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Abstract 

 

Flexible, reconfigurable vision systems can provide an extremely rich sensing modality for 

sophisticated multiple robot platforms. We propose a cooperative and adaptive approach of 

panoramic vision to the problem of finding and protecting humans by a robot team in an 

emergency circumstance (e.g. a rescue in an office building). A panoramic virtual stereo vision 

method is proposed for this cooperative approach, which features omni-directional visual 

sensors, cooperative mobile platforms, selected 3D matching, and real-time moving object 

(people) detection and tracking. The problems of dynamic self-calibration of moving platforms, 

robust 3D localization of moving human subjects, and cooperative strategies between two robots 

are discussed. We have found that the localization errors of a human target by the panoramic 

virtual stereo is subject to three different kinds of errors: the calibration error of the panoramic 

virtual stereo, matching error of widely separated views, and triangulation error of the 

panoramic stereo pair. A careful numerical analysis of the error characteristics of the panoramic 

virtual stereo is presented in order to derive rules for optimal view planning of moving sensing 

platforms (mobile robots) or multiple (more than two) stationary sensing platforms. 

Experimental results are given for detecting and localizing multiple moving objects using two 

cooperative robot platforms. 



 2

I. Introduction 

Flexible, reconfigurable vision systems can provide an extremely rich sensing modality for 

sophisticated robot platforms. We propose a cooperative and adaptive approach to the problem of 

finding and protecting humans in emergency circumstances, for example, during a fire in an 

office building.  Real-time processing is essential for the dynamic and unpredictable 

environments in our application domain, and it is important for visual sensing to rapidly focus 

attention on important activity in the environment. Any room or corridor should be searched 

quickly to detect people and fire. Field-of-view issues using standard optics are challenging since 

panning a camera takes time, and multiple targets/objectives may require saccades to attend to 

important visual cues. Using multiple cameras covering different fields of view could be a 

solution, but the cost of hardware (cameras, frame grabbers and computers) and software 

(multiple stream data manipulation) will increase. Thus, we employ a camera with a panoramic 

lens to detect and track multiple objects in motion in a full 360-degree view in real time. 

We note that there is a fairly large body of work on detection and tracking of humans (Bri98; 

Har98; Lip98; Pap98; Pen97), motivated most recently by the DARPA VSAM effort. On the 

other hand, different kinds of omni-directional (or panoramic) imaging sensors have been 

designed (Nay97; Gre86; Nel96; Yag90; Yam93), and a systematic theoretical analysis of 

omni-directional sensors has been given (Bak98). Omnidirectional vision has become quite 

popular with many vision approaches for robot navigation (Yagi90;  Zhu98), stereo 

reconstruction (Ish92; Kon98) and video surveillance (Bou99; Ng99). What is truly novel about 

our approach is the ability to compose cooperative sensing strategies across the distributed 

panoramic sensors of a robot team to synthesize robust "virtual" stereo sensors for human 

detection and tracking. 

The idea of distributing sensors and cooperation across different robots stems from the 

requirements of potentially limited (sensor) resources for a large robot team. Nevertheless, the 

advantages of cooperative vision arise from more than this compromise. Any fixed-baseline 
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stereo vision system has limited depth resolution because of the physical constraints imposed by 

the separation of cameras, whereas a system that combines multiple views allows the planning 

system to take advantage of the current context and goals in selecting viewpoints. This strategy 

can be implemented by a single camera generating sequential viewpoints over time in an active 

vision paradigm (Alo93). However, there are significant time delays involved in moving the 

camera to another position in the room as well as the difficulty of dynamic calibration.  

In this paper, we focus on cooperative behavior involving cameras that are aware of each other, 

residing on different mobile platforms, to compose a virtual stereo sensor with a flexible baseline. 

In this model, the sensor geometry can be controlled to manage the precision of the resulting 

virtual sensor. The cooperative stereo vision strategy is particularly effective with a pair of 

mobile panoramic sensors that have the potential of almost always seeing each other. Once 

calibrated by "looking" at each other, they can view the environment to estimate the 3D structure 

of the scene.  

In the following sections, we will discuss the following critical issues: 1)  the calibration and 

image warping of an omnidirectional vision system, 2) dynamic self-calibration among the two 

cameras on two separate mobile robots, which forms the dynamic "virtual" stereo sensor,  3)  

view planning by taking advantage of the current context and goals , 4) detection and tracking of 

moving objects from a stationary platform as well as from a moving platform (robot), and 5) 

correspondence of features between two views, given the possibly large perspective distortion, 

and 3D estimation. 

 

II. Panoramic Imaging Geometry 

2.1. Sensor geometry 

In this paper we use the panoramic annular lens (PAL) camera system designed by Pal Greguss 

(1986) for its compactness and view angles. It can capture its surroundings with a field of view 

(FOV) of 360-degrees horizontally and -15 ~ +20 degrees vertically (Fig. 2.1). We have noticed 



 4

that many other omnidirectional cameras have their vertical FOV either entirely above or below 

the horizon. In a robotic application, a vertical viewing angle that spans the horizon is preferred. 

The PAL-3802 system that we are using includes a compact 40-mm diameter panoramic lens and 

a built-in 16-mm collector lens with a “C” mount (Fig. 2.1a). The panoramic lens is a piece of 

glass that consists of  a 360-degree circular aperture (R1), a rear aperture (R2) connecting to the 

collector lens, a top mirror (H) and a circular mirror (E) (Fig. 2.1b). The geometry of the PAL 

imaging system is somewhat complex since there are two reflections and two refractions. 

Fortunately, we can obtain a rather elegant geometry of a single effective viewpoint under 

perspective projection (Gre86; Zhu99, Gre00) given that:  

 

 

 

 

 

 

 

 

 

(a). PAL lens and camera                    (2) PAL lens geometry 

Fig. 2.1. PAL lens and its geometric model 

(1) the concave circular mirror (E) is  ellipsoidal and the convex top mirror (H) is  

hyperboloidal;  

(2) the long axis of the ellipsoidal mirror is aligned with the axis of the hyperboloidal mirror and 

the optical axis of the camera (C); and  
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(3) a locus (B) of the hyperboloidal mirror coincides with one locus of the ellipsoidal mirror, and 

the other locus coincides with the nodal point (C) of the real camera.  

Thus, the viewpoint of the "virtual camera" is right at the second locus (O) of the ellipsoidal 

mirror1. Under this geometry, the PAL sensor can view the entire 360-degree scene around its 

vertical axis BC.  The vertical field of view (Fig. 2.1) is determined by the effective sizes and the 

locations of the circular mirror E and the top mirror H.  Usually the viewing angle is  [0o, 90o) 

vertically if we ignore the refraction effects.   

The refraction does not add too much complexity; instead, it changes the vertical viewing angle. 

