The Importance of Being Discrete: Learning
Actions through Interaction

Gary King
Tim Oates
Computer Science Department

GWKINGQCS.UMASS.EDU
OATESQ@QCS.UMASS.EDU

University of Massachusetts, Box 34610, Amherst, MA 01003-4610

Abstract

A robotic agent experiences a world of con-
tinuous multivariate sensations and chooses
its actions from a continuous action space.
Therefore, hand-coding knowledge sufficient
for successful planning in uncertain, dy-
namic environments is a difficult task. We
present a method whereby an unsupervised
robotic agent learns to discriminate discrete
actions out of its continuous action param-
eters. These actions are discriminated be-
cause they lead to qualitatively distinct out-
comes in the robot’s sensor space. Once
found, these actions can be used by the robot
as primitives for planning and further explo-
ration of its world. We present results gath-
ered using a Pioneer 1 mobile robot.

1. Introduction

Robots typically have continuous state and action
spaces but effective planners typically require discrete
states and actions. For example, the Pioneer 1 mo-
bile robot has a pair of independent drive wheels and
a variety of sensors including seven sonars and a CCD
camera. To move, the robot must select a speed for
its right and left wheels from an infinite range of pos-
sible parameters. While it acts, the values returned
from its sonars, camera and other sensors will transi-
tion through a subset of an infinite number of states.
As far as the robot can tell, every one of its possible
wheel speed settings is a different action and every one
of its distinct sensor readings is a different state. If a
planner was forced to plan using these as primitive ac-
tions and states, it would obviously be unable to devise
any useful plans in a reasonable amount of time.

Of course, many of these wheel speed settings lead to
qualitatively similar outcomes. The robot will go for-
ward, backwards, turn left or right or not move at all.

We can examine the robot’s behavior and categorize
its actions because we have already categorized these
continuous domains into discrete chunks. However,
providing a robot with knowledge of our categories by
hand-coding primitive actions and states is tedious, er-
ror prone, and must be tuned to each particular model
of robot. Lastly, since the robot’s sensing and effect-
ing abilities are not equivalent to our own, we may
be unable to provide distinctions which are optimally
effective for the robot as it attempts to interact with
and control its environment.

Below, we present a method whereby an unsupervised
robotic agent can learn qualitively distinct regions of
the parameters that control its actions. In our model,
the robot begins with a finite number of distinct con-
trollers, each of which is parameterized over zero or
more dimensions. Using our method, a robot will be
able to learn for itself which regions of the parameter
spaces of its controllers lead to what sensory outcomes.
These regions can then become the discrete primitive
actions which the robot can use to plan. The layout
of the paper is as follows: we first describe our robotic
agent—the Pioneer 1 mobile robot—and the primitive
controllers we created for it; then we describe our
method and the experimental results that validate it.
Lastly, we set this method in the context of existing
and future work.

2. Method

We can view the sensor data collected by the robot
as being generated by distinct activities or processes.
For example, a process may involve the robot going
forward, turning to the right, spinning sharply left or
doing nothing at all. Our problem falls into two pieces.
The first is to take the set of continuous multivariate
time series generated by the robot and discover the
distinct activities which created it and which activity
generated which time series. In essence we want to

discover how many different kinds of things the robot
did and which thing goes with which time series. The
second problem is to use this information to divide the
parameter space(s) of the controller(s) that generated
each activity into possibly overlapping regions. These
regions build upon the robot’s innate controllers and
we use them to form the robot’s primitive actions.

2.1 Framework

Although the method we propose is quite general, we
explicate it in the context of our experimental work
with the Pioneer mobile robot. We provide a robot
with three distinct controllers:

e Upr(r,l)—a left-right wheel speed controller. By
varying r and [, the robot sets its right and left
wheel speeds.

o Uy-a null controller that does nothing.

e U,g—a controller designed specifically to seek out
and move the robot towards open space.

