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Abstract

This paper introduces a Bayesian method for unsupervised cluster-
ing of dynamic processes and applies it to the abstraction of sensory
inputs of a mobile robot. The method starts by transforming the
sensory inputs into Markov chains and then applies an agglomerative
clustering procedure to discover the most probable set of clusters cap-
turing the robot’s experiences. To increase efficiency, the method uses
an entropy-based heuristic search strategy.
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ABSTRACT

This paper introduces a Bayesian method for unsuperv1sed clustering of dynamic
processes and applies it to the abstraction of sensory inputs of a mobile
robot. The method starts by transforming the sensory inputs into Markov
chains and then applies an agglomerative clustering procedure to discover

the most probable set of clusters capturing the robot’s experiences. To

increase efficiency, the method uses an entropy-based heuristic search
strategy.
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Abstract

This paper introduces a Bayesian method for
unsupervised clustering of dynamic processes
and applies it to the abstraction of sensory in-
puts of a mobile robot. The method starts by
transforming the sensory inputs into Markov
chains and then applies an agglomerative clus-
tering procedure to discover the most proba-
ble set of clusters capturing the robot’s experi-
ences. To increase efficiency, the method uses
an entropy-based heuristic search strategy.

1. Introduction

This paper presents a Bayesian algorithm for clustering
by dynamics. Suppose one has a batch of univariate time
series generated by one or more unknown processes, and
the processes have characteristic dynamics. Clustering
by dynamics is the problem of grouping time series into
clusters so that the elements of each cluster have simi-
lar dynamics. Suppose a batch contains a time series of
stride length for every episode in which a person moves
on foot from one place to another. Clustering by dy-
namics might find clusters corresponding to “ambling,”
“striding,” “running,” and “pushing a shopping cart,”
because the dynamics of stride length are different in
these processes. Similarly, pathologies of the heart can
be characterized by the patterns of sistolic and diastolic
phases; dance steps, hand gestures and facial expressions
can be characterized by the dynamics of movement of
body parts [Johansson, 1973]; economic states such as
recession can be characterized by the dynamics of eco-
nomic indicators; syntactic categories can be categorized
by the dynamics of word transitions [Charniak, 1993];
and so on.

The goal of this work is to enable mobile robots to
learn the dynamics of their activities. Our algorithm
learns Markov chain (MC) representations of the dynam-
ics in time series and then clusters these time series by
their dynamics to learn prototype experiences. For ex-
ample, our robot has learned prototype experiences that
correspond to passing an object and moving toward an
object. It is important to the goals of our project that
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the robot’s learning should be unsupervised, which means
we do not tell our algorithm which Markov chains, clus-
ters and prototypes to learn.

A MC represents a dynamic process as a transition
probability matrix. For each experience the robot has,
we construct one such matrix for each sensor. Each row
in the matrix represents a state of the sensor, and the
columns represent the probabilities of transition from
that state to each other state of the sensor on the next
time step. The result is a set of conditional probability
distributions, one for each state of the sensor, that can be
learned from the past experiences of the agent. After k
experiences, the robot has learned k transition matrices
for each sensor. Next, a Bayesian clustering algorithm
groups experiences that produce similar transition prob-
ability matrices. Each group is then characterized by its
average or prototypical dynamics. The learned model
of dynamics enables the agent to classify its current ex-
perience by computing the probability of an experience
being in a particular cluster given sensor readings, and to
predict future experiences, conditional on current input
and cluster membership.

While there are similarities between this problem and
learning Hidden Markov Models (HMMs), this problem
is different and somewhat simpler. An HMM has one
probability distribution for the symbols emitted by each
state, and also a matrix of probabilities of transitions
between states [Rabiner, 1989]. In our problem we fit a
fully observable Markov model to each episode and then
we search for a partition of these models into clusters
that maximizes the likelihood of the data. Thus our al-
gorithm is more closely related to other approaches to
clustering by dynamics, such as [Smyth, 1997; Rosen-
stein and Cohen, 1998, than it is to HMMs.

A Bayesian approach is particularly well suited to clus-
tering by dynamics because it frames the learning pro-
cess as continuous updating rather than a batch analysis
of data. Furthermore, a Bayesian approach provides a
principled way to integrate prior and current evidence.
As our robot gains more experience (i.e., as its “prior”
knowledge increases) it requires proportionately more
evidence to modify or discount its prior conclusions.