The first refraction through the ellipsoidal surface (R1) changes the vertical viewing range from 

[0o, 90o) to [#1, +#2], where  #1<0o< #2<90o, which is often desired for panoramic imagery in 

robotics applications. For the PAL-3802 camera system we have approximately #1=-15o 

and #2=20o. The second refraction through the transparent planar surface (R2) only moves the 

point of convergence of rays that are reflected from the top mirror up some distance.  

 

In conclusion, a ray from a 3D point P is first refracted (from angle " to !) by an ellipsoidal 

surface R1, and passes through one of the loci (i.e. the viewpoint O of the virtual camera) of the 

concave mirror E.  Next, the ray is reflected by the ellipsoidal mirror E to its second locus B 

(which is also a locus of the hyperboloidal mirror H). Then it is reflected by the convex mirror H 

to the second locus of H, i.e. the nodal point C of the real camera. Thus the annular image in the 

target plane of the real sensor can be viewed as being captured by an omnidirectional "virtual" 

camera located at viewpoint O.  The optics of real PAL lens could be more complicated than the 

above geometric model. However, this model can ease the difficulty in panoramic camera 

calibration and image transformation in the following subsections. 

                                                        

1 An orthographic model has also been derived by Zhu, Riseman & Hanson (1999) where the hyperboloidal mirror is 

replaced by a paraboloidal mirror, and then a tele-centric lens is used instead of a pinhole camera. 
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Fig. 2.2 shows an image captured by the PAL sensor. The size of circular black hole in the center 

of a PAL image is decided by the size of the top mirror E and the size of the rear aperture (R2) of 

the PAL block, and is roughly the projection of the top mirror. By analyzing the imaging 

geometry of the PAL image, we can find that the farther a point is from the image center, the 

higher the resolution in both radial and angular dimensions will be. 

 

2.2. Image Unwarping and Rectification 

Using the above the PAL geometry, we have developed the mathematical model (Zhu99) for 

calibrating the PAL camera, which shows that the calibration of such a camera turns to be a 

difficult problem of solving nonlinear equations of 16 parameters. Here we use an empirical 

method to transform the PAL image, which consists of two simple steps: 

 

(1) Center determination - First, we adjust the camera to point vertically upward so that 

projections of vertical lines in the world remain straight in a PAL image and they intersect at a 

single point in the center of the PAL image2 (Fig. 2.2). If more than two such lines are detected in 

an original PAL image, the center point can be determined by their intersection. Once we have 

the center (x0,y0) of the PAL image I(x,y), a cylindrical panoramic image I($,%) can be generated 

by the following polar transformation (Fig. 2.3) 

0
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0 tan      ,)()(
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yyyyxx

&

&
%&&&% &%$  (2-1) 

                                                        

2 The projections of vertical straight lines will be curves in a PAL image if this condition does not hold. In such a 

general case, the calibration of the PAL camera would be much more difficult. The method by Geyer and Daniilidis( 

1999) for the calibration of an orthographic camera in front of a paraboloid mirror using two sets of parallel lines 

could be extended to calibrate the PAL camera in the general case.  
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Fig. 2.2. Original PAL (Panoramic Annular Lens)  image (768*576) 

 

Fig. 2.3.  Cylindrical panoramic image, without eliminating radial distortion 

 

Fig. 2.4. Cylindrical panoramic image, after eliminating radial distortion 

 

(2) Vertical distortion rectification - Distortion exists in the vertical direction of the unwarped 

cylindrical image (or the radial direction in the original PAL image) due to the non-linear 

reflection and refraction of the 2nd-order mirror surfaces. Note the unequal widths of the 

black-white bars on the white board in Fig. 2.3 caused by the vertical distortion (the widths are 

equal in the real world). We use an N-order polynomial to approximate the distortion along the 

vertical direction: 
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where $ is the vertical coordinate in the original cylindrical image, and v is in the rectified 

cylindrical image. By given the destination coordinates vk of more than N+1 points $' in the 

original cylindrical images (k=0,1,2…), we can compute the N+1 parameters ai (i=0,1,2, N) in 

Eq. (2-2), using the least mean square method. Fig 2.4 shows the rectification result using a 

2nd-order polynomial approximation where only 3 point pairs are needed. We use the lease 

square method with more than 3 pairs of points. In this example, the destination black-white 

strips in Fig. 2.3 are constrained to have the same width and equals to the average strip width of 

the corresponding source strips. It is not surprising that we have the equal intervals of the 

black-white strips in the rectified cylindrical image. This distortion removal procedure gives us a 

good approximation of a linear perspective projection in the vertical direction of the panoramic 

images. 

 

 

 

 

Fig. 2.5. Intrinsic parameter estimation 

 

2.3. Calibration of the virtual cylindrical imaging sensor 

After image unwarping and distortion rectification, we have a cylindrical image generated by a 

panoramic "virtual" camera from the virtual viewpoint O. The next thing we will do is to find the 

viewpoint and the effective focal length of the panoramic virtual camera. We assume that the 

sensors and all objects rest in a common planar surface (the floor). The viewpoint of the virtual 

panoramic camera corresponds to a horizontal circle in the cylindrical image, which is the 
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intersection of the cylindrical image and the horizontal plane passing through the viewpoint. The 

projection in the horizontal direction is a circular projection, and the effective focal length in the 

horizontal direction (i.e. the radius of the cylindrical image) can be expressed as  

(
%

2
WFh %  (2-3) 

where W% is the perimeter (in pixels) of the cylindrical image. The projection in the vertical 

direction is modeled as a linear perspective projection (after the distortion removal), so the 

effective "focal length" in the vertical direction can be estimated as (Fig. 2.5) 

21

21
HH
vvDFv &

&
%  (2-4) 

where H1 and H2 are the heights of two points in a vertical pole measured from the floor, v1 and v2 

are the vertical coordinates (with an arbitrary origin) of their image projections, and D is the 

distance of the pole from the camera (Fig. 2.4). By moving the same pole from distance D to 

distance D', we have a new projection v'1 for the point H1. Then the vertical coordinate (v0) of the 

horizon circle and the height (H0) of the virtual camera can be calculated by 

DD
vDDvv
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&%  (2-5) 

 

III. Panoramic Virtual Stereo Geometry 

Assume we have two panoramic cameras with the same parameters. Both of them are subject to 

planar motion on the floor and are at the same heights above the floor. Suppose that in Fig. 3.1, O1 

and O2 are the viewpoints of the two cameras and they can be localized by each other in the 

panoramic images as M21 and M12. B is the baseline (i.e. distance O1O2) between them. The 

projection of a target point T is represented by T1 and T2 in the two panoramic images. Then a 

triangle O1O2T can be formed. By defining an arbitrary starting orientation for each cylindrical 

image, three angles *1, *2 (and *0) of the triangle can be calculated from the following four 
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bearing angles: %1 and %2, the bearings of the target in image 1 and image 2 respectively, !12 and 

!21, the bearing angles of camera 1 in image 2, and camera 2 in image 1 respectively. Therefore 

the distances from the two cameras to the target can be calculated as   

)sin(
sin

sin
sin

21

2

0

2
1 **

*
*
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&
%% BBD ,   

)sin(
sin
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21
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%% BBD  (3-1) 

