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Abstract

In this paper, we argue that conventional operating systems need to
be enhanced with predictable resource management mechanisms to
meet the diverse performance requirements of emerging multimedia
and web applications. We present QLinux—a multimedia operat-
ing system based on the Linux kernel that meets this requirement.
QLinux employs hierarchical schedulers for fair, predictable allo-
cation of processor, disk and network bandwidth, and accounting
mechanisms for appropriate charging of resource usage. We exper-
imentally evaluate the efficacy of these mechanisms using bench-
marks and real-world applications. Our experimental results show
that (i) emerging applications can indeed benefit from predictable
allocation of resources, and (ii) the overheads imposed by the re-
source allocation mechanisms in QLinux are small. For instance,
we show that the QLinux CPU scheduler can provide predictable
performance guarantees to applications such as web servers and
MPEG players, albeit at the expense of increasing the scheduling
overhead from 1 us to 4 pus. We conclude from our experiments that
the benefits due to the resource management mechanisms in QLinux
outweigh their increased overheads, making them a practical choice
for conventional operating systems.
Area: multimedia system support and networking

1 Introduction

Recent advances in computing and communication technologies
have led to the emergence of a wide variety of applications with
diverse performance requirements. Today’s general purpose oper-
ating systems are required to support a mix of (i) conventional best-
effort applications that desire low average response times but no
absolute performance guarantees, (ii) throughput-intensive applica-
tions that desire high average throughput, and (iii) soft real-time
applications that require performance guarantees from the operat-
ing system. Consider the following examples of application mixes
that are typical of today’s computing environments.

o Office environments: Typical office PCs run a mix of interac-
tive applications such as word processors and spreadsheets,
soft real-time applications such as Real Audio/Video players,
and throughput-intensive applications such as large compila-
tion and simulations jobs.
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o Home environments: Home PCs run a mix of interactive web
browsers, soft real-time MP3 players, and graphic-intensive
multi-player games.

e Large-scale servers: Large servers run a variety of appli-
cations such as network file services, web hosting of mul-
tiple domains, database services, and real-time audio/video
streaming.

Whereas less demanding application mixes can be easily handled
by a conventional best-effort operating system running on a fast pro-
cessor, studies have shown that such operating systems are grossly
inadequate for meeting the diverse requirements imposed by de-
manding application mixes [16, 18]. To illustrate, conventional
operating systems running on even the fastest processors today
are unable to provide jitter-free playback of full-motion MPEG-2
video in the presence of other applications such as long-running
compile tasks. The primary reason for this inadequacy is the lack
of service differentiation among applications—such operating sys-
tems provide a single class of best-effort service to all applications
regardless of their actual performance requirements.' Moreover,
special-purpose operating systems designed for a particular appli-
cation class (e.g., real-time operating systems [15, 32]) are typically
unable or inefficient at handling other classes of applications. This
necessitates the design of an operating system that (i) multiplexes
its resources among applications in a predictable manner, and (ii)
uses service differentiation to meet the performance requirements
of individual applications.

The QLinux operating system that we have developed meets
these requirements by enhancing the standard Linux operating sys-
tem with quality of service support. To do so, QLinux employs
schedulers that can allocate resources to individual applications as
well as application classes in a predictable manner. These sched-
ulers are hierarchical —they support class-specific schedulers that
schedule requests based on the performance requirements of that
class (and thereby provide service differentiation across application
classes). Specifically, QLinux employs four key components: (i)
hierarchical start-time fair queueing (H-SFQ) CPU scheduler that
allocates CPU bandwidth fairly among application classes [10], (ii)
hierarchical start-time fair queueing (H-SFQ) packet scheduler that
can fairly allocate network interface bandwidth to various applica-
tions [11], (iii) Cello disk scheduler that can support disk requests
with diverse performance requirements [22], and (iv) lazy receiver
processing for appropriate accounting of protocol processing over-
heads [7]. Figure 1 illustrates these components. We have imple-

Rather than reduce the processor shares of all applications
equally, an operating system that provides service differentiation
might reduce the fraction of the CPU bandwidth allocated to best-
effort compile jobs and thereby reduce the jitter in soft real-time video
playback.
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Figure 1: Key components of QLinux.

mented these components into QLinux and have made the source
code freely available to the research community.?

In this paper, we make four key contributions. First, we show
how to synthesize several recent innovations in OS resource man-
agement into a seamless multimedia operating system. Second, we
consider several real-world applications and application scenarios
and demonstrate that these resource management techniques en-
able QLinux to provide benefits such as predictable performance,
application isolation and fair resource allocation. For instance,
we show that QLinux enables a streaming media server to stream
MPEG-1 files at their real-time rates regardless of the background
load. Third, we show that existing/legacy applications can also ben-
efit from these features without any modifications whatsoever to the
application source code. Finally, we show that the implementation
overheads of these sophisticated resource management techniques
are small, making them a practical choice for general-purpose op-
erating systems. For instance, we show that the context switch
overhead due to the H-SFQ CPU scheduler increases from 1 us to
4 us, but the increased overhead is still substantially smaller than
the quantum duration. Based on these results, we argue that con-
ventional operating systems should be enhanced with such resource
management mechanisms so as to meet the needs of emerging ap-
plications as well as existing and legacy applications.