The rest of the paper is organized as follows. After
reviewing background material on MCs, we describe how



to induce the transition probability matrix of a MC from
sensor readings, and then describe a Bayesian clustering
algorithm to sequentially merge similar MCs induced by
episodes.

2. The Robot Platform

The Pioneer 1 robot is a small platform with two drive
wheels and a trailing caster, and a two degree of freedom
paddle gripper. For sensors the Pioneer 1 has shaft en-
coders, stall sensors, five forward pointing and two side
pointing sonars, bump sensors, a pair of IR sensors at
the front and back of its gripper, and a simple vision
system that reports the location and size of color-coded
objects. Our configuration of the Pioneer 1 has roughly
forty sensors, though the values returned by some are
derived from others.

3. Markov Chains

The dynamics of a sequence of sensory values can
be modeled by a Markov Chain (Mc). The sen-
sor X is regarded as a random variable taking val-
ues 1,2,...,3. The process generating the sequence
t = (To,T1,T2y.,Tio1,Ts,..) 18 & MC if p(X =
z¢| (20, Z1, T2, ..o, Tt—1)) = P(X = z¢|z¢—1) for any z: in
z. Let X; be the variable representing the sensor val-
ues at time ¢, then X, is conditionally independent of
Xo, X1, ..., Xt_2 given X;_1. The assumption of condi-
tional independence allows us to represent a MC by a
vector of probabilities pp = (po1,Po2;,---, Pos), denoting
the distribution of Xy (the initial state of the chain) and
a matrix of transition probabilities:
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where p;; = p(X: = j|X;—1 = i). By using the
Chapman-Kolmogorov Equations [Ross, 1996], the ex-
pected value of X; is poP* which, for increasing values
of t, gives the average sequence.

4. Discovering Markov Chains

During its interaction with the world, the robot records
the values of about 40 sensors every 1/10 of a second.
In an extended period of wandering around the labora-
tory, the robot will engage in several different activities
— moving toward an object, losing sight of an object,
bumping into something — and these activities will have
different sensory signatures. Because we insist that the
robot’s learning is unsupervised, we do not tell the robot
which activities it is engaging in, or even that it has

switched from one activity to another. Instead we define
a simple event marker — simultaneous change in three
sensors — and we define an episode as the period be-
tween event markers. For each episode in each sensor,
we build a transition matrix and then we cluster transi-
tion matrices with similar dynamics.

4.1 Learning A Markov Chain

Suppose the robot has generated a sequence of values
from the sensor X for one episode. This sequences can be
summarized into a s X s contingency table that contains
the frequencies of transitions n;; = n(X;—y =i = Xy =
7). These counts are used to estimate the transition
probabilities p;; characterizing the dynamic process that
generated the data.

An intuitive way to estimate p;; is to use the relative
frequencies of transitions n;;/n;. In this way, the prob-
ability of the transition X;—; = i = X = j, that we
will denote as i — j, is estimated as the ratio between
the number n;; of times the transition has been observed
and all observations on the variable in state i, that is,
n; = Y ;n;;. This estimate is a function of the data only
and there may be other sources of information about the
process. Furthermore, this method estimates the transi-
tion probability p;; as 0 whenever ny; = 0. Thus, when
the chain is observed over a relatively short time inter-
val, or a transition probability is small, it is very easy to
conclude that some transition is impossible. A Bayesian
estimation of p;; overcomes this problem as well as using
any prior knowledge about the process. This is achieved
by augmenting the observed frequencies n;; by hyper-
parameters a;; that encode the prior knowledge about
the process in terms of imaginary counts of a sample of
size a. The Bayesian estimate of p;; is
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where a; = 3 ;. By writing Equation 1 as
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we see that p;; is an average of the estimate n;; /n; and
of the quantity a;;/a; with weights that depend on a;
and the sample size n;. Rewriting of Equation 1 as 2
shows that a;j/q; is the estimate of p;; when the data
set does not contain transitions from the state i — and
hence n;; = 0 for all j — and it is therefore called the
prior estimate of p;; while p;; is called the posterior es-
timate. It can be shown that the variance of the prior
estimate a;;/; is given by (asj/0s)(1 —aij/ai) /(s +1)
and, for fixed a;;/a;, the variance is a decreasing func-
tion of ;. Since small variance implies a large precision
about the estimate, a; will be called the local precision
about the conditional distribution X;|X;—; = i and it
indicates the level of confidence about the prior specifi-
cation. The quantity a = ), oy is the global precision,
as it accounts for the level of precision of all the s con-
ditional distributions.