 

 

 

 

 

 

Fig. 3.1. Panoramic triangulation (top view) 

A numerical analysis of the triangulation error will be given in section 3.2. In the extreme case, if 

the target is aligned with the baseline O1O2, the triangulation relation is invalid.  However, we 

can still estimate the 3D location of the target by using the size-ratio of the target in two 

panoramic images 
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where w1 and w2 are the widths of the target in the panoramic image pair. Note that the cosines in 

the above equations only give signs since the angles are either 0' or 180'. As an example, if the 

target lies between O1 and O2 (Fig. 3.2), the distances to them can be calculated as  
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Fig. 3.2. Panoramic size-ratio method (top view) 

Since the two cameras view the target (human) from exactly the opposite direction, the widths of 

the objects in the two images corresponds to almost the same width in 3D space (see Fig. 3.2, see 

also Fig. 3.6), which makes the calculation plausible. As an alternative, we can also use the height 

information (in the same way as we use width) since the height of an object is more invariant. 

However, it is only applicable when the top and/or bottom of the figure is visible in both of the 

panoramic images and can be accurately localized. In contrast, the width information is easier to 

extract and more robust since we can integrate the results from different heights of the object. 

Realizing that the object and the robots may occlude (part of) each other in the case of the 

alignment, we will use the width and height information adaptively. 

 

                         

(a) Setup                                           (b) Geometry 

Fig. 3.3. Find the orientation and the distance by a cylinder (top view) 

3.1. Dynamic calibration  

In order to estimate the distance of a target, we need first to estimate the baseline and the 

orientation angles of the two panoramic cameras by a dynamic calibration procedure. Several 
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practical approaches have been proposed for this purpose (Zhu99). The basic idea is to make the 

detection and calculation robust and simple. One of the approaches is to design the body of each 

robot as a cylinder with some vivid colors (e.g. white in  the intensity images of our current 

implementation), which can be easily seen and extracted in the image of the other robot's camera 

(Fig. 3.3a). We assume that the rotation axis of each panoramic camera is coincident with the 

rotation axis of the cylindrical body of the corresponding robot, therefore the baseline between 

the two panoramic cameras can be estimated using the occluding boundary of either of the two 

cylinders, e.g., from the image of camera 2 we have 

 )
2

sin(/ "RB %  (3-4) 

where " is the angle between two occluding projection rays measured in the image of camera 2, 
and R is the radius of the 1st cylindrical body (Fig. 3.3b). The orientation angle (!12) of the line 
O2O1 is simply the average of the bearings of two occluding boundary points P1 and P2. We can 
do the same in the image of camera 1.  

 

            (image of the cylindrical body of the second robot) 

(a) Pano 1: Fh =159.15 (pixels),  "=11.52' (32 pixels), !21 = 23.76', B = 180 cm 

 

                               (image of the cylindrical body of the first  robot) 

(b) Pano 2: Fh =159.15 (pixels),  "=11.52' (32 pixels), !21 = 227.88', B = 180 cm 

Fig. 3.4. Dynamic calibration by cylinders (which are pointed by arrows) 
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Fig. 3.4 shows a calibration result. The cylindrical body of each robot (pointing at by an arrow in 
Fig. 3.4(a) and (b)) is detected and measured in the panoramic image of the other robot. In the 
experiment, the perimeter of the cylindrical image is 1000 pixels, so the angular resolution in 
degrees is 360/1000 = 0.36 ' per pixel. We define the angular resolution of the panoramic image 
as + in radians for future use, which is 6.28 mrad/pixel. The radius of the cylindrical body of each 
robot is R=18.0 cm. 

 

(a) Pano 1: *1=48.60' (%1=72.36', !21 = 23.76'), D1 = 359 cm 

 

(b) Pano 2: *2=92.52' (%2=135.36', !12 = 227.88'), D2 = 208 cm 

Fig. 3.5. 3D estimation by triangulation 

 

(a) Pano 1: *1=1.08' (%1=22.68', !21 = 23.76'), D1 = 72 cm 

 

(b) Pano 2: *2=0.00' (%2=227.88', !12 = 227.88'), D2 = 108 cm 

Fig. 3.6.  3D estimation by size-ratio method (D1+ D 2 = B) 
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Fig. 3.5 and Fig. 3.6 show the experimental results of 3D estimation of a target using the above 

calibration result. In Fig 3.5, triangulation method is used, while in Fig. 3.6, the size-ratio method 

is applied. In both cases, the relative error is about 5% of the distance (D1 or D2), which was 

caused by the errors in dynamic calibration and the image match of two different views of the 

target (see Sec. 3.2). In the co-linearity case, the two cameras view the target (human) from the 

opposite direction, which makes the use of size (width) information reasonably good. Note that a 

1-pixel error in the width of the robot cylinder in a panoramic image will introduce about 5-cm 

error in calculating the baseline in the configuration of Fig. 3.4. This error is a function of the 

resolution of the panoramic image and the size of the cylindrical robot (Eq. (3-6) in Sec. 3.2).  

 

3.2. Error analysis  

Eq. (3-1) and Eq.(3-2) show that the accuracy and resolution of distance estimation depends on 

the accuracy in estimating the baseline and the bearing angles.  Here we derive an analysis of the 

error of estimating distance D1 from the first camera to the target. The estimated triangulation 

error can be computed by partial differentials of Eq. (3-1) as 
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where B, is the error in computing the baseline B, and 1*, and 2*, are the errors in estimating the 

angles 1* and 2* from the two panoramic images. Analyzing Eq. (3-5), we have found that the 

distance error comes from three separate error sources: calibration error, matching error and 

triangulation error, which will be discussed below.  
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3.2.1. Calibration error 

Dynamic calibration estimates the baseline B, and the bearing angles !12 and !21 of the two 

cameras. The error in estimating the baseline by Eq. (3-4) can be derived as  

 "" ,-,
&

%,
R

B
R

RBBB
22

222
  (3-6) 

where R << B, and ", is the error in estimating the angle " in an image.  From Eq. (3-6) we can 

find that the baseline error B, is inversely proportional to the dimension of the cylindrical body 

for dynamic calibration given the same angle error ", . Given the radius R and the angle error, 

the baseline error is roughly proportional to the square of the baseline itself.  The angle error 

( ", ) is determined by the errors in localizing the occluding boundaries of the second (or first) 

cylinder in the first (or second) panoramic image (Fig. 3-3).  The errors in the bearing angles !21 

and !12 will introduce errors to *1 and *2 (Fig. 3.1). Since each bear angle is the average of the 

orientations of the two occluding boundaries, they can be roughly modeled as the same as ", , i.e. 

21!, = 12!,  = ", .  