The rest of this paper is structured as follows. Section 2 dis-
cusses the principles underlying the design of QLinux and briefly
describes each component employed by QLinux. Section 3 presents
the results of our experimental evaluation. Section 4 discusses re-
lated work, and finally, Section 5 presents some concluding remarks.

2 QLinux Philosophy and Overview

In this section, we first present the principles underlying the de-
sign and implementation of QLinux. We then briefly describe
each resource management component employed by QLinux (these
mechanisms are described in detail elsewhere [7, 10, 11, 22]).

2.1 QLinux Design Principles

The design and implementation of QLinux is based on the following
principles:

e Support for Multiple Service Classes: Today's general pur-
pose computing environments consist of a heterogeneous mix
of applications with different performance requirements. As
argued in Section 1, operating systems that provide a sin-
gle class of service to all applications are inadequate for

2Source code and documentation for QLinux is available from
http://www.cs.umass.edu/"lass/software/qlinux.

handling such diverse application mixes. To efficiently sup-
port such mixes, an operating system should support multi-
ple classes of service and align the service provided within
each class with application needs. For instance, an operat-
ing system may support three classes of service—interactive,
throughput-intensive and soft real-time—and treat applica-
tions within each class differently (interactive applications
are provided low average response times, real-time applica-
tions are provided performance guarantees, and throughput-
intensive applications are provided high aggregate through-
put). Other operating systems such as Nemesis [21] have also
espoused such a multi-service approach to operating system
design.

o Predictable resource allocation: A multi-service operating
system requires mechanisms that can multiplex its resources
among applications in a predictable manner. Many operating
systems (e.g., Solaris, UNIX SVR4) support multiple appli-
cation classes using strict priority across classes. Studies have
shown that such an approach can induce starvation in lower
priority tasks even for common application mixes [16). For
instance, it has been shown that running a compute-intensive
MPEG decoder in the highest priority real-time class on So-
laris can cause even kernel tasks (which run at a lower prior-
ity) to starve, causing the entire system to “freeze” [16]. One
approach to alleviate the starvation problem is to use dynamic
priorities. Whereas the design of dynamic priority mecha-
nisms for homogeneous workloads is easy, the design of such
techniques for heterogenous workloads is challenging. Con-
sequently, QLinux advocates rate-based mechanisms over
priority-based mechanisms for predictable resource alloca-
tion. Rate-based techniques allow a weight to be assigned
to individual applications and/or application classes and al-
locate resources in proportion to these wegyghts. Thus, an
application with weight w; is allocated E:I'"_: fraction of

the resource.® Observe that, rate-based allocation techniques
are distinct from static partitioning of resources—they can
dynamically reallocate resources unused by an application to
other applications, and thereby yield better resource utiliza-
tion than static partitioning.

o Service differentiation: Since different application classes
have different performance requirements, an operating sys-
tem that supports multiple service classes should provide ser-
vice differentiation by treating applications within each class
differently. To do so, QLinux employs hierarchical sched-
ulers that support multiple class-specific schedulers via a flex-
ible multi-level scheduling structure. A hierarchical sched-
uler in QLinux allocates a certain fraction of the resource to
each class-specific scheduler using rate-based mechanisms;
class-specific schedulers, in turn, use their allocations to ser-
vice requests using an appropriate scheduling algorithm. The
flexibility of using a different class-specific scheduler for each
class allows QLinux to tailor its service to the needs of in-
dividual applications. Moreover, the approach is extensible
since it allows existing class-specific schedulers to be modi-
fied, or new schedulers to be added.

o Support for legacy applications: We believe that only those
mechanisms that preserve compatibility with existing and

3Such a resource allocation mechanism performs relative
allocations—the fraction allocated to an application depends on the
weights assigned to other applications. Rate-based mechanisms that
allocate resource in absolute terms have also been developed. Such
mechanisms allow applications to be allocated an absolute fraction f;
(Z fi < 1), or allocate z; units every y; units of time. We chose a

relative allocation mechanism based on weights due to its simplicity.



legacy applications are likely to be adapted by mainstream
operating systems in the near future. Hence, QLinux chooses
an incremental approach to OS design. Each mechanism
within QLinux is carefully designed to maintain full com-
patibility with existing applications at the binary level. We
also decided that mere compatibility was not enough—we
wanted existing applications to possibly benefit (but definitely
not suffer) from the new resource allocation mechanisms in
QLinux (although the degree to which they benefit would be
less than new applications that are explicitly designed to take
advantage of these features).

o Proper accounting of resource usage: An operating sys-
tem that allocates resources in a predictable manner should
employ mechanisms to accurately account and charge for
resource usage. Whereas most operating systems employ
mechanisms that can accurately track the amount of CPU
bandwidth consumed by applications, resources consumed
by kemel tasks are not accounted for in the same manner.
For instance, many kernel tasks such as interrupt processing
and network protocol processing occur asynchronously and
get charged to the currently running process rather than the
process that triggered these tasks. Other kernel tasks such as
scheduling decisions or book-keeping operations are system-
wide in scope in that they cannot be attributed to a particular
process. Improper or inaccurate accounting of resource usage
can cause the bandwidth allocated to an application to devi-
ate significantly from its specified share. QLinux employs a
two-pronged approach to deal with such accounting issues.