We then let the robot randomly select controllers and
parameters and execute them for a brief time—typically
between 10 and 20 seconds. The data recorded by the
robot during each experience is saved along with the
controller type and its parameters, if any. We call the
complete set of robot experiences £. Note that qual-
itatively distinct controller/parameter settings should
generate trajectories of qualitatively distinct sensor
readings as outcomes. For example, going forward will
typically cause the forward facing sonar’s distances to
go down, the sizes of objects in the visual field to grow
and the translational velocity to be positive. Other
actions will produce very different readings. The next
section describes how we can learn which of these sen-
sor time series are associated with the different kinds
of activities in which the robot engages.

2.2 Learning Distinctive Outcomes for a
Controller

Given &, we search for distinctive outcomes by
first uniformly sampling fixed length subsequences of
length L, called L-sequences, from the data. We
then form k clusters from the L-sequences using Dy-
namic Time Warping (DTW) (Sankoff & Kruskal,
1983) as a distance measure. DTW is a generaliza-
tion of classical algorithms for comparing discrete se-
quences (e.g. minimum string edit distance (Cormen
et al., 1990)) to sequences of continuous values. The
k centroids of the clusters found, C;, partition the
space of L-sequences, with each centroid standing in

for all of the L-sequences that are most similar to it.
In effect, the centroids discretize the continuous sen-
sor space and form an alphabet which can be used to
tokenize any other experience.

We next divide £ into two sets for each controller:
one set contains experiences that occurred while the
controller was running; the other experiences that oc-
curred while some other controller was running. For
each centroid, we can determine the probability that
C; occurred when the controller was running, p(C;|¥),
and the probability that C; occurred when the con-
troller was not running, p(C;|¥). If p(C;|¥) is signifi-
cantly different from p(C;|¥) then the centroid is dis-
tinctive for ¥. Centroids that occur more frequently
than by chance (under the null hypothesis that the oc-
currence does not depend on the controller) are called
positively distinctive centroids for ¥ and are denoted
by ¥(C;)*. Centroids that occur less frequently are
negatively distinctive centroids and are denoted by
¥(C;)~. Centroids which are neither positively nor
negatively distinctive are said to be neutral with re-
spect to the controller. As positively distinctive cen-
troids occur more often in the presence of ¥, we infer
that ¥ causes them: that the sensor trajectories sim-
ilar to ¥(C;)* are the outcomes of running ¥. Typi-
cally, the inference that a causes b requires that a and
b covary, that a occurs before b and that other po-
tential causes of b are controlled (Suppes, 1970). As
our method does not account for the last item, some
of the causal inductions will be incorrect and further
effort will need to go into resolving them.

2.3 From Distinctive Outcomes to Distinctive
Actions

For each centroid in ¥(C;)*, we examine the expe-
riences in £ and see if the centroid occurs more fre-
quently than by chance. We accomplish this by com-
paring the number of occurrences of L-sequences sim-
ilar to the centroid in the experience to that expected
given the overall population density of the centroid in
E. If C; occurs frequently in an experience, then we
say that the experience is distinctive for the centroid.
The set of distinctive experiences for each centroid is
Ec,. We will denote the parameters of the distinctive
experiences for a centroid as Pg,. We can plot Pg,
for each controller colored by the centroid. For ex-
ample, figure 1 shows one particular division of ¥y ’s
parameter space. This plot shows left and right wheel
speed parameters associated with data collected from
the Pioneer-1 while running ¥gy. Each of these robot
experiences is labeled with one of six distinctive cen-
troids. For example, the experiences labeled with the
small z’s all have wheel speeds that are generally below

200 T

)
. o

100 | o k!

50 e

right wheel velocity

50 | 4

-100 L L L
-100 -50 0 50 100 150 200

left wheel velocity

Figure 1. Scatter-plot of Left and Right wheel velocities
labeled by centroid.

zero. The center portion of the plot is empty because
our method did not find any distinctive outcomes for
these experiences. Notice that each of the prototypical
centroids is associated with a subset of the entire pa-
rameter space and that the subsets appear to be well
separated.