 

3.2.2. Matching error 

Assume that we want to find the distance of a given point T1 in view 1 by finding its 

corresponding point T2 in view 2. In this sense, there will be no error in providing the bearing 

angle %1 in view 1, which implies that the error 1*,  is solely determined by 21!  via calibration, 

i.e. 1*,  = ", . However, the view difference in O1 and O2 will introduce a "matching error" 

(denoted as %, ) in %2, the localization of T1's matching point T2, which could be a function of the 

location of the view point O2 (related to O1). Thus, 2*,  = ", + %,  is a (complicated) function 

of the viewpoint location and is generally larger than 1*, . 
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3.2.3. Triangulation error 

Now we want to find a numerical result of the following problem: for a certain distance D1 from 

camera 1 to the target, what is the error distribution for different locations of camera 2, which 

determines configurations of baselines and angles of the panoramic stereo? Since it is hard to give 

a numerical function of the error 2*,  vs. the location O2, we will use the same measure error 

bounds in all the angles, i.e. ", = 1*, = 2*, . *, . Later on we will re-consider this matching error 

qualitatively. We decompose the analysis into two steps. First, by fixing the baseline, we find the 

optimal angle 1* . It is equivalent to finding the optimal position of O2 on a circle of origin O1 and 

radius B (Fig. 3-7). Second, under the optimal angle configuration, we find the optimal baseline 

B. An additional consideration is that a human has a size comparable to the robots, so the 

distances between a robot and the target should be at least greater than the dimension of the robot, 

2R.   

In the first step, we are trying to find the minimum value of the error due to the second and third 

terms of Eq. (3-5), i.e. 

2
21

2
12111 )sin(

)cot( *
**

**** ,
&

&,&%,
DDD  (3-7) 

It is equivalent to find the optimal position of O2 on a circle of origin O1 and radius R. We first 

consider the case where B < D1. In this case, Eq.(3-7) can be re-written as a function of *1 
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where we assume that  the same measure errors in angles, i.e. 1*, = 2*, = *, . By some 

mathematical deductions, we can find that the minimum error can be achieved when 
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Th error in Eq. (3-8) increases from the minimum value to / when the angle *1 changes from the 

optimal value to 0' and 180' respectively (Fig. 3.4a).   

In the second step, we will find the optimal baseline in the case of optimal angle. Inserting Eq. 

(3-6) and Eq. (3-9) into Eq. (3-5) and assuming that the angle error ", in Eq. (3-6) also equals 

to *, , we have 
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It is intuitive that the larger is the baseline, the better the triangulation will be (term 2 in Eq.(3-9), 

however the estimated error in the baseline is also larger (term 1). The minimum value can be 

achieved when RDB 12% , which means that  

(1) more accurate baseline estimation can be obtained given a larger cooperative robotic 

target (i.e. R), hence the optimal baseline for estimating distance D1 can be larger, and  

(2) the farther the target is, the larger the baseline should be.  

Assuming that the human object has a size comparable to the robots, the distances between a 

robot and the target should be at least greater than the dimension of the robot, 2R. So Eq.(3-9) is 

only valid when D202R, hence we should have D10 B+2R.  Similarly, we can find the optimal 

solutions when B = D1 and B > D1.  

 

In conclusion, we have the following results: 

Case (1) . When B - D1-2R, the best estimation can be achieved when 
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and the error in the optimal configuration is  

 ** ,),
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Note that in this case, the minimum error is achieved when !901 )* , !902 ** and !900 )* . For 

example, when R=0.18 m, D1=4.0 m, *, = 6.28 mrad (1 pixel), then we have B=1.70 m, 

!2.541 %* , 11 / DD, =5.4%. 

 

 

 

 

 

 

 

 

 

 

 

(a). B - D1-2R             (b). B 1 (D1-2R, 22
1 4RD & )        (c). B 0 22

1 4RD &  

 

Fig. 3.7.  Best view angles and baselines 
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Case (2) . When B 1 (D1-2R, 22
1 4RD & ), the best estimation can be achieved when 

 1DB % ,  2

22

1
2cos

B
RB &

%*  (3-12) 

and the error in the optimal configuration is  
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RD

R
R

RD
DD  (3-13) 

Note that in this case, !901 )*  is the minimum angle by physical constraint of the minimum 

object distances, and 02 ** % . 

 

Case (3) . When B 0 22
1 4RD & , the best estimation can be achieved when 

 22
1 4RDB &% ,  

B
D1

1cos %*  (3-14) 

and the error in the optimal configuration is  

 *,&
&

%, & )2
2

3
(

1

22
1

11 D
R

R
RD

DD  (3-15) 

Note that in this case, the minimum error is achieved when !901 )* , !902 )* and !900 %* .  

 

By some tedious mathematics comparing Eq. (3-11) and Eq. (3-15) under different D1, we arrive 

at the following observation+:  

                                                        

+ It can be also proved that we always have 0
11 DD ,), & , which means that it is better to set the baseline slightly 

greater than the distance D1 when they have to be approximately equal. (In addition, the equality condition cannot be 

satisfied before we have an accurate estimation of D1).  
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If the distance from camera 1 (the main camera) to the target is greater than 11.5 times the 

radius of the robot, i.e. D1 > 11.5 R, we have && ,), 11 DD , which means that the best 

configuration is RDB 12% , 
22

1

1
1 2

3
cos

BD

BD

&
%*  (Eq. (3-10)). Otherwise, we have 

&& ,*%, 11 DD , i.e. the best configuration is 22
1 4RDB &% , 

B
D1

1cos %*  (Eq. (3-14)).  

 
Fig. 3.8.  Error map for distance D1 when camera O2 is in different locations of the map 
by fixing camera O1 and the target T (D1 = 34R = 6m, R = 18 cm).  The labels in the two 
axes are distances (in meters); the black-white curve shows where the minimum errors 
can be achieved for viewpoint O2 on circles around O1 (see explanation in the text); the 

error value ( *,, 11 / DD ) is encoded in intensity: see the corresponding bar. 

 
 

 

 

 

 

Fig. 3.9.  Best baselines and angles vs. distance curves (The numbers in the 

parentheses are given when R = 0.18m) 
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3.3. View planning and further discussions 

The above observation will be used in the optimal view planning. The distance error map under 

different viewpoint of camera O2 is given in Fig. 8 in the case of D1= 34R = 6m  to verify the 

above conclusion. Minimum error is *,, 11 / DD =11.2 when B=220cm, !1.621 %*  (We have 

two such symmetric locations for O2). The upper bound of the relative error is 11 / DD, =7.0% 

when *,  is equivalent to 1 pixel. The selection of optimal viewing angle and baseline for 

different distance is shown in Fig. 3.9. Note that parameters in Fig. 3.9 are slightly different from 

those in Fig. 3.8 because the curves in Fig. 3.9 are drawn using Eq. (3-11) and Eq. (3-15)  with 

some approximation and practical consideration. A comparison of the error between the flexible 

baseline and the fixed baseline, triangulation method and size-ratio method is given in Appendix 

1, which shows that the flexible baseline triangulation method is almost always more accurate. 

The error analysis can also be used in the integration of the results from more than two such 

stationary sensors. 