- It employs lazy receiver processing [7], a technique to
ensure that network protocol processing overheads are
charged to the appropriate process (rather than arbitrar-
ily charging it to the currently running process). This is
achieved by deferring protocol processing from packet
arrival time to the time a process attempts to receive the
data from a network socket.

- Since lazy receiver processing was specifically designed
for proper accounting of protocol processing overheads,
it does not handle other kernel tasks such as interrupt
processing and book-keeping operations. To address
this limitation, QLinux employs a CPU scheduler that
provides predictable performance even in the presence
of fluctuating processor bandwidth. Specifically, the
CPU scheduler assumes that a varying fraction of the
processor bandwidth will be used for kernel tasks and
allocates the remaining processor bandwidth to appli-
cations in fair manner. Thus, the fairness guarantees
provided by the CPU scheduler hold even when a vary-
ing amount of CPU bandwidth is used up by kernel tasks
(unlike many resource allocation mechanisms that break
down under the assumption of fluctuating resource ca-
pacity [11]). See [11] for a theoretical proof of this
property.*

Together, these two techniques ensure accurate accounting
and predictable atlocation of resources in QLinux.

Next, we describe the four key components of QLinux.
2.2 Hierarchical Start-time Fair Queueing (H-SFQ) CPU
Scheduler

Hierarchical start-time fair queuing (H-SFQ) is a hierarchical CPU
scheduler that fairly allocates processor bandwidth to different ap-
plication classes and employs class-specific schedulers to manage

“This feature is currently being implemented—the publicly avail-
able version of QLinux implements H-SFQ without this feature.
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Figure 2: A sample hierarchy employed by the H-SFQ
CPU scheduler. The figure shows three classes—interactive,
throughput-intensive and soft real-time—with equal share
of the processor bandwidth. The bandwidth within the soft
real-time class is further partitioned among the audio and
video classes in the proportion 1:4. Individual threads can
also be assigned weights, assuming the leaf node scheduler
supports rate-based allocation.

requests within each class [10]. The scheduler uses a tree-like
structure to describe its scheduling hierarchy (see Figure 2). Each
process or thread in the system belongs to exactly one leaf node. A
leaf node is an aggregation of threads and represents an application
class in the system. Each non-leaf node is an aggregation of appli-
cation classes. Each node in the tree has a weight that determines
the fraction of its parent’s bandwidth that should be allocated to it.
Thus, if w1,ws,...,ws denote the weights on the n children of
anode, and if B denotes the processor bandwidth allocated to the
node, then the bandwidth received by each child node ¢ is given by

B“=(§iiv)*3

Each node is also associated with a scheduler. Whereas the sched-
uler of the leaf node schedules all threads belonging to the leaf,
the scheduler of an intermediate node schedules all its children.
Scheduling of threads occurs hierarchically in H-SFQ: the root node
schedules one of its child nodes; the child node, in turn, schedules
one of its children until a leaf node schedules a thread for execution.
Any class-specific scheduler may be employed to schedule a leaf
node. For instance, the standard time-sharing scheduler could be
employed for scheduling threads in the interactive class, whereas
the EDF scheduler could be used to schedule soft real-time tasks.
H-SFQ employs start-time fair queuing (SFQ) as the scheduling al-
gorithm for a non-leaf node. SFQ is a fair rate-based scheduler that
allocates bandwidth to each child node in proportion to its weight.
Bandwidth unused bg' anode is redistributed to other nodes accord-
ing to their weights.® Allocation of bandwidth in SFQ is based on
the concept of weighted max-min fairness. In addition to rate-based
allocation, SFQ has the following properties: (i) it achieves fair al-
location of CPU bandwidth regardless of variation in available ca-
pacity, (ii) it does not require the length of the quantum to be known

5The SFQ algorithm is defined as follows. If a node i becomes
active at time t (i.e., has at least one runnable thread in its sub-
tree), it is stamped with a start tag S; = max(v(t), F;) where F; is
its finish tag and v(t) is the virtual time at time t. F; is initially 0,
and after the j** scheduling instance, the finish tag is computed as

3
Fi=8+ %i., where q;.i is the length of the scheduling quantum. The
virtual time at an instant ¢ is defined to be the start tag of the task
currently in service; if the cpu is idle, v(t) is set to the maximum
finish tag assigned to any node/thread in the system. At any instant,
SFQ schedules the node with the smallest S;.



Table 1: System call interface supported by the H-SFQ CPU
scheduler

Table 2: System call interface supported by the H-SFQ
packet scheduler

socketl  socket2
Audlo Application

Figure 3: The H-SFQ network packet scheduler. The figure
shows a sample scheduling hierarchy with two classes—http
and soft real-time. The bandwidth within the http class is
further partitioned among two web domains, D1 and D2, in
the ratio 1:1. Note that individual sockets can either share
a queue or have a queue of their own. Since each queue has
its own weight, in the latter case, bandwidth allocation can
be controlled on a per-socket basis.

a priori (and hence, can be used in general-purpose environments
where threads may block for I/O before their quantum expires),
and (iii) SFQ provides provable guarantees on fairness, delay, and
throughput received by each thread in the system [10, 11].