In general, there are several possible outcomes for the
distributions of controller parameters derived from in-
dividual centroids C; and from pairs of centroids C;
and Cj. We first list the possibilities and then provide
intuitions for their meanings:

1. Pc, has a uniform distribution across the entire
parameter space.

2. Pg, has a non-uniform distribution—-some parame-
ter values lead to C; more frequently than others.
This distribution may be uni-modal, bimodal or
more complex.

3. Pg; and Pg, are well separated (note that this
can only occur if the individual distributions are
non-uniform to begin with).

4. Pg, and Pg, overlap significantly.

We will formalize these notions below but the in-
tuitions should be clear. In the concrete terms of
Urr(r,l), item 1 indicates that although the outcome
occurs more frequently when ¥py is running, it does
not depend on the parameters of ¥r;. Item 2 indi-
cates that the occurrence of the centroid depends on r
and [. If the distribution is uni-modal, then only one
range of r and [leads to this outcome; if it is more
complex, then two or more ranges lead to it. This cor-
responds to a different regions of the parameter space
having the same outcome.

Items 3 and 4 both require that the outcomes C'; and
C}, depend on the choice of r and [. If the parameter
ranges for the two outcomes overlap significantly, then
this corresponds to a single action leading to two (or
more) different outcomes. This may be due to the
context in which the two action occurs.

2.4 Knowing when an action is discrete

We can divide the parameter space of a controller into
uniform cells and create a histogram of the number of
occurrences of Pg, in a cell. We can create a similar
histogram of the total number of experiences with pa-
rameters in a cell regardless of centroid. We can use
these histograms to form a discrete probability distri-
bution of the probability that a given range of param-
eters leads to the distinctive outcome (C;). We wish
to determine if the distribution is significantly differ-
ent from that expected by random chance. The null
hypothesis is that the parameter values have no effect
on the outcomes and that the distribution obtained
from Pg, is uniform. We can test Hy for each C;
by building a sampling distribution of the Kullback-
Leibler distances between randomly generated distri-
butions of the number of experiences containing Cj.
elements and the true uniform distribution. The dis-
crete Kullback-Leibler distance or average variance
measures how much one probability distribution dif-
fers from another:

z)

2)

= — T npl(
d(phpz)— Zm:m()l pz(

Once we have obtained the distribution of the distance
measures, we can use randomization testing to see if
the actual distribution derived from P, is significant.

If Pc, is significantly different from the non-uniform
distribution, then we can use randomization testing
again on each of the cells in the distribution. In this
case, we build the sampling distribution for the cells
of the histogram using the Kullback-Leibler distance
of the probability value in each cell as compared to
the uniform probability distribution. We then look
for cells whose Kullback-Leibler score is significantly
different from that expected under Hy. These cells are
the ones who contribute highly to Pg,’s significance.
They define the discrete action which leads to outcome

C;.

2.5 Summary of the Method

In summary, our method is as follows. Given a set of
parameterized controllers for a mobile robot and a set
of sensors:

1. Randomly select a controller and run it with ran-
domly selected parameters. While it is running,
record the data that it generates and save this
along with the type of controller and its parame-
ter values.

2. Sample fixed length subsequences uniformly from
the data generated and form clusters.

3. For each cluster centroid, C;, and controller, ¥,
determine if the probability of the centroid occur-
ring while ¥ is running, p(C;|¥), differs signifi-
cantly from the probability of the centroid occur-
ring while ¥ is not running, p(C;|¥).

4. Determine the distinctive experiences for each of
U’s positively distinctive centroids. Use these to
create probability distributions for Pg,, the pa-
rameters of the experiences that lead to outcome

C;.

5. Use randomization testing and the discrete
Kullback-Leibler distance to find centroids that
are dependent on the parameters of ¥ and the
regions of the parameter-space that lead to the
centroid.

The regions found are ranges of parameter values that
typically result in specific outcomes of sensory trajec-
tories. They are candidates for primitive actions of the
mobile robot.

