Biichi property au-
tomaton in its accept state because none of the events in
this trace is in the alphabet of this property. To avoid this
complication, we modify each Biichi property automaton in
a way that makes its alphabet equal to the alphabet of the
TFG. The modification is based on creating an additional
non-accept state for each accept state in the Biichi automa-
ton and having transitions on events that are not in the
alphabet of the Biichi automaton go from each accept state
to its newly created non-accept state.

The precise modification is given here. Let A be a Biichi
automaton for which ¥4 C 7, where X7 is the alphabet of
the TFG. We build a new Biichi automaton A’ equivalent to
A in the sense that it accepts the same set of infinite strings
in the following way:

1. Copy A to A’.
2. Set 2Ar = ET.

3. For each non-accepting state s € S4/, create new tran-
sitions 64/ (s,e) = s for each e € &7 \ 4.

4. For each accepting state s € Sys, split it into two
separate states s1 and s2, where s; is an accepting
state and s» is a non-accepting state. Let U be the set
of transitions entering s from other states of A’, V the
set of self-transitions on s, and W the set of transitions
from s to other states of A’.

We replace s with s; and s» as follows. Vt € U, create
t' from the state from which t originates to si. Vt €
V', create a self-transition on s;. Vi € W, create a
transition from s; to the state that ¢ is going to. In
addition, Ve € 37 \ X4, create a transition based on
e from s1 to s3. For so, create self-transitions on all
events in X7 \ X4, V¢ € W, create a transition from
39 to the state that ¢ is going to, and Vt € V, create a
transition based on the event that ¢ is based on from
So to S1.

Note that after the modification, Ve € 4,3t € VUW : ¢
is based on e, but Ve € Xr \ 4,3 € VU W : t is based
on e. Figures 2 and 3 illustrate the Biichi automaton trans-
formation defined here. We assume that ¥7 = {a,b,c} and
¥4 = {a,b}. Figure 2 shows a Biichi automaton before the
transformation and Figure 3 shows the corresponding Biichi
automaton after the transformation. Note that this trans-
formation does not cause a severe blow-up in the size of the
Biichi property automaton, since the number of extra states
created equals the number of accept states in the original
Biichi property automaton.

Figure 3: An example property after transformation

5.2 Overview of the L/E Approach

A direct and very naive approach to checking properties on
infinite executions would be to follow the FE algorithm with
a Biichi automaton representing the property of interest but
preserve the history of changes for each (T, n) pair, starting
with the initial pair (To, Ninitiar). Then we can check if the
current state is already present in this history and if an ac-
cept state of the property has been entered since its last
occurrence. Of course, the complexity of storing and pe-
rusing all that additional history information is prohibitive.
Instead, we use the FE algorithm but then evaluate the
TFG with all the tuples assigned to its nodes to find infinite
behaviors. In the rest of this chapter we give the details of
this LIE algorithm and the artifacts that it relies upon.

As described in Section 3.3, the FE algorithm of FLAVERS
associates sets of tuples OUT(n) with each node n in the
TFG. A tuple T is in OUT(n) if there is a path through the
TFG from the initial node ninitiar to n that corresponds to a
trace of events that would cause the automata for the prop-
erty and all constraints to transfer from their start states
to the states represented by tuple 7. Thus, the problem
of determining whether a particular tuple T appears in the
OUT set of node n can be viewed as a reachability problem
in the tuple-node space (Tuples, N). Formally, the tuple-
node space (Tuples, N) is a structure (P, E:,), where P is
the set of pairs (T, n) such that T € OUT(n) after the FE
state algorithm terminates and E, is the set of edges, where
((T1,n1), (T2,m2)) € Epn if (Th,m),(T2,n2) € PAm €
Pred(nz) A A(nl,Tl) =1T5.

We say that there exists a path from pair (T,n) to pair
(T",n') if there are pairs (Th, n1), ..., (Tk, ng) for some k > 0,
such that ((Ta n)a (Tla nl))a ((Tla nl)a (T2a nQ))a)

((Tk,n), (T',n")) € Etn. A reachability function Reach :
P — 2% for a given pair returns the set of all pairs that can
be reached for this pair through a path in the tuple-node
space: VY(T,n) € (Tuples, N), Reach((T,n)) = {(T',n")|3 a
path from (T,n) to (T’,n')}.

From an abstract level, our LIE algorithm uses an approach
for analyzing the tuple-node space that is very similar to
the approach used by model checking and reachability anal-
ysis approaches. We attempt to identify strongly-connected
components in the tuple-node space that do not have tu-
ples containing an accept state of the property. If such a
strongly-connected component is found, it represents one
or more infinite executions on which an accept state of the
property is not entered infinitely often. By the definition of
Biichi automata acceptance, the property is violated on such
executions. On the other hand, the absence of such strongly-

connected components signifies that the liveness property
holds on all infinite executions of the program. In the rest
of this section we describe this algorithm in detail.