H-SFQ replaces the standard time-sharing scheduler in QLinux.
The default scheduling hierarchy in H-SFQ consists of a root node
with a single child that uses the standard time-sharing scheduler
to schedule threads. An application, by default, is assigned to the
time-sharing scheduler, thereby allowing QLinux to mimic the be-
havior of standard Linux. The scheduling hierarchy can be modified
dynamically at run-time by creating new nodes on the fly. Creating
a new node involves specifying the parent node, a weight, and a
scheduling algorithm, if the node is a leaf node (non-leaf nodes
are scheduled using SFQ). QLinux allows processes and threads to
be assigned to a specific node at process/thread creation time; pro-
cesses and threads can be be moved from one leaf node to another at
any time. Moreover, weights assigned to an application or anode in
the scheduling hierarchy can be modified dynamically. QLinux em-
ploys a set of system calls to achieve these objectives (see Table 1).
We have also implemented several utility programs to manipulate
the scheduling hierarchy as well as individual applications within
the hierarchy. These utilities allow existing/legacy applications to
benefit from the features of H-SFQ since users can assign weights
to applications without modifying the source code.

System call Purpose System call Purpose
hsfqmknod create a new node in the scheduling hierarchy hsfqqdisc_install | Install the HSFQ queuing discipline
hsfq.rmnod delete an existing node from the hierarchy at a network interface
hsfq_join nod | attach the current process to a leaf node hsfq-link mknod create a node in the scheduling
hsfq.move move a process to a specified child node ) hierarchy
hsfq_parse parse a pathname in the scheduling hierarchy hsfq link_createq create a packet queue
hsfq_admin administer a node (e.g., change weights) hsfq link_attachq attach a queue to a leaf node
hsfq-link.moveq move a queue between schedulers
hsfq_link_rmnod delete the specified node
hsfqlink._rmq delete the specified queue
hsfq-link modify change the weight of a node or queue
hsfq-link _parsenode | parse a pathname in the scheduling
hierarchy
hsfq_link _getroot get the ID of the root node at a
particular network interface
hsfq-link_status display the scheduling tree
setsockopt attach a socket to a queue

2.3 H-SFQ Packet Scheduler

An operating system employs a packet scheduler at each of its net-
work interfaces to determine the order in which outgoing packets
are transmitted. Traditionally, most operating systems have em-
ployed the FIFO scheduler to schedule outgoing packets. To better
meet the needs of applications with different requirements, QLinux
employs H-SFQ to schedule outgoing packets. As described in
Section 2.2, H-SFQ can fairly allocate resource bandwidth among
different application classes in a hierarchical manner. As in the case
of CPU, the H-SFQ packet scheduler employs a multi-level tree-
like scheduling structure to hierarchically allocate network interface
bandwidth (see Figure 3). Each leaf node in the tree consists of one
or more queues of outgoing network packets and any class-specific
scheduler can be employed to schedule the transmission of packets
from these queues; the default leaf scheduler is FIFO. A non-leaf
node is scheduled using SFQ. Every node in the hierarchy is as-
signed a weight; H-SFQ allocates bandwidth to nodes in proportion
to their weights. Bandwidth unused by a node is reallocated fairly
among the nodes with pending packets, thereby improving overall
utilization.

The H-SFQ packet scheduler in QLinux replaces the FIFO
scheduler employed by Linux. The default scheduling hierarchy
in H-SFQ is a root node with a single child that employs FIFO
scheduling. Packets sent by applications are, by default, queued up
at this node, enabling QLinux to emulate the behavior of Linux. As
in the case of the CPU scheduler, the scheduling hierarchy can be
modified by adding new nodes to the tree or deleting existing nodes.
QLinux allows applications to be associated to a specific queue at
a leaf node (via the setsockopt system call); this association can
be done on a per-socket basis. Packet classifiers [24] are then em-
ployed to map each transmitted packet to the corresponding queue
at a leaf node. Table 2 lists the system call interface exported by
the packet scheduler to achieve these objectives. We are currently
implementing utility programs using these system calls that will
enable existing applications to benefit from these features without
having to modify their source code.

2.4 Cello Disk Scheduler

Unlike disk scheduling algorithms such as SCAN that provide a
best-effort service to disk requests, QLinux employs the Cello disk
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Figure 4: The Cello disk scheduling algorithm.

Table 3: System call interface supported by Cello

System call Purpose
cello_open Open a file and associate it with
the specified class
cello.read read from a file using an optional deadline

cello._write
cello_set_class
collo_admin

write to a file using an optional deadline
associate a class with a process
administer a class (e.g., specify weights)

scheduling algorithm to support multiple application classes. Cello

services disk requests using a two level scheduling algorithm, con-_

sisting of a class-independent scheduler and a set of class-specific
schedulers [22]. The class-independent scheduler is responsible for
allocating disk bandwidth to classes based on their weights, whereas
the class-specific schedulers use these allocations to schedule indi-
vidual requests based on their requirements. Unlike pure rate-based
schedulers that focus only on fair allocation of resources, Cello also
takes disk seek and rotational latency overheads into account when
making scheduling decisions (thereby improving disk throughput).