3. Experiment
3.1 Method

We collected 120 experiences using Ugyr(r,l) (96-
experiences), ¥y (12-experiences) and Ppg (12-
experiences). The distribution was weighted towards
Ury as this controller was the focus of our experi-
ment. The r and [parameters for ¥g; were uni-
formly sampled between -100 and 200 so as to ob-
tain more forward-moving experiences than backward-
moving experiences. The robot operated in a convex
space containing numerous small objects with which it
could interact. Intervention was required once during
the data collection when the robot became stuck on
power conduit lines attached to one of the walls of the
space.

In the analysis that follows we used the following
subset of sensors: heading, right-wheel-velocity, left-
wheel-velocity, translational-velocity and rotational-
velocity. The Pioneer keeps track of its heading and
assumed position by dead reckoning. It determines its
right and left wheel velocities, translational and rota-
tional velocities via proprioceptive feedback from its

wheel encoders. The values of its sensors are recorded
every 10-milliseconds.

3.2 Results

The algorithm described above found several statisti-
cally significant (p < 0.01) regions of the parameter
space of gy (r,l) including ones that we would label
“forward”, “backwards”, “hard-left”, “slow-left” and
so forth. Figure 2 below demonstrates several prob-
ability distributions linking particular setting of left
and right wheel speeds and their distinctive outcomes
(C).

Each plot in figure 2 shows the action associated with
a particular distinctive outcome. The darker cells of
each plot indicate the range of parameters that define
the action. The first plot shows the action defined by
high values of left and right wheel speeds and with the
right wheel speed generally higher than the left wheel
speed—with what we would label forward motion and
turning to the right. Investigation of the distinctive
centroid associated with the plot confirms this inter-
pretation. The second plot shows actions with right
wheel speeds below zero and the third shows actions
with high left wheel velocities and low right wheel ve-
locities. We might label these activities as “backwards
to the left” and “forward left turn” respectively. Of
course, each atomic action discovered by our method
ranges over a large portion of the controller’s param-
eter space. This is due in part to the limited amount
of data collected and in part to the noisy environment
in which the robot runs. We expect that additional
data would allow the atomic actions to become more
precise.

We have shown that our method allows an unsuper-
vised mobile robot to interact with its environment
and learn discrete actions over the parameter spaces
of its controllers.

4. Related and Future Work

The problem of learning action models for the purpose
of planning is studied in a variety of forms. Much of
this work focuses on simulated domains and assumes
discrete state and action spaces and deterministic out-
comes of actions (Gil, 1992; Wang, 1995), though
some allows for the possibility of probabilistic out-
comes (Benson, 1995; Oates & Cohen, 1996). One
notable exception is (Pierce, 1995), which describes
a method for learning action models given continu-
ous state and action spaces for a simulated robot with
noisy sensors.

In stochastic domains with continuous states and

200

140

>

=

Q

<}

) 80

>

)

Q

<=

B 20

-

=

)

k=
-40
-100 -40 20 80 140 200

left wheel velocity

200
140

>

=

Q

s}

< 80

>

)

Q

<=

220

-

=

o0

E=
-40
-100 -40 20 80 140 200

left wheel velocity

200
140

>

=

Q

<}

) 80

>

5]

Q

<=

B 20

-

=

)

k=
-40
-100 -40 20 80 140 200

left wheel velocity

Figure 2. Discrete actions associated with different distinc-
tive outcomes.

discrete actions, reinforcement learning methods can
learn reactive control policies (Mahadevan & Connell,
1992), and recent work in this area addresses the case
in which both the state and action spaces are contin-
uous (Santamaria et al., 1998). Reinforcement learn-
ing has also proven to be effective both in simulated
domains and with physically embodied robots. Our
work differs from these approaches in that the goal
is to learn a declarative action model suitable for use
by symbolic planning algorithms (and other cognitive
tasks such as natural language generation and un-
derstanding (Oates et al., 2000)), not opaque, non-
symbolic policies.

Our representation of outcomes as prototypical time
series is based on earlier work on clustering time se-
ries (Oates, 1999). Several other recent approaches to
identifying qualitatively different regimes in time se-
ries data include (Agrawal et al., 1995; Cohen et al.,
1999; Keogh & Pazzani, 1998).

