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In this paper, we argue that conventional operating systems need to
be enhanced with predictable resource management mechanisms to
meet the diverse performance requirements of emerging multimedia
and web applications. We present QLinux—a multimedia operat-
ing system based on the Linux kernel that meets this requirement.
QLinux employs hierarchical schedulers for fair, predictable allo-
cation of processor, disk and network bandwidth, and accounting
mechanisms for appropriate charging of resource usage. We exper-
imentally evaluate the efficacy of these mechanisms using bench-
marks and real-world applications. Our experimental results show

that (i) emerging applications can indeed benefit from predictable
allocation of resources, and (ii) the overheads imposed by the re-
source allocation mechanisms in QLinux are small. For instance,
we show that the QLinux CPU scheduler can provide predictable
performance guarantees to applications such as web servers and
MPEG players, albeit at the expense of increasing the scheduling
overhead from 1 s to 4 s. We conclude from our experiments that
the benefits due to the resource management mechanisms in QLinux
outweigh their increased overheads, making thema practical choice
for conventional operating systems.

Area: multimedia system support and networking

Recent advances in computing and communication technologies
have led to the emergence of a wide variety of applications with
diverse performance requirements. Today’s general purpose oper-
ating systems are required to support a mix of (i) conventional best-
effort applications that desire low average response times but no
absolute performance guarantees, (ii) throughput-intensive applica-
tions that desire high average throughput, and (iii) soft real-time
applications that require performance guarantees from the operat-
ing system. Consider the following examples of application mixes
that are typical of today’s computing environments.

Office environments: Typical office PCs run a mix of interac-
tive applications such as word processors and spreadsheets,
soft real-time applications such as Real Audio/Video players,
and throughput-intensive applications such as large compila-
tion and simulations jobs.

Home environments: Home PCs run a mix of interactive web
browsers, soft real-time MP3 players, and graphic-intensive
multi-player games.

Large-scale servers: Large servers run a variety of appli-
cations such as network file services, web hosting of mul-
tiple domains, database services, and real-time audio/video
streaming.

Whereas less demanding application mixes can be easily handled
by a conventional best-effort operating system running on a fast pro-
cessor, studies have shown that such operating systems are grossly
inadequate for meeting the diverse requirements imposed by de-
manding application mixes [16, 18]. To illustrate, conventional
operating systems running on even the fastest processors today
are unable to provide jitter-free playback of full-motion MPEG-2
video in the presence of other applications such as long-running
compile tasks. The primary reason for this inadequacy is the lack
of service differentiation among applications—such operating sys-
tems provide a single class of best-effort service to all applications
regardless of their actual performance requirements. Moreover,
special-purpose operating systems designed for a particular appli-
cation class (e.g., real-time operating systems [15, 32]) are typically
unable or inefficient at handling other classes of applications. This
necessitates the design of an operating system that (i) multiplexes
its resources among applications in a predictable manner, and (ii)
uses service differentiation to meet the performance requirements
of individual applications.

The QLinux operating system that we have developed meets
these requirements by enhancing the standard Linux operating sys-
tem with quality of service support. To do so, QLinux employs
schedulers that can allocate resources to individual applications as
well as application classes in a predictable manner. These sched-
ulers are hierarchical—they support class-specific schedulers that
schedule requests based on the performance requirements of that
class (and thereby provide service differentiation across application
classes). Specifically, QLinux employs four key components: (i)
hierarchical start-time fair queueing (H-SFQ) CPU scheduler that
allocates CPU bandwidth fairly among application classes [10], (ii)
hierarchical start-time fair queueing (H-SFQ) packet scheduler that
can fairly allocate network interface bandwidth to various applica-
tions [11], (iii) Cello disk scheduler that can support disk requests
with diverse performance requirements [22], and (iv) lazy receiver
processing for appropriate accounting of protocol processing over-
heads [7]. Figure 1 illustrates these components. We have imple-











The workload for our experiments consists of a combination of
real-world applications, benchmarks, and sample applications that
we wrote to demonstrate specific features. These applications are
as follows:

Inf: an application that executes an infinite loop and repre-
sents a simple compute-intensive best-effort application.

mpeg play: the Berkeley software MPEG-1 decoder; repre-
sents a compute-intensive soft real-time application.

Apache web server and webclient: A widely-used web server
and a configurable client application that generates http re-
quests at a specified rate; represents an I/O-intensive best-
effort application.

Streaming media server: A server that transmits (streams)
MPEG-1 files over the network using UDP; represents an
I/O-intensive soft real-time application.

Net inf: an application that sends UDPdata as fast as possible
on a socket; represents an I/O-intensive best-effort applica-
tion.

Dhrystone: A compute-intensive benchmark for measuring
integer CPU performance.

lmbench: A comprehensive benchmark suite that measures
various aspects of operating system performance such as con-
text switching, memory, file I/O, networking, and cache per-
formance.