 

 

 

 

 

 

(1). small viewpoint difference                (2) large viewpoint difference 

Fig. 3.10.  Viewing differences and distance/dimension estimation   

The best triangulation configuration is derived when all the angular errors ( ", , 1*, , 2*, ) are 

treated as the same and independent to the view configuration of the panoramic stereo. However, 

O1 O2 

O1 O3 
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as we discussed in Section 3.2.2, the error 2*,  may be a function of the position of O2 (given the 

locations of O1 and T). A quantitative result can be derived in the same manner as above if the 

function is known or can be approximated;  but here we only give a qualitative analysis. These 

error map in Fig. 7(d) also shows that there is a relatively large region with errors that are less 

than twice that of the minimum error. (In Fig. 7(d) it is the region around the black part of the 

minimum-error curve, which is a function of baseline B.) The large errors only occur when angle 

0* is very close to 0' and 180'. It implies that a tradeoff can be made between the matching error 

due to large view difference and the triangulation error due to the small view difference. As we 

will do in Section IV, the match is between the centroids of the head of a human subject in two 

panoramic images, thus the 3D estimation gives the distance of a point near the center of the 

human target. In addition, it is interesting to note that larger view difference can give a better 

measurement of the dimension of the 3D object (person), which is similar to the volume 

intersection method (Fig. 3.10).  

 

IV. Selected 3D Matching Approach 

 

Since our primary goal is to detect and to track moving targets (humans) in 3D space, the 

primitives of the panoramic virtual stereo are objects (image blobs of human subjects) as a whole 

that have already been extracted from the two panoramic images (see Sec. 4.1). The triangulation 

approach basically needs the bearing angles of the objects in both images (as well as the 

orientations and distances of the two cooperative robots), whereas the size-ratio method also 

needs the width of each region as well as the bearing angles. This section will discuss how to 

reliably match object image blobs in two panoramic images subject to large perspective 

distortions due to rather different viewing angles. We will explain our 3D matching algorithm 
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based on annotated image blobs of human subjects. Extension of this method to the contours of 

humans and other objects is straightforward. 

 

 

4.1. Moving object detection and extraction 

A fast moving object extraction and tracking algorithm by using a stationary panoramic vision 

system has been developed (Zhu99). For completeness, we briefly describe the algorithm here. 

First, the look-up table (LUT) technique is used to map a circular image into a cylindrical image 

that ensures real time operation in moving object detection. The input of the moving object 

detection is a live video of cylindrical images. 

Given a stationary camera, moving objects can be detected and extracted in a subtraction image 

Si(x,y), which is a subtraction of a current image by a background image. However, during a long 

monitoring period, illumination of the background may change, either gradually or abruptly, 

which may introduce false detection. We deal with this problem by integrating a frame difference 

method with a background updating approach.  

A frame difference Di(x,y) is calculated to detect any change between the current image and the 

previous image (assuming that there is very small inter-frame change in the background part). A 

connected- and/or nearby-region grouping algorithm is then used to find the blob - region and its 

contour of each possible object - in the subtraction image Si(x,y). Then we use this frame 

difference Di(x,y) to verify if a region extracted from the subtraction of the current frame from 

the background image is really a moving object instead of the dynamic change of the background. 

A set of moving object blobs is extracted by checking that enough pixels in the difference image 

have changed inside each region of a candidate subject. The object blob image is the image that 

copies the original intensity values from the current image only for those regions with moving 

objects. 
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An initial background is generated at the beginning of the object detection process by estimating 

the median value of each pixel in multiple frames (e.g., 30 frames). Then, during the detecting 

process, the background image is being updated pixel-wise by a weighted average of the existing 

background pixel and the current image only in the non-object regions. 

 

(a) Cylindrical image, with bounding rectangles of moving objects superimposed 

 

(b) Background image 

 

(c) Object image of three people 

Fig. 4.1 Multiple object segmentation and virtual zooming 

Fig. 4.1a shows one frame in a detection example where 3 people walked inside a room. Fig. 4.1b 

shows the current background image that had been generated for the first 24 frames when all the 

three peoples were walking around, and then was being updated for each processing frame, i.e. 5 

times per second. Fig. 4.1c shows the object image where all the three people are almost 

completely extracted from the background and the boundaries of the people are smoothly along 

the contours of their bodies.  
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In the current implementation, multiple objects are tracked based on such features as size, aspect 

ratio and position of each object. Fig. 4.2 depicts multiple moving human object detection and 

tracking procedure. Multiple moving objects (4 people) were detected in real-time while moving 

around in the scene in an unconstrained manner; the panoramic sensor is stationary. Each of the 

four people was completely extracted from the complex background as depicted by the bounding 

rectangle, direction, and distance to each object. The dynamic track, represented as a small circle 

and icon (elliptic head and body) for the last 30 frames of each person is shown in Fig. 4.2b in 

different colors. The final object image is depicted at the end of the corresponding track.  The 

frame rate for multiple object detection and tracking is about 5 Hz in a Pentium 300M Hz PC for 

1080*162 panoramic images. 

 

(a) Cylindrical images with bounding rectangles of moving objects superimposed 

 

(b) Object tracks, each track is for the last 32 frames 

Fig. 4.2 Multiple moving object tracking 

4.2.  3D features based stereo match  

Since the appearances of an object will vary significantly from largely separated views, the 

information only from 2D images will produce ambiguity in object match. Hence, we have 

explore two ways to improve the accuracy and robustness in blob matches across such widely 

separated views - head extraction and 3D measurements.  

4.2.1. Head extraction and blob annotation 



 26

We have realized that the bearing of the centroid of an entire blob is subject to the effects of the 

positions of arms and legs, and the errors in body extraction. We have found that the bearing of 

the head of a human is more accurate than the entire blob of the human subject for three important 

reasons - it is usually visible in the panoramic images, it is almost symmetric, and it is easy to 

extract from the background (see Fig. 4.1- Fig. 4.3).  The quasi-symmetry of a head makes it 

more suitable for matching across two widely separated views. This idea can be further extended 

by extracting different parts of a human blob for partial match between two views. 

 

 

 

 

 

 

 

 

 

Fig. 4.3. Head extraction and bearing estimation. The large rectangle on each human 

subject is the bounding rectangle of each blob, and the small rectangle inside indicates 

the centroid of the extracted head.  

The head part of a blob is extracted by using the knowledge that it is the topmost part of the blob 

and it has certain height-width ratio (e.g., 3:2) in a panoramic image. Here the exact height of the 

head part is not so critical since we only use the bearing angle of a head for triangulation. Fig. 4.3 

shows results of human blobs and heads extraction from a pair of panoramic images. It can be 

seen that the bearings of heads are more suitable for building up correspondence between a pair 

of blobs from two widely separated views. Notice that the centroid of each head region gives 
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correct bearing of the head even if the indicated height is not accurate and not consistent across 

the corresponding image pair. The second human subject in the images gives a good example 

showing that the bearing of the head is more accurate than the entire blob, which is a inaccurate 

detection of the human body due to the intensity closeness of the clothes and the door (left side) 

and the detected shadow on the wall (right side). The shadow is not so obvious to human eyes, but 

it was detected by the system. 