The implementation of Cello in QLinux supports three applica-
tion classes—interactive, throughput-intensive and soft real-time.
To do so, QLinux maintains three pending queues, one for each ap-
plication class and a scheduled queue (see Figure 4). Newly arriving
requests are queued up in the appropriate pending queue. They are
eventually moved to the scheduled queue and dispatched to the disk
in FIFO order. The class-independent scheduler determines when
and how many requests to move from each class-specific pending
queue to the scheduled queue, while the class-specific scheduler
determine where to insert it into the scheduled queue. To main-
tain compatibility with Linux, Cello uses the interactive best-effort
class as the default class to service disk requests. Applications can
override this default by specifying a class for each file that is read
or written. For the soft real-time class, an application must also
specify a deadline with each read or write request. Table 3 lists the
interface exported by Cello to achieve these objectives. Note that,
the current implementation of Cello supports bandwidth allocation
only on a per-class basis; in the future, we plan to add support for
bandwidth allocation on a per-application basis.

2.5 Lazy Receiver Processing

Consider the operation of a network subsystem within a typical op-
erating system. When a packet arrives at a network interface card,
it causes an interrupt. The OS then suspends the currently run-

ning process and invokes an interrupt service routine to process the
packet. Typically this processing involves executing the protocols
at the data link layer (e.g., ethernet), the network layer (IP), and
the transport layer (TCP or UDP). Observe that, by using the CPU
quantum of the suspended process to do protocol processing, these
overheads get charged to this process rather than the process that will
eventually receive the packet. Such accounting anomalies result in
violation of performance guarantees provided to applications by a
multimedia operating system, especially on servers running network
applications (e.g., http servers). Lazy receiver processing (LRP) is
a technique that overcomes this drawback [7]. LRP postpones
protocol processing from packet arrival time to the time a process
actually receives data by reading it from a socket. Postponing pro-
tocol operations to socket read time enables the OS to charge these
overheads to the process that actually receives the data. The key
challenge in designing an LRP-based network subsystem is to en-
sure only those protocol operations are postponed that do not affect
protocol performance or semantics. For instance, TCP performs
asynchronous operations such as sending acknowledgements for
received packets. Delaying acknowledgements can severely affect
the throughput received by an application (since the window-based
flow control mechanism in TCP won’t permit the sender to send
additional data without receiving acknowledgements). Since such
asynchronous operations can not be postponed, LRP employs a spe-
cial kernel thread for each application to perform these operations
as and when required. The kernel thread executes independently of
the application process and its CPU usage is charged to the parent
process.

The implementation of LRP in QLinux employs a queue per
socket in the data link layer and employs early demultiplexing of
incoming packets—a technique that classifies packets into these
queues immediately upon arrival. Thus, interrupt processing upon
the arrival of a process only involves packet classification to the
appropriate queue and does not involve any expensive protocol
processing—these operations are deferred to socket read time. Spe-
cial kernel threads are employed to handle asynchronous operations
as well as to implement protocols such as ARP and ICMP that are
not process-specific. Finally, observe that LRP is transparent to
applications—no additional system calls are required to support it,
nor do you need to modify applications.

3 Experimental Evaluation

In this section, we experimentally evaluate the performance of
QLinux and compare it to vanilla Linux. In particular, we ex-
amine the efficacy of the resource allocation mechanisms within
QLinux to (i) allocate resource bandwidth in a predictable man-
ner, (ii) provide application isolation, (iii) support multiple traffic
classes, and (iv) accurately account for resource usage. We use
several real applications, benchmarks and micro-benchmarks for
our experimental evaluation. In what follows, we first describe
the test-bed for our experiments and then present the results of our
experimental evaluation.

3.1 Experimental Setup

The test-bed for our experiments consists of a cluster of PC-based
workstations. Each PC used in our experiments is a 350MHz Pen-
tium I with 64MB RAM and runs RedHat Linux 6.1. Each PC is
equipped with a 100 Mb/s 3-Com ethernet card (model 3¢595); all
machines are interconnected by a 100 Mb/s ethernet switch (model
3Com SuperStack II). The version of QLinux used in our experi-
ments is based on the 2.2.0 Linux kernel; comparisons with vanilla
Linux use the identical version of the kernel. All machines and the
network are assumed to be lightly loaded during our experiments.