In what follows, we present the results of our experimental eval-
uation using these applications and benchmarks. Since the code
for the Cello disk scheduler was unstable at the time of writing,
we have not included experimental results for Cello (we hope to
include these results in the final version of the paper).

To demonstrate that the H-SFQ CPU scheduler can allocate CPU
bandwidth to applications in proportion to their weights, we created
two classes in the scheduling hierarchy and ran the Inf application
in each class. We assigned different combination of weights to the
two classes (e.g., 1:1, 1:2, 1:4) and measured the number of loops
executed by Inf in each case. Figures 5(a) and (b) depict our results.
Figure 5(a) shows the progress made by the two Inf applications
for a specific weight assignment of 1:4. Figure 5(b) shows the
number of iterations executed by the two processes at t=337 seconds
for different weight assignments. Together, the two figures show
that each application gets processor bandwidth in proportion to its
weight.

Next, we conducted an experiment to demonstrate the fair work-
conserving nature of H-SFQ. Again, we created two application
classes and gave them equal weights (1:1). The Inf application
was run in each class and as expected each received 50% of the
CPU bandwidth. At t=250 seconds, we suspended one of the Inf
processes. SinceH-SFQ iswork-conserving in nature, the scheduler
reallocated bandwidth unused by the suspended processes to the
running Inf process (causing it’s rate of progress to double). The
suspended process was restarted at t=350 seconds, causing the two
processes to again receive bandwidth in the proportion 1:1. Figure
5(c) depicts this scenario by plotting the progress made by the
continuously running Inf process. As shown, the process makes
progress at twice the rate between and receives its
normal share in other time intervals.

We then conducted experiments to show that real-world applica-
tions also benefit from H-SFQ. To show that the CPU scheduler can

effectively isolate applications from one another, we created two
classes—soft real-time and best-effort—and assigned them equal
weights. The best-effort leaf class was scheduled using the standard
time sharing scheduler, while the soft real-time leaf class was sched-
uled using SFQ. We ran the software MPEG decoder (mpeg play)
in the soft real-time class and used it to decode a five minute long
MPEG-1 clip with an average bit rate of 1.49 Mb/s. The Dhrys-
tone benchmark constituted the load in the best-effort class. We
increased the load in the best-effort class (by increasing the num-
ber of independent Dhrystone processes) and measured the CPU
bandwidth received by the MPEG decoder in each case. We then
repeated this experiment using vanilla Linux. Figure 6(a) plots
our results. As shown in the figure, in case of QLinux, the CPU
bandwidth received by the MPEG decoder was independent of the
load in the best-effort classes. Since vanilla Linux employs a best-
effort scheduler, all applications, including the MPEG decoder, are
degraded equally as the load increases. This demonstrates that
H-SFQ, in addition to proportionate allocation, can also isolate ap-
plication classes from one another. To further demonstrate this
behavior, we ran two Apache web servers in two different classes
and gave them different weights. The webclient application was
used to send a large number of http requests to each web server
and we measured the processor bandwidth received by each class.
As shown in Figure 6(b), the H-SFQ scheduler allocates processor
bandwidth to the two classes in proportion to their weights. These
experiments demonstrate that QLinux can be employed for web
hosting scenarios where multiple web domains are hosted from the
same physical server. Each web domain can be allocated a certain
fraction of the resources and can be effectively isolated from the
load in other domains.

To demonstrate that the H-SFQ packet scheduler can allocate net-
work interface bandwidth to applications in proportion to their
weights, we created two classes in the scheduling hierarchy and
ran the Net inf application in each class. The UDP packets sent
by Net inf were received as fast as possible by a receiver process
running on a lightly loaded PC. We varied the weights assigned to
the two classes and measured the number of packets sent by the
two processes for different weight assignments. Figure 7(a) depicts
the number of bytes received from each Net inf for one particular
weight assignment (1:4). As expected, both classes receive band-
width in proportion to their weights. To demonstrate that bandwidth
received by a class in independent of the packet size, we repeated
the experiment using different packet sizes for the two classes. Fig-
ure 7(b) shows that, despite using different packet sizes, the two
classes again receive bandwidth in proportion to their weights.