 

 

 

 

 

Fig. 4.4.  Annotated human blob 

From each panoramic image, a set of objects (blobs) is extracted, which is annotated by the 

following parameters (Fig. 4.4) 
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where k (1 or 2)  is the number of cameras, )()()()( ,,, k
i

k
i

k
i

k
i hwI % are the photometric feature, the 

width of the image blob, bearing angle of the head of the target i in camera k, and the vertical 

coordinate of the top of the blob (indicating the height of a person). 

4.2.2. 3D-related match measurements 

Based on the above annotated blobs, we have explored the 3D-related measurements as well as 

2D photometric features.  For each object i in T(1), we try to match it with every object j in set T(2), 

and we derive the following measurements for each pair. 

(1). Illuminant similarity - Assuming that illuminant feature is a scalar value (e.g. the average 

intensity of the region), then the following illuminant ratio can be derived 

Bearing  

(Height) 

Width   

Top  

Intensity 

property 
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In the current algorithm, we use a scale value - the median intensity of the image region of an 

object as the illuminant feature. More complex features can be used to calculate the illuminant 

ratio between two image regions.  

(2). Ray convergence - A meaningful match must satisfy the condition that two rays from the 

viewpoints to the target images converge. The degree of ray convergence is calculated as    
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where *0 is the angle between rays )2(
1

)1(
1  and ji TOTO (refer to Fig. 4.6) , Dmax is the maximum 

distance that can be detected by the panoramic stereo system.  

(3). Width consistency - By calculating the distances )2()1(  and ji DD  of the hypothesized target to 

viewpoints O1 and O2 by matching )2()1(  and ji TT and using Eq. (3.1) or Eq. (3.2), the size of the 

hypothesized target estimated from two images should be very close for the correct match. A 

width ratio is calculated to account for this width consistency in two images 
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(4). Height consistency - First we calculate the height of the top of the hypothesized object from 

both images, as )2()1(  and ji HH (using Eq.(2-5)), which should be the same.  Then a height ratio 

accounting for the degree of height consistency can be calculated as  
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Therefore, a match measurement matrix M = [r(i,j)]N1xN2 can be constructed where the element 

indexed by (i,j) is the total "goodness" measurement of the match  ji 2 : 

 ]1,0[),(),(),(),(),( 1% jirjirjirjirjir hcwcrcis  (4-6) 

Note that in the match measurement features, all the items except the first one contain 3D 

information, namely orientation constraints, width constraints and height constraints.  

 

(a) Pano1 - from left to right: T1
(1)=(123,54,97,107.64,97 ), M21 = (213,24,47,313.56,47)  T2

(1)=(57, 30,78,338.40,88) 

 

(b) Pano 2- from left to right: T1
(2)=(57,61,110,32.76,117 ), T2

(2)=(106, 25,63,144.00,86), M12 

=(213,24,49,156.60,54), T3
(2)=(49, 25,23,178.92,36) 

Fig. 4.5. 3D estimation of multiple objects  

 

 

 

 

 

Fig. 4.6. Geometric relation of 2D images and 3D objects  
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 T1
(2) T2

(2) T3
(2) 

T1
(1) 0.0 

(0.46, 0.0, /, /) 
0.72 

(0.86,1.0,0.93,0.91) 
0.0 

(0.40,0.0, /, /) 
T2

(1) 0.988 
(1.0,1.0,0.99,0.99) 

0.32 
(0.54,1.0,0.62,0.95) 

0.0 
(0.86,0.0, /, /) 

Fig. 4.7. Match measurement matrix  

4.2.4.  Blob match algorithms 

[Algorithm 1] A “greedy” match algorithm 

Now the task is to find for each object in the first image the correct match in the second image 

based on the match matrix. The first algorithm is an exclusive "greedy" match algorithm: 

Step 0:  Initialization: m = 0; M(0) = M; 

Step 1: Find the maximum value in matrix M(m), and its corresponding indices (i, j). Then 

object i in the first image matches object j in the second image; 

Step 2. Delete row i and column j in the matrix M(m) to form a sub-matrix M(m+1) ; assign m = 

m+1; 

Step 3. Go to step 1 until no rows or columns left in M(m). 

This algorithm is very fast even if many objects (10 –20) are detected in the scenes. The time 

complexity of this algorithm is O(
3
1 N3) where N=max(N1, N2). However, this algorithm may not 

be able to find (correct) matches for some of the objects due to missing detection, occlusion and 

view distortions (see discussions in Section 5.2).  

[Algorithm 2]  A global optimal match algorithm 

The second algorithm is an exhausted search of the global optimal and exclusive matches for all 

the possible match pairs.  Assume that N1 - N2,  a valid match set { )2()1(
nm jTiT 2 }, or simply  

denoted as {  njmi 2 }, is a 1-1 match set, and it satisfies the following conditions:  
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 (1)  m = 1,…,N1, n = 1,…,N1   ( N1 (- N2 ) pairs of matches)  

 (2) 11 Nmi -- and 21 Nnj --  (im and jn are the indexes of objects in the 1st and 2nd images 

respectively) 

(3) pm if 33 pimi , and qn if 33 qjnj  (exclusive matches) 

In all such valid match sets, we try to find the best one {  **
njmi 2 } that  maximizing the total 

goodness measurements of all the matches, i.e. 

 !%!
%% 1,...,1,1,...,1,

** ),(max),(
Nnm

nm
Nnm

nm jirjir  (4-7) 

The time complexity of the global optimal match is O(N!) where N=max(N1, N2), which is much 

higher than that of the “greedy” match algorithm when the number of objects are large. For 

example, when N =10,  O(N!) : O(
3
1 N3)  is 10886, but when N =5,  O(N!) : O(

3
1 N3) is only  3. So 

the second algorithm is preferable since better results can be achieved in a reasonable 

computation time when the object number is small (see results in Section 5.2). 

 

Fig. 4.5 and Fig 4.6 show an example where two objects were detected in panoramic image 1 

(Pano 1) and three objects were detected in Pano 2. Fig. 4.6 visually shows the geometrical 

relation between images and 3D objects.  Fig. 4.7 shows the match measurement matrix 

]},,,[:),({ hcwcrcis rrrrjir . By applying the "greedy" match algorithm or the global match 

algorithm, the correct final matches are ) ,( )2(
2

)1(
1 TT  and ) ,( )2(

1
)1(

2 TT . The estimates of distances 

and heights of the two people are labeled in Fig. 4.6. In this experiment, the panoramic image 

parameters are Fh =159.15 pixels, Fv =258.0 pixels,  v0= 58.4 pixels, H0=137.66 cm, !21 = 

313.56', !21 = 156.60', and B = 239.41 cm. 
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V. Cooperative Strategy in the Real System 

In the panoramic stereo vision approach, we face the same problems as in traditional motion 

stereo: dynamic calibration, feature detection, and matching. In our scenario, we are dealing with 

moving objects before 3D matching, which seems to add more difficulties. Fortunately, the 

following cooperative strategies can be explored between two robots (and their panoramic 

sensors) to ease these problems: monitor-explore working mode, mutual awareness, information 

sharing and view planning. In this section, we will first discuss these cooperative strategies, then 

we will briefly describe our experimental system. 