5.3 The e Algorithm

The following algorithm for checking liveness properties with
FLAVERS assumes that the FE algorithm is used first, and
so every node of the TFG has a set of of tuples OUT asso-
ciated with it. The following steps are then performed:

1. Remove from the OUT sets of all TFG nodes all tuples
where the Biichi automaton is in an accept state.

2. Find all maximal strongly-connected components in
the resulting (reduced) tuple-node space. A maximal
strongly-connected component in the tuple-node space
(Tuples, N) is defined as a set of tuple-node pairs C C
P such that

(a) Y(T1,n1), (T2,n2) € C,
(T2, n2) € Reach((T1,n1)) and

(b) V(T1,n1) € C, (T2, m2) € P\ C,
(Th,n1) & Reach((T2,m2)) V
(T, n2) & Reach((T1,m1)).

3. If at least one strongly connected component has been
found, the property is violated. This property vi-
olation can be illustrated by inserting in the OUT
sets of all TFG nodes the tuples that were removed
in step 1 of this algorithm and showing a path from
(Tinitial, Minitiar) t0 this strongly-connected component.

Intuitively, if after removing all tuples in which the prop-
erty automaton is an accept state, no strongly-connected
components exist in the tuple-node space, it means that no
execution can be found on which the property automaton
enters an accept state only a finite number of times. This
means that the liveness property being checked holds on
all possible program executions. Alternatively, if a strongly
connected component is found, it represents a suffix of an
infinite execution such that on this suffix no accept states
of the property are entered. Thus, on this execution an ac-
cept state of the property is entered only a finite number of
times, and so the property is violated.

This approach is similar to the one used by model check-
ing [9]. In fact, our approach can be reduced to checking a
specific CTL formula AGAFa with model checking, where
a is true in a tuple-node pair (T, n) if and only if the state
of A in T is accepting. The major difference between our
approach and that of model checking is in the way that the
state space of the system is represented and in the way this
representation is computed.

5.4 Properties of the L/£ Algorithm
We need to prove termination, conservativeness, and a state-
ment about complexity of this algorithm.

Theorem 2 (Termination). For any LIE analysis prob-
lem (G, P,Ch,...,Cyk), the algorithm terminates.

Proof. This follows from the fact that the tuple-node space
is finite and termination of the efficient Tarjan algorithm [20]
for computing maximal strongly-connected components. [

Conservativeness of our algorithm means that if there exists
an execution of the system on which the Biichi property
automaton does not hold, the algorithm will detect that.

Theorem 3 (Conservativeness). If there exists an eze-
cution of the system on which there is a suffic where an
accept state of the property Bichi automaton is not reached
infinitely often, our algorithm will detect that.

Proof. Suppose that there is an execution of the system with
a suffix on which the Biichi automaton never enters an ac-
cept state. Since both the TFG model and the FE algo-
rithm are conservative [11], this means that there is a trace
through the tuple-node space of the problem on which the
Biichi automaton never enters an accept state. Since the
tuple-node space is finite, this trace must correspond to a
loop L in the tuple-node space. When our algorithm elim-
inates all states of the tuple-node space that correspond to
tuples in which the Biichi property automaton in an accept
state, loop L is still present, since in no tuples along this
loop is the property in an accept state. Thus, there exists a
strongly-connected component that contains this loop, and
so our algorithm will conclude that the property may be
violated. O

The following theorem states the worst-case complexity of
the algorithm.

Theorem 4 (Worst-case Complexity). The worst-case
complezity of our algorithm as described is O(|N|?| Tuples| +
|Bunl).

Proof. The |N|?| Tuples| component of the complexity for-
mula in the statement of this theorem is just the worst-case
complexity of the F/E algorithm that must be done first. The
worst-case complexity of the Tarjan algorithm for finding all
maximal strongly-connected components of the tuple-node
space is O(|P|+|E|). By observing that |P| < |N|| Tuples|,
we arrive at the stated complexity. O

This worst-case result is consistent with the complexity of
other finite state verification approaches on liveness proper-
ties, except for [10], where the worst-case bound in general
cannot be expressed in terms of the characteristics of the
property and system models.

5.5 Implementation

We have implemented the approach proposed in this paper
and carried out an initial, very preliminary, experiment, in
which we dealt with two liveness properties for a concurrent
Ada producer/consumer example. In this example, multi-
ple producer threads put items in an unbounded buffer and
multiple producer threads extract items from this buffer.
Our first property specifies that a consumer thread does not
starve, i.e. on all infinite executions a consumer thread ex-
tracts items from the buffer an infinite number of times.