To demonstrate that real-world applications also benefit from
these features, we conducted an experiment with two classes—soft
real-time and best-effort. The streaming media server was run in
the soft real-time class and was used to stream a five minute long
variable bit-rate MPEG-1 clip (average bit rate of the clip was 1.49
Mb/s). We ran an increasing number of Net inf applications in
the best-effort class and measured their impact on the bandwidth
received by the streaming media server. We then repeated this
experiment on vanilla Linux. As shown in Figure 8, QLinux is
able to effectively isolate the streaming media server from the best-
effort class—the server is able to stream data at its real-time rate
regardless of the best-effort load. Linux, on the other hand, is
unable to provide this isolation—increasing the best-effort load
reduces the bandwidth received by the streaming media server and
also increases the amount of packet loss incurred by all applications.
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To demonstrate the combined benefits of the CPU and packet sched-
ulers, we considered a scenario consisting of a loaded web server
and several I/O intensive applications. We created two classes in
the CPU and packet scheduler hierarchies. We ran a simulated
web server in one CPU/packet scheduler class and ran all the I/O-
intensive Net inf applications in the other CPU/packet scheduler
class. Our simulated web server consisted of a sender application
that reads an actual web server trace and sends data using TCP (each
send corresponds to an http request in the trace file; the timing and
size of each request was taken directly from the information spec-
ified in the traces). The publicly-available ClarkNet server traces
were employed to simulate the web server workload [5]. We in-
creased the number of Net inf applications in the best-effort class
and measured their impact on the throughput of the web server. The
experiment was then repeated for vanilla Linux. Figure 9 depicts
our results. Observe that, the web server simulates the http protocol
which runs on TCP. TCP employs congestion control mechanisms
that back off in the presence of congestion. Consequently, as the
load due to Net inf applications increases, congestion builds up in
the ethernet switch interconnecting the senders and receivers (due
to the presence of limited buffers at switches), causing TCP to
reduce its sending rate. Both QLinux and Linux experience this

phenomenon, resulting in a degradation in throughput for the web
workload. However, since the QLinux CPU and packet schedulers
reserve bandwidth for the web server, they can effectively isolate
the web workload from the Net inf applications. Hence, the degra-
dation in throughput in QLinux is significantly smaller than that in
Linux. This demonstrates that use of fair, predictable schedulers for
each resource in an OS can yield significant performance benefits
to applications.

To demonstrate the impact of lazy receiver processing, we ran two
Apache web servers in QLinux. In the presence of a light load,
the response time of a server to retrieve a 1.9KB file was measured
to be 50.7ms. We then simulated a simple denial of service attack
scenario, in which one server was bombarded with http requests at
a high rate (300 reqs/s). In the presence of this load, the response
time of the other server (which was lightly loaded) was found to
be 70.1ms. We then repeated the experiment on vanilla Linux and
found the response time of the lightly loaded web server to be
79.8ms. Since LRP ensures that protocol processing overheads for
a packet are charged to the application receiving that packet, the
lightly loaded server is not charged for the packets received by the
overloaded server. Hence, it provides a better response time to its
requests (note that, some degradation in response time is inevitable
due to the congestion control mechanism in TCP and the increased
load). Linux, on the other hand, does not account for protocol
processing overheads in the same manner, resulting in a greater
degradation in response time. This demonstrates that proper ac-
counting of kernel overheads can improve application performance
and help isolate unrelated applications during overloads or denial
of service attacks.

In the previous sections, we demonstrated that applications can ben-
efit from the sophisticated resource management techniques em-
ployed by QLinux. In what follows, we measure the overheads
imposed by these mechanisms using microbenchmarks.

Tomeasure the overhead imposed by theCPU scheduler, we cre-
ated a leaf node and ran a solitary Inf process in that class. We then
progressively increased the depth of the scheduling hierarchy (by
introducing intermediate nodes between this leaf and the root) and
measured the bandwidth received by Inf in each case. Observe that,
increasing the depth of the scheduling hierarchy may increase the
scheduling overhead (since H-SFQ recursively calls the scheduler
at each intermediate node until a thread in the leaf class is selected).
A larger scheduling overhead will correspondingly reduce the band-
width received by applications (since a larger fraction of the CPU
time would be spent in making scheduling decisions). Figure 10(a)
plots the number of iterations executed by Inf in 300 seconds as
we increase the depth of the scheduling hierarchy. As shown in
the figure, the bandwidth received by Inf is relatively unaffected by
the increasing scheduling overhead, thereby demonstrating that the
overheads imposed by H-SFQ are small in practice.

We then performed a similar experiment for the H-SFQ packet
scheduler. The experiment consisted of running the Net inf process
in a scheduling hierarchy with increasing depth and measuring the
bandwidth received by Net inf in each case. As in the case of
the CPU scheduler, the bandwidth received by Net inf is relatively
unaffected by the scheduling overhead (see Figure 10(b)). Together,
these experiments show that hierarchical schedulers such as H-SFQ
are feasible in practice.
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Test QLinux Linux

syscall overhead 1 s 1 s
400 s 400 s
2 ms 2 ms

Context switch (2 proc/ 0KB) 4 s 1 s
Context switch (16 proc/ 64KB) 286 s 283 s

Local UDP latency 47 s 53 s
Local TCP latency 83 s 82 s
File create (0 KB file) 21 s 21 s
File delete (0 KB file) 2 s 2 s

In our final experiment, we employed the widely used Lmbench
benchmark to compare QLinux and Linux. Lmbench is a sophis-
ticated benchmark that measures several aspects of system perfor-
mance, such as system call overheads, context switch times, net-
work I/O, file I/O and memory performance [13]. We employed
Lmbench version 1.9 for our experiments. We first ran Lmbench in
the default best-effort class on QLinux and then repeated the exper-
iment on Linux. In each case, we averaged the statistics reported by
Lmbench over several runs to eliminate experimental error. Table
4 summarizes our results (Lmbench produces a large number of
statistics; we only list those statistics that are relevant to QLinux).