 

5.1. Cooperative strategies 

5.1.1. Monitor-explore mode 

 In the two-robot scenario of human searching, one of the robots is assigned as the "monitor" and 

the other as the "explorer". The role of the "monitor" is to monitor the movements in the 

environment, including the motion of the "explorer". One of the reasons that we have a "monitor" 

is that it is advantageous for a stationary camera (mounted on the "monitor") to detect and extract 

moving objects. On the other hand, the role of the "explorer" is to follow a moving object of 

interest and/or find a "better" viewpoint for constructing the virtual stereo geometry with the 

camera in the "monitor". However, the motion of the "explorer" introduce complications in 

detecting and extracting moving objects, so we assume that the explorer remains stationary in the 

beginning of an operational sequence in order to easily pick up any moving objects. Then a 

tracking mechanism is activated as soon as it begins to move (the tracking procedure may 

integrate the motion and texture information, which need future work). We also expect that the 

explorer will stay still in an advantageous location after it has found a good viewpoint for 3D 

estimation. The role of the "monitor" and the "explorer" can and will be exchanged during 

mission execution. 
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5.1.2. Mutual awareness  and information sharing 

Mutual awareness of the two robots is important for their dynamic calibration of relative 

orientations and the distance between the two panoramic cameras. In the current implementation, 

we have designed a cylindrical body with known radius and color so it is easy for the cooperating 

robots to detect each other. It is interesting to note that while the motion of the explorer 

encounters difficulty in tracking other moving objects by itself, it is helpful for the awareness of 

its existence by the monitor. It is also possible to directly use more complicated but known 

natural appearances and geometrical models of a pair of robots to implement the mutual 

awareness and dynamic calibration.  

The two panoramic imaging sensors have almost identical geometric and photometric properties. 

Thus it is possible to share information between them about the targets as well as themselves in 

the scene. For example, when a certain number of moving objects are detected and extracted by 

the stationary "monitor", it can pass the information of the object number, geometric and 

photometric features of each object to the explorer who may be in motion. Thus it makes the 

explorer easier to track the same objects.  Information sharing is especially useful for the mutual 

detection of "cooperative" calibration targets since the models of the robots are already known a 

priori. In our simplified case, the cylindrical bodies of both robots always have the same 

appearances from any viewing angles. Therefore, whenever the "monitor" has detected the 

cylindrical body of the moving "explorer", it can estimate the bearing and distance of the robot 

"explorer". Then this piece of information is passed to the "explorer" so that the "explorer" can 

try to search for the cylindrical body of the "monitor" in its image with a good prediction of size 

and color under the current configuration and illumination condition.   

5.1.3. View planning  

View planning is applied whenever there are difficulties in object detection and 3D estimation. In 

our case, we define the view planning as the process of adjusting the view point of the exploring 

camera so that best view angles and baseline can be achieved for the monitoring camera to 
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estimate the distance to the target of interest. Occlusion of the human or the robot may occur 

when an object (either a human or a robot) is between the observing camera and the target. It is 

also the configuration when triangulation has larger error (of course the size-ratio method can be 

used in that situation for an initial estimation). According to the analysis in section 3.2, the 

guidelines for "best" viewing planning are as follows: 

(1) Observation rule - This rule is applied when the two robots "observe" the target from a 

distance. If the initial estimated distance from the viewpoint O1 to the target D1 is greater than 

11.5R, the "explorer" should move as close as possible to an optimal position that satisfies the 

minimum distance error conditions, i.e., baseline constraint 12 RDB %  and the viewing angle 

constraint 22
1

1
1 2

3cos
BD

BD
&

%*  .  

(2). Approaching rule - This rule is applied when the two robots are close to the target and the 

explorer is trying to "approach" the target.  If the estimated distance is smaller than 11.5R, the 

"explorer" should move as close as possible to an optimal position that satisfies the baseline 

constraint 22
1 4RDB &% and the viewing angle constraint 

B
D1

1cos %* .  

 (3). Mutual-awareness rule - Given the angular resolution of the panoramic image, +, the size 

of the cylindrical robot body, R, and minimum detectable pixel number of the robots, w, the 

maximum distance of the baseline is B = 2R/w+ where two panoramic cameras are aware the 

existence of each other. For example, assume that w=10 pixels is the minimum detectable width, 

then the maximum baseline is B=2.8 m given R=0.18 m and + = 6.28 mrad/pixel. 

 (4). Navigation rule - View planning strategy should also consider the cost of moving in finding 

a navigable path to the selected position. This cost is also a function of distance, straightness 

(degree of turns) and time to travel. 

Note that the explorer is always trying to find a best position in the presence of a target's motion. 
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These strategies can be extended to more than two cooperative robots, and in fact more than two 

robots will make the work much easier.  For example, we can keep two of the three robots in a 

team stationary so that they can easily detect the moving objects in the scene, including the third 

robot in motion. Thus the locations of all the moving objects can be estimated from the pair of 

stationary panoramic cameras. Then, for a target in interest, we can find (dynamically) the best 

viewpoint for the third robot in order to estimate its distance from either of the two stationary 

robots. By using the knowledge of the (dynamic) locations of the target, other moving objects and 

the three robots, a navigable path for the third robot can be planned to the desirable goal. These 

measurements can also facility the detection of the target and the two stationary robots by the 

moving robots, for example, by tracking the objects with visual features inherited from the other 

tow robots. Thus the cooperative triangulation can be constructed between the moving and the 

stationary platforms. 

 

5.2. Experimental System and Results 

In our experimental system, we mounted one panoramic annual lens (PAL) camera on an RWI 

ATRV-Jr. robot (the "explorer"), and the other PAL camera on a tripod ( the "monitor")(Fig. 

3.3a). Two Matrox-Meteor frame grabbers were installed on the ATRV-JR and a desktop PC 

respectively, both with 333M Hz PII processors. The communication between two platforms is 

through sockets over an Ethernet link (wireless Ethernet communication will be used in the future 

system). 3D moving object detection and estimation programs run separately on the two 

machines at about 5 Hz. Only camera and object parameter data (i.e., baseline, bearing angles, 

sizes, and illuminate features) were transmitted between two platforms so the delay in 

communication can be ignored at the current processing rate (5Hz). In the current 

implementation, we assume that the most recent results from both platforms correspond to the 

events at same time instant. Synchronized image capture is being considered by using the 

30-frame buffering capability of the frame grabbers and by data interpolation in order to avoid the 

time/motion delay of moving objects in two images.  
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Fig. 5-1.  Panoramic stereo tracking result (axis in cm ) 
 
 

Fig. 5-1 shows the result from an experiment to evaluate the panoramic stereo's performance 

of tracking a single person walking along a known path when the two cameras were stationary. 