The workload for our experiments consists of a combination of
real-world applications, benchmarks, and sample applications that
we wrote to demonstrate specific features. These applications are
as follows:

e [nf: an application that executes an infinite loop and repre-
sents a simple compute-intensive best-effort application.

e mpeg_play: the Berkeley software MPEG-1 decoder; repre-
sents a compute-intensive soft real-time application.

o Apache web server and webclient: A widely-used web server
and a configurable client application that generates http re-
quests at a specified rate; represents an I/O-intensive best-
effort application.

o Streaming media server: A server that transmits (streams)
MPEG-1 files over the network using UDP; represents an
I/O-intensive soft real-time application.

e Net_inf: an application that sends UDP data as fast as possible
on a socket; represents an I/O-intensive best-effort applica-
tion.

e Dhrystone: A compute-intensive benchmark for measuring
integer CPU performance.

e [mbench: A comprehensive benchmark suite that measures
various aspects of operating system performance such as con-
text switching, memory, file I/O, networking, and cache per-
formance.

In what follows, we present the results of our experimental eval-
uation using these applications and benchmarks. Since the code
for the Cello disk scheduler was unstable at the time of writing,
we have not included experimental results for Cello (we hope to
include these results in the final version of the paper).

3.2 Supporting Multiple Application Classes using the
H-SFQ CPU Scheduler

To demonstrate that the H-SFQ CPU scheduler can allocate CPU
bandwidth to applications in proportion to their weights, we created
two classes in the scheduling hierarchy and ran the Inf application
in each class. We assigned different combination of weights to the
two classes (e.g., 1:1, 1:2, 1:4) and measured the number of loops
executed by Infin each case. Figures 5(a) and (b) depict our results.
Figure 5(a) shows the progress made by the two Inf applications
for a specific weight assignment of 1:4. Figure 5(b) shows the
number of iterations executed by the two processes at t=337 seconds
for different weight assignments. Together, the two figures show
that each application gets processor bandwidth in proportion to its
weight.

Next, we conducted an experiment to demonstrate the fair work-
conserving nature of H-SFQ. Again, we created two application
classes and gave them equal weights (1:1). The Inf application
was run in each class and as expected each received 50% of the
CPU bandwidth. At t=250 seconds, we suspended one of the Inf
processes. Since H-SFQ is work-conserving in nature, the scheduler
reallocated bandwidth unused by the suspended processes to the
running Inf process (causing it’s rate of progress to double). The
suspended process was restarted at t=350 seconds, causing the two
processes to again receive bandwidth in the proportion 1:1. Figure
5(c) depicts this scenario by plotting the progress made by the
continuously running Inf process. As shown, the process makes
progress at twice the rate between 250 < ¢ < 350 and receives its
normal share in other time intervals.

We then conducted experiments to show that real-world applica-
tions also benefit from H-SFQ. To show that the CPU scheduler can

effectively isolate applications from one another, we created two
classes—soft real-time and best-effort—and assigned them equal
weights. The best-effort leaf class was scheduled using the standard
time sharing scheduler, while the soft real-time leaf class was sched-
uled using SFQ. We ran the software MPEG decoder (mpeg_play)
in the soft real-time class and used it to decode a five minute long
MPEG-1 clip with an average bit rate of 1.49 Mb/s. The Dhrys-
tone benchmark constituted the load in the best-effort class. We
increased the load in the best-effort class (by increasing the num-
ber of independent Dhrystone processes) and measured the CPU
bandwidth received by the MPEG decoder in each case. We then
repeated this experiment using vanilla Linux. Figure 6(a) plots
our results. As shown in the figure, in case of QLinux, the CPU
bandwidth received by the MPEG decoder was independent of the
load in the best-effort classes. Since vanilla Linux employs a best-
effort scheduler, all applications, including the MPEG decoder, are
degraded equally as the load increases. This demonstrates that
H-SFQ, in addition to proportionate allocation, can also isolate ap-
plication classes from one another. To further demonstrate this
behavior, we ran two Apache web servers in two different classes
and gave them different weights. The webclient application was
used to send a large number of http requests to each web server
and we measured the processor bandwidth received by each class.
As shown in Figure 6(b), the H-SFQ scheduler allocates processor
bandwidth to the two classes in proportion to their weights. These
experiments demonstrate that QLinux can be employed for web
hosting scenarios where multiple web domains are hosted from the
same physical server. Each web domain can be allocated a certain
fraction of the resources and can be effectively isolated from the
load in other domains.

3.3 Supporting Multiple Traffic Classes Using the H-SFQ
Packet Scheduler

To demonstrate that the H-SFQ packet scheduler can allocate net-
work interface bandwidth to applications in proportion to their
weights, we created two classes in the scheduling hierarchy and
ran the Ner_inf application in each class. The UDP packets sent
by Net_inf were received as fast as possible by a receiver process
running on a lightly loaded PC. We varied the weights assigned to
the two classes and measured the number of packets sent by the
two processes for different weight assignments. Figure 7(a) depicts
the number of bytes received from each Netz_inf for one particular
weight assignment (1:4). As expected, both classes receive band-
width in proportion to their weights. To demonstrate that bandwidth
received by a class in independent of the packet size, we repeated
the experiment using different packet sizes for the two classes. Fig-
ure 7(b) shows that, despite using different packet sizes, the two
classes again receive bandwidth in proportion to their weights.