Note that the QLinux code is untuned, while Linux code is
carefully tuned by the Linux kernel developers. Table 4 shows that
the performance of QLinux is comparable to Linux; however, the
increased complexity of the QLinux schedulers do result in a larger
overhead. For instance, the context switch overhead increases from
1 s to 4 s for two active processes; however this overhead is still
several orders of magnitude smaller than the quantum duration of
100 ms. The network latency for TCP and UDP, as well as file I/O
overheads and system call overheads are comparable in both cases.

The growing popularity of the multimedia applications has resulted
in several research efforts that have focused on the design of pre-
dictable resource allocation mechanisms. Consequently, in the re-
cent past, several techniques have been proposed for the predictable

allocation of processor [8, 10, 12, 17, 19, 20, 25, 26, 28, 29, 31],
network interface [2, 4, 6, 9, 11, 23] and disk [1, 14, 30] bandwidth.
While each effort differs in the exact mechanism employed to pro-
vide predictable performance (e.g., admission control, rate-based
allocation, fair queuing), the broad goals are similar—add quality
of service support to an operating system. The key contribution of
QLinux is to synthesize/integrate many of these mechanisms into
a single system and demonstrate the benefits of this integration on
application performance. Whereas the mechanisms instantiated in
QLinux are based on our past work in this area, we believe that
it would have been relatively easy to implement some other pre-
dictable resource allocation mechanism and demonstrate similar
benefits.

Some other recent operating system efforts have also focused
on the design of predictable resource allocation mechanisms. The
Nemesis operating system, for instance, employs mechanisms that
provide quality of service guarantees when allocating processor,
network and disk bandwidth [21, 1]. Unlike QLinux, which em-
ploys weights to express resource requirements, Nemesis requires
applications to specify their resources requirements in terms of tu-
ples , where units of the resource are requested every
units of time, and is the additional bandwidth requested, if avail-
able. Nemesis is a multi-service multimedia operating system that
was designed from the grounds up; QLinux, on the other hand,
builds upon the Linux kernel and benefits from the continuing en-
hancement made to the kernel by the Linux developers. The Eclipse
operating system, based on FreeBSD, is in many respect similar to
QLinux [3]. Like QLinux, Eclipse employs hierarchical schedulers
to allocate OS resources (the actual scheduling algorithms that are
employed are, however, different). Eclipse employs a special file
system called that is used by applications to specify their
resource requirements [3]. QLinux and Eclipse are independent and
parallel research efforts, both ofwhich attempt to improve upon con-
ventional best effort operating systems. Finally, many commercial
operating systems are beginning to employ some of these features.
High end versions of Solaris 2.7, for instance, include a resource
manager that enables fine-grain allocation of various resources to
processes and process groups [27].

Emerging multimedia and web applications require conventional
operating systems to be enhanced along several dimensions. In this
paper, we presented the QLinux multimedia operating system that
enhances the resource management mechanisms in vanilla Linux.



QLinux employs four key components: the H-SFQ CPU sched-
uler, the H-SFQ packet scheduler, the Cello disk scheduler and
the lazy receiver processing-based network subsystem. Together,
these mechanisms ensure fair, predictable allocation of processor,
network and disk bandwidth as well as accurate accounting of re-
source usage. We experimentally demonstrated the efficacy of these
mechanisms using benchmarks as well as common multimedia and
web applications. Our experimental results showed that multimedia
and web applications can indeed benefit from predictable resource
allocation and application isolation offered by QLinux. Further-
more, the overheads imposed by these mechanisms were shown to
be small. Based on these results, we argue that all conventional
operating systems should be enhanced with such mechanisms to
meet the needs of emerging applications.

As part of future work, we plan to enhance QLinux along several
dimensions. In particular, we are designing resource allocation
mechanisms that will enable QLinux to scale to large symmetric
multiprocessors and clusters of servers.

Jasleen Sahani, TR.Vishwanath andHarrickVin helped develop the
initial version of QLinux. Raghav Srinivasan helped us implement
the Cello disk scheduler in QLinux. Gisli Hjalmtysson provided
useful inputs during the inception of QLinux in the summer of
1998. Finally, we thank the many users of QLinux and the research
community for providing valuable feedback (and bug reports) for
enhancing QLinux.
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