The theoretical error bounds were computed assuming that all the angular errors in Eq. (3-5) and 

Eq. (3-6) were equivalent to 1 pixel. The target (T) position where the theoretical best 

triangulation on this track can be expected is shown in the figure, which is validated by the real 

experimental result.  Even if the localization errors in images may be larger than 1 pixel, the 

average error of the estimated track is comparable to the theoretical error bounds, taking a global 

offset into account (The offset of the estimated track from the real path is due to the delay of the 

processing of the explorer (O2) working in "telnet" mode).  

 
 
 
 
 
 

Estimated track and its global
offset (gray line) due to delay 

Real Path (left to right) with
theoretical error bounds  

T Triangulation of
best estimation 

Error bound in
distance 

Camera 1 Camera 2 
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(1) (2) 
 

      

(3)                                                                       (4) 
 

Fig. 5-2.  Panoramic stereo tracking two people. The four pictures show localizing and 
tracking results before they met, when they met, after they departed and when they 
arrived their goals, out of 214*2 localization results. In each picture, the top and bottom 
images are the panoramic image pair from two panoramic cameras. Each image is 
actually the corresponding background with the superimposed blob images and their 
annotations of the blobs. In the center is the top view of the room where each grid is 
50x50 cm2. Each red or green dot represents a location of the corresponding person.  

 

 

camera1 camera 2 

camera1 camera 2 camera1 camera 2 

camera1 camera 2 
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(1)                                                              (2) 

Fig. 5-3. Failure examples in “greedy” match algorithm.  (1) The second blob (green, 
human +shadow) in the 1st image mis-matched with the shadow (green) of the second 
human (yellow) (2). Mis-match when two people met.  For both (1) and (2): row 1 – the 
first image, row 2- top view of the floor, row 3- the second image, and row 4 – match 
“goodness” measurements. Note that the measurements are normalized to 0~1 for easy 
judgments. 

 

Fig. 5.2. shows the results of detecting and tracking two people who walked from the opposite 

directions along the same known rectangular path. In this example, the simple “greedy” match 

algorithm was used. In the 2D map of the room (center of each picture in Fig. 5.2), the red dot 

sequence shows the path of one person, and the green dot sequence   shows that of the other. It can 

be seen that the proposed 3D match, localization and tracking algorithms produced good results. 

The average localization error is about 20 cm. There are less than 5% mis-matches, which 

camera1 camera 2 camera1 camera 2 

Match “Goodness” 
           1                   2 
1         0.00             0.92 
2          0.89            1.00 

Image 2 

Im
age 1  

Match “goodness” 
     1             2            3 
1   0.37       0.43      0.62 
2   0.00      0.00      1.00 

Image 2 

Im
age 1  
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happened in two places. One place is when the shadow of a person was projected on the wall and 

was detected and mis-matched by the system (Fig. 5-3(1)). In the match “goodness” table, 

green-green match is only slightly “better” than green –yellow match. This problem could be 

solved by a partial match method- parts of the (green) blob in the 1st image should match the two 

blobs (green and yellow)  in the second image. The second place is when the two people met (Fig. 

5-3(2)). It happened in a place where one person (red) is very small in the first image, while the 

other person (also marked as red) is small in the second image. These two small image blobs 

constructed a good 3D configuration and unfortunately the images are too small to give any 

useful intensity information (The green pair is a invalid 3D configuration – see the match 

“goodness” table). This failure could be fixed by a finding matches that maximize the overall 

match “goodness” measures. For the example in Fig. 5-3(2), global optimal matches will be 

green-red and red-green since this valid match set gives the maximum global match “goodness” 

measure (0.92+0.89 instead of 0.00+1.00 of the “greedy algorithm). Fig. 5.4 shows the 

preliminary results of using the global match algorithm to the two-person tracking example. 

Better localization results can be obtained (please compare the tracks of Fig. 5.4 with that of Fig. 

5.2(4)). For example, some mis-matches (including the one show in Fig.  5.3(2)) have been 

corrected. Further improvements and experiments on stereo match, view planning and evaluation 

are being undertaken. 

 

Fig. 5-4. Preliminary results using the global match algorithm. 
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VI. Conclusion and Discussion  

This paper has presented a panoramic virtual stereo approach for two cooperative mobile 

platforms. There are four key features in our approach: (1) omni-directional stereo vision with 

single viewpoint geometry and a simple camera calibration method, (2) cooperative mobile 

platforms for mutual dynamic calibration and best view planning, (3) 3D matching after object 

extraction and (4) near real-time performance. The integration of omni-directional vision with 

mutual awareness and dynamic calibration strategies allows intelligent cooperation between 

visual agents. A 3D-based matching process provides a nice way to solve the problems of limited 

resources, view planning, occlusions and motion detection of movable robotic platforms.  

Experiments have shown that this approach is encouraging. On-going and future work include 

the following topics:  

(1) Improvement of the calibration accuracy - By integrating a panoramic camera with a  

pan/tilt/zoom camera, the system can increase the capability in both viewing angle and 

image resolution to detect the cooperative robots as well as the targets. The robust and 

accurate dynamic calibration is the key issue in the cooperative stereo vision.  

(2) Improvement of 3D matching - By using the contours of object images and more 

sophisticated features (color, texture, etc), more accurate results can be expected. This is 

another main factor that affects the robustness and accuracy of the 3D estimation.  

(3) Tracking of 3D moving objects - We need to develop sophisticated algorithms to track the 

moving objects in both 2D images and 3D spaces, in the presence of occlusion, and by 

moving cameras as well as stationary cameras.  
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Appendix 1. Comparison Analysis 

Comparison between fixed baseline and flexible baseline - Assume that in a fixed baseline 
stereo system of a robot, two cameras are mounted as far away as possible in a robot with 
cylindrical body of radius R, so the maximum baseline is B=2R. Let us assume that there is no 
error in stereo camera calibration (i.e. B is accurate). Since we always have B < D1 in 
fixed-baseline stereo, we can use Eq. (3-9) to estimate the distance error, i.e.  
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when D1 > 4R, which is almost always true. 

Comparison between triangulation and size-ratio approach - The error for the size-ratio method 
can be calculated in a similar way, For example, the distance error for Eq. (3-3) is 
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where W is the width of the target, and we assume that 1w, = 2w, = ", = w,  (w is measured in 

radian). Obviously, we have B>D1, D1>2R and D2>2R.  Eq. (a-3) implies that a larger target 
means better distance estimation. The minimum error is obtained when the second camera O2 
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moves as close as possible to the target, i.e. D2= 2R (or B = D1+ 2R). So the minimum error can 
be expressed by 
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We always have &,*, 11 DDs  given that B>D1, , w, = *,  and W << D1. 

 