To demonstrate that real-world applications also benefit from
these features, we conducted an experiment with two classes —soft
real-time and best-effort. The streaming media server was run in
the soft real-time class and was used to stream a five minute long
variable bit-rate MPEG-1 clip (average bit rate of the clip was 1.49
Mb/s). We ran an increasing number of Ner_inf applications in
the best-effort class and measured their impact on the bandwidth
received by the streaming media server. We then repeated this
experiment on vanilla Linux. As shown in Figure 8, QLinux is
able to effectively isolate the streaming media server from the best-
effort class—the server is able to stream data at its real-time rate
regardless of the best-effort load. Linux, on the other hand, is
unable to provide this isolation—increasing the best-effort load
reduces the bandwidth received by the streaming media server and
also increases the amount of packet loss incurred by all applications.
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Figure 9: Impact of the H-SFQ CPU and packet schedulers
on web workloads.

3.4 Combined Impact of H-SFQ CPU and Packet Sched-
ulers

To demonstrate the combined benefits of the CPU and packet sched-
ulers, we considered a scenario consisting of a loaded web server
and several I/O intensive applications. We created two classes in
the CPU and packet scheduler hierarchies. We ran a simulated
web server in one CPU/packet scheduler class and ran all the I/O-
intensive Net_inf applications in the other CPU/packet scheduler
class. Our simulated web server consisted of a sender application
that reads an actual web server trace and sends data using TCP (each
send corresponds to an http request in the trace file; the timing and
size of each request was taken directly from the information spec-
ified in the traces). The publicly-available ClarkNet server traces
were employed to simulate the web server workload [5]. We in-
creased the number of Net_inf applications in the best-effort class
and measured their impact on the throughput of the web server. The
experiment was then repeated for vanilla Linux. Figure 9 depicts
our results. Observe that, the web server simulates the http protocol
which runs on TCP. TCP employs congestion control mechanisms
that back off in the presence of congestion. Consequently, as the
load due to Net_inf applications increases, congestion builds up in
the ethernet switch interconnecting the senders and receivers (due
to the presence of limited buffers at switches), causing TCP to
reduce its sending rate. Both QLinux and Linux experience this

phenomenon, resulting in a degradation in throughput for the web
workload. However, since the QLinux CPU and packet schedulers
reserve bandwidth for the web server, they can effectively isolate
the web workload from the Net_inf applications. Hence, the degra-
dation in throughput in QLinux is significantly smaller than that in
Linux. This demonstrates that use of fair, predictable schedulers for
each resource in an OS can yield significant performance benefits
to applications.

3.5 Appropriate Accounting of Protocol Processing Over-
heads

To demonstrate the impact of lazy receiver processing, we ran two
Apache web servers in QLinux. In the presence of a light load,
the response time of a server to retrieve a 1.9KB file was measured
to be 50.7ms. We then simulated a simple denial of service attack
scenario, in which one server was bombarded with http requests at
a high rate (300 reqs/s). In the presence of this load, the response
time of the other server (which was lightly loaded) was found to
be 70.1ms. We then repeated the experiment on vanilla Linux and
found the response time of the lightly loaded web server to be
79.8ms. Since LRP ensures that protocol processing overheads for
a packet are charged to the application receiving that packet, the
lightly loaded server is not charged for the packets received by the
overloaded server. Hence, it provides a better response time to its
requests (note that, some degradation in response time is inevitable
due to the congestion control mechanism in TCP and the increased
load). Linux, on the other hand, does not account for protocol
processing overheads in the same manner, resulting in a greater
degradation in response time. This demonstrates that proper ac-
counting of kernel overheads can improve application performance
and help isolate unrelated applications during overloads or denial
of service attacks.

3.6 Microbenchmarking QLinux: Scheduling Overheads

In the previous sections, we demonstrated that applications can ben-
efit from the sophisticated resource management techniques em-
ployed by QLinux. In what follows, we measure the overheads
imposed by these mechanisms using microbenchmarks.

To measure the overhead imposed by the CPU scheduler, we cre-
ated a leaf node and ran a solitary Inf process in that class. We then
progressively increased the depth of the scheduling hierarchy (by
introducing intermediate nodes between this leaf and the root) and
measured the bandwidth received by Infin each case. Observe that,
increasing the depth of the scheduling hierarchy may increase the
scheduling overhead (since H-SFQ recursively calls the scheduler
at each intermediate node until a thread in the leaf class is selected).
A larger scheduling overhead will correspondingly reduce the band-
width received by applications (since a larger fraction of the CPU
time would be spent in making scheduling decisions). Figure 10(a)
plots the number of iterations executed by Inf in 300 seconds as
we increase the depth of the scheduling hierarchy. As shown in
the figure, the bandwidth received by Inf'is relatively unaffected by
the increasing scheduling overhead, thereby demonstrating that the
overheads imposed by H-SFQ are small in practice.