This property can be violated, since the example does not
guarantee fair treatment of all threads. Our implementation
correctly finds an infinite execution that demonstrates star-
vation of a consumer thread. Our second property specifies
that on all infinite executions some buffer activity (putting
or extracting items) happens infinitely often. Our imple-
mentation correctly demonstrated that this property holds
on all possible executions of the example.

The producer/consumer example is scalable; we checked the
two properties described above on four different sizes of the
example: 2, 4, 6, 8, where the size corresponds to the number
of consumers/producers in the example. (Thus, the example
of size 2 has two producers and two consumers.) For each of
the sizes the outcome described in the previous paragraph
was obtained. An interesting observation is that for both
properties, the number of required constraints did not de-
pend on the size of the example. For the first property we
needed two constraints modeling control flow through select
threads and for the second property we needed three similar
constraints. In all cases, checking each of the properties took
under 4 seconds on a Pentium IIT Xeon 550 MHz machine.

6. FAIRNESS ASSUMPTIONS AND PRECI-
SION
IMPROVEMENTS

To be conservative, FLAVERS assumes that all traces
through the TFG or tuple-node space correspond to exe-
cutable behavior in the system being analyzed. Constraints
can be used to eliminate infeasible traces selectively. For
infinite executions, the algorithm described above assumes
that all loops can be executed infinitely. It would be more
realistic to recognize that some loops can execute infinitely,
while others cannot. Program optimization techniques could
be used to statically detect at least some of the finite loops.
Using FLAVERS constraint mechanism (e.g. modeling val-
ues of variables used in loop predicates), information could
be provided to improve or refine this static analysis. Alter-
natively, we believe that it may be more practical to let the
analyst mark those loops in threads that can never execute
infinitely (or, the analyst may mark all potentially infinite
thread loops). Given this information, the above algorithm
can be modified so as not to consider the strongly-connected
components in the tuple-node space that correspond to a set
of loops in the control flow of individual threads, if any of
these loops cannot be infinite.

Fairness conditions are often employed to ensure that some
reasonable behaviors of a system are taken into account. For
example, in a client-server configuration of system threads,
a possible fairness requirement is that if two client threads
request a service S infinitely often and the server satisfies S
infinitely often, then both clients obtain the service infinitely
often (in other words, it is not possible for one of the clients
to “starve” while the other always gets the service). With
FLAVERS, we can again use the feasibility constraint mech-
anism to represent fairness assumptions. Because feasibility
constraints are FSAs, these assumptions are rather strong.
For example, using only FSAs, it is impossible to represent
the fairness assumption about the client-server system de-
scribed above. However, we can represent an assumption
that after client A requested service, the server can serve

serve A

serve other serve other

serve other

Figure 4: A fairness FSA example

at most 3 requests from clients other than A before serv-
ing client A. An FSA modeling this fairness assumption is
shown in Figure 4. Transitions labeled request A repre-
sent the event of client A requesting service and transitions
labeled serve A and serve other represent the events of
the server serving A and a client other than A respectively.
(Note that in this example, we make two reasonable assump-
tions about the system: (1) a client does not post a request if
it has one unsatisfied request outstanding and (2) the server
does not provide an unrequested service.) We believe that
such fairness conditions are practical, since they can be de-
rived from the actual specifications of the description of the
environment in which the software system under analysis
has to execute, unlike fairness conditions that specify that
a service will be offered infinitely often.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have extended the original data flow analy-
sis algorithm of FLAVERS (FFE algorithm) to check proper-
ties on infinite executions of concurrent software systems.
Two different algorithms are presented, one for checking
safety properties and the other for checking liveness prop-
erties. Although, by representing safety properties as Biichi
automata, we could use the LIE algorithm for checking both
kinds of properties on infinite executions, the SIE algorithm
has better worst-case complexity bounds than the LIE al-
gorithm. Both of these algorithms do not involve changing
the existing analysis algorithm of FLAVERS but rather add
to it, in a language independent way. This means that the
feasibility constraints of FLAVERS that improve precision
of the analysis can be used successfully with the proposed
algorithms. This is particularly attractive since feasibility
constraints can be used to model fairness assumptions about
the system under analysis or to refine information about infi-
nite and finite loops. Of course, the problem of determining
precisely whether a given loop can be infinite is undecidable.
Efficient, conservative automated techniques can be used for
this problem and supplemented with guidance from the an-
alyst. With such information, the precision of the analysis
results would improve considerably. Thus, we believe that
this approach would provide a more precise and realistic ba-
sis for analysis and incorporates application-specific fairness
and executability considerations.