Future work will remove a number of limitations of the
current method. In particular, rather than represent-
ing outcomes of actions as fixed-length prototypes, we
will apply the algorithm described in (Oates, 1999) to
identify and represent outcomes of variable duration.
Also, having identified discrete actions and their out-
comes, it becomes possible to go back to the time series
data and search for features of the environment that
condition the outcome probabilities. In terms of classi-
cal planning operators, we will identify preconditions.
Another limitation of the current method is that sen-
sor groups are pre-specified. Ideally, the robot would
determine which sets of sensors should be grouped to-
gether because patterns in those sensors capture out-
comes of invoking actions. We plan to explore the
utility of a simple generate and test paradigm to this
problem, with the test phase involving statistical hy-
pothesis tests of the form previously described.

5. Acknowledgments

This research is supported by DARPA contract
DASG60-99-C-0074 and DARPA/AFOSR contract
F49620-97-1-0485. The U.S. Government is authorized
to reproduce and distribute reprints for governmen-
tal purposes notwithstanding any copyright notation
hereon. The views and conclusions contained herein
are those of the authors and should not be interpreted
as necessarily representing the official policies or en-
dorsements either expressed or implied, of the DARPA
or the U.S. Government.

References

Agrawal, R., Lin, K., Sawhney, H. S., & Shim,
K. (1995). Fast similarity search in the pres-
ence of noise, scaling and translation in time se-
ries databases. Proceedings of the 21st International
Conference on Very Large Databases.

Benson, S. (1995). Inductive learning of reactive action
models. Proceedings of the Twelfth International
Conference on Machine Learning (pp. 47-54).

Cohen, P. R., Ramoni, M., Sebastiani, P., & War-
wick, J. (1999). Unsupervised clustering of robot
activities: A bayesian approach. To appear in Pro-
ceedings of the Fourth International Conference on
Autonomous Agents.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L.
(1990). Introduction to algorithms. The MIT Press.

Gil, Y. (1992). Acquiring domain knowledge for plan-
ning by experimentation. Doctoral dissertation,
Carnegie Mellon University.

Keogh, E., & Pazzani, M. J. (1998). An enhanced rep-
resentation of time series which allows fast and ac-
curate classification, clustering and relevance feed-
back. Working Notes of the AAAI-98 workshop
on Predicting the Future: Al Approaches to Time-
Series Analysis (pp. 44-51).

Mahadevan, S., & Connell, J. (1992). Automatic pro-
gramming of behavior-based robots using reinforce-
ment learning. Artificial Intelligence, 55, 189-208.

Oates, T. (1999). Identifying distinctive subsequences
in multivariate time series by clustering. Proceedings
of the Fifth International Conference on Knowledge
Discovery and Data Mining (pp. 322-326).

Oates, T., & Cohen, P. R. (1996). Searching for plan-
ning operators with context-dependent and proba-
bilistic effects.

Oates, T., Eyler-Walker, Z., & Cohen, P. R. (2000).
Toward natural language interfaces for robotic
agents: Grounding linguistic meaning in sensors. To
appear in Proceedings of the Fourth International
Conference on Autonomous Agents.

Pierce, D. M. (1995). Map learning with uninterpreted
sensors and effector. Doctoral dissertation, Univer-
sity of Texas, Austin.

Sankoff, D., & Kruskal, J. B. (Eds.). (1983). Time
warps, string edits, and macromolecules: Theory
and practice of sequence comparisons. Reading, MA:
Addison-Wesley Publishing Company.

Santamaria, J. C., Sutton, R. S., & Ram, A. (1998).
Experiments with reinforcement learning in prob-
lems with continuous state and action spaces. Adap-
tive behavior, 6, 163—-218.

Suppes, P. (1970). A probabilistic theory of causality.
Amsterdam: North Holland.

Wang, X. (1995). Learning by observation and prac-
tice: An incremental approach for planning operator
acquisition. Proceedings of the Twelfth International
Conference on Machine Learning.