We then performed a similar experiment for the H-SFQ packet
scheduler. The experiment consisted of running the Nez_inf process
in a scheduling hierarchy with increasing depth and measuring the
bandwidth received by Net_inf in each case. As in the case of
the CPU scheduler, the bandwidth received by Net_inf is relatively
unaffected by the scheduling overhead (see Figure 10(b)). Together,
these experiments show that hierarchical schedulers such as H-SFQ
are feasible in practice.
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Figure 10: Microbenchmarking QLinux: overheads imposed by the CPU and Packet Schedulers

Table 4: Lmbench Results

Test QLinux | Linux
syscall overhead 1 pus 1 pus

fork() 400 ps | 400 ps
exec() 2 ms 2 ms

Context switch (2 proc/ 0KB) 4 ps 1 us

Context switch (16 proc/ 64KB) | 286 us | 283 us
Local UDP latency 47 us 53 pus
Local TCP latency 83 us 82 us
File create (0 KB file) 21 ps 21 ps
File delete (0 KB file) 2 us 2 us

3.7 Benchmarking QLinux

In our final experiment, we employed the widely used Lmbench
benchmark to compare QLinux and Linux. Lmbench is a sophis-
ticated benchmark that measures several aspects of system perfor-
mance, such as system call overheads, context switch times, net-
work 1/0, file I/O and memory performance [13]. We employed
Lmbench version 1.9 for our experiments. We first ran Lmbench in
the default best-effort class on QLinux and then repeated the exper-
iment on Linux. In each case, we averaged the statistics reported by
Lmbench over several runs to eliminate experimental error. Table
4 summarizes our results (Lmbench produces a large number of
statistics; we only list those statistics that are relevant to QLinux).
Note that the QLinux code is untuned, while Linux code is
carefully tuned by the Linux kernel developers. Table 4 shows that
the performance of QLinux is comparable to Linux; however, the
increased complexity of the QLinux schedulers do result in a larger
overhead. For instance, the context switch overhead increases from
1 ps to 4 s for two active processes; however this overhead is still
several orders of magnitude smaller than the quantum duration of
100 ms. The network latency for TCP and UDP, as well as file I/O
overheads and system call overheads are comparable in both cases.

4 Related Work

The growing popularity of the multimedia applications has resulted
in several research efforts that have focused on the design of pre-
dictable resource allocation mechanisms. Consequently, in the re-
cent past, several techniques have been proposed for the predictable

allocation of processor [8, 10, 12, 17, 19, 20, 25, 26, 28, 29, 31],
network interface [2, 4, 6,9, 11, 23] and disk [1, 14, 30] bandwidth.
While each effort differs in the exact mechanism employed to pro-
vide predictable performance (e.g., admission control, rate-based
allocation, fair queuing), the broad goals are similar—add quality
of service support to an operating system. The key contribution of
QLinux is to synthesize/integrate many of these mechanisms into
a single system and demonstrate the benefits of this integration on
application performance. Whereas the mechanisms instantiated in
QLinux are based on our past work in this area, we believe that
it would have been relatively easy to implement some other pre-
dictable resource allocation mechanism and demonstrate similar
benefits.

Some other recent operating system efforts have also focused
on the design of predictable resource allocation mechanisms. The
Nemesis operating system, for instance, employs mechanisms that
provide quality of service guarantees when allocating processor,
network and disk bandwidth [21, 1]. Unlike QLinux, which em-
ploys weights to express resource requirements, Nemesis requires
applications to specify their resources requirements in terms of tu-
ples (s, p,z), where s units of the resource are requested every p
units of time, and x is the additional bandwidth requested, if avail-
able. Nemesis is a multi-service multimedia operating system that
was designed from the grounds up; QLinux, on the other hand,
builds upon the Linux kernel and benefits from the continuing en-
hancement made to the kernel by the Linux developers. The Eclipse
operating system, based on FreeBSD, is in many respect similar to
QLinux [3]. Like QLinux, Eclipse employs hierarchical schedulers
to allocate OS resources (the actual scheduling algorithms that are
employed are, however, different). Eclipse employs a special file
system called /reserv that is used by applications to specify their
resource requirements [3]. QLinux and Eclipse are independent and
parallel research efforts, both of which attempt to improve upon con-
ventional best effort operating systems. Finally, many commercial
operating systems are beginning to employ some of these features.
High end versions of Solaris 2.7, for instance, include a resource
manager that enables fine-grain allocation of various resources to
processes and process groups [27].

5 Concluding Remarks

Emerging multimedia and web applications require conventional
operating systems to be enhanced along several dimensions. In this
paper, we presented the QLinux multimedia operating system that
enhances the resource management mechanisms in vanilla Linux.



QLinux employs four key components: the H-SFQ CPU sched-
uler, the H-SFQ packet scheduler, the Cello disk scheduler and
the lazy receiver processing-based network subsystem. Together,
these mechanisms ensure fair, predictable allocation of processor,
network and disk bandwidth as well as accurate accounting of re-
source usage. We experimentally demonstrated the efficacy of these
mechanisms using benchmarks as well as common multimedia and
web applications. Our experimental results showed that multimedia
and web applications can indeed benefit from predictable resource
allocation and application isolation offered by QLinux. Further-
more, the overheads imposed by these mechanisms were shown to
be small. Based on these results, we argue that all conventional
operating systems should be enhanced with such mechanisms to
meet the needs of emerging applications.

As part of future work, we plan to enhance QLinux along several
dimensions. In particular, we are designing resource allocation
mechanisms that will enable QLinux to scale to large symmetric
multiprocessors and clusters of servers.
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