The worst-case complexity of the SIE algorithm is the same
as that of the FE algorithm, O(N?S), where N is the num-
ber of nodes in the model of the software system under
analysis, S is the number of states in the synchronous cross-
product of the automaton representing the property of inter-

est and all feasibility constraint automata used by FLAVERS
to improve its analysis precision. The worst-case complexity
of the proposed algorithm is O(N2S + E), where E is the
number of transitions among the states of the cross-product
automaton. This complexity is similar to that of other finite
state verification approaches for checking liveness properties
of concurrent software [9, 13].

This research was partially supported by the Air Force Re-
search Laboratory/IFTD and the Defense Advanced Re-
search Projects Agency under Contract F30602-97-2-0032 by
the National Science Foundation under Grant CCR-9708184
and by IBM Faculty Partnership Awards dated 5/21/99.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied of the Defense Advanced Research Projects Agency,
the Air Force Research Laboratory/ IFTD, the U.S. Govern-
ment, the National Science Foundation, or of IBM.

8. REFERENCES
[1] B. Alpern and F. B. Schneider. Defining liveness.
Information Processing Letters, 21(4):181-185, Oct.
1985.

[2] B. Alpern and F. B. Schneider. Recognizing safety and
liveness. Distributed Computing, 2:117-126, 1987.

[3] G. R. Andrews. Concurrent Programming —
Principles and Practice. Benjamin/Cummins
Publishing Company Ltd., 1991.

[4] J. A. Bergstra and J. W. Klop. Algebra of
communicating processes with abstraction. Theoretical
Computer Science, 37(1):77-121, May 1985.

[5] S. C. Cheung, D. Giannakopoulou, and J. Kramer.
Verification of liveness properties using compositional
reachability analysis. In Proceedings of the 6th
European Software Engineering Conference and 5th
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 227243, Sept. 1997.

[6] S. C. Cheung and J. Kramer. Tractable dataflow
analysis for distributed systems. IEEE Transactions
on Software Engineering, 20(8):579-593, Aug. 1994.

[7] S. C. Cheung and J. Kramer. Compositional
reachability analysis of finite-state distributed systems
with user-specified constraints. In Proceedings of the
3rd ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 140-151, Oct. 1995.

[8] S. C. Cheung and J. Kramer. Checking safety
properties using compositional reachability analysis.
ACM Transactions on Software Engineering and
Methodology, 8(1):49-78, Jan. 1999.

[9] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM

Transactions of Programming Languages and Systems,
8(2):244-263, Apr. 1986.

[10] J. C. Corbett and G. S. Avrunin. Using integer
programming to verify general safety and liveness
properties. Formal Methods in System Design,
6:97-123, Jan. 1995.

[11] M. B. Dwyer and L. A. Clarke. Data flow analysis for
verifying properties of concurrent programs. In
Proceedings of the 2nd ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pages 62-75,
Dec. 1994.

[12] M. B. Dwyer and L. A. Clarke. Flow analysis for
verifying specifications of concurrent and distributed
software. Technical Report 1999-52, University of
Massachusetts, Amherst, Aug. 1999.
ftp://ftp.cs.umass.edu/pub/techrept/
techreport/1999/UM-CS-1999-052.ps.

[13] G. J. Holzmann. The model checking SPIN. IEEE
Transactions on Software Engineering, 23(5):279-295,
May 1997.

[14] G. E. Hughes and M. J. Creswell. Introduction to
Modal Logic. Methuen, London, 1977.

[15] R. Milner. A Calculus of Communicating Systems,
volume 92. Springer-Verlag, Berlin, 1980.

[16] G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data
flow analysis for checking properties of concurrent
Java programs. In Proceedings of the 21st
International Conference on Software Engineering,
pages 399-410, May 1999.

[17] G. Naumovich, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil. Applying static analysis to software
architectures. In Proceedings of the 6th European
Software Engineering Conference and 5th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, pages 77-93, Nov. 1997.

[18] K. M. Olender and L. J. Osterweil. Cecil: A
sequencing constraint language for automatic static
analysis generation. IEEE Transactions on Software
Engineering, 16(3):268-280, Mar. 1990.

[19] A. Pnueli. The temporal logic of programs. In
Proceedings of the 18th Symposium on Foundations of
Computer Science, pages 4657, Oct.—Nov. 1977.

[20] R. E. Tarjan. Depth-first search and linear graph
algorithms. STAM Journal on Computing,
1(2):146-160, June 1972.

[21] W. Thomas. Automata on infinite objects. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, chapter 4, pages 133-191. Elsevier Science
Publishers B. V., 1990.

[22] M. Y. Vardi. Verification of concurrent programs: The
automata-theoretic framework. In Proceedings of the
2nd Annual Symposium on Logic in Computer
Science, pages 167-176, June 1987.

