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Abstract

We designed the GRASP planner to operate in continuous, uncer-
tain, adversarial, real-time domains. Important problems in these do-
mains include resource allocation amongst multiple goals, determining
plan operator effects, reacting to and exploiting unforeseen events, and
generating workable plans quickly. We describe how GRASP combines
new and old techniques to effectively handle these problems. We in-
troduce the notion of multi-goal partial hierarchical planning and the
efficient evaluation of plans using forward simulation with so-called
critical points. The paper concludes with an example of how GRASP

was applied to the problem of Course of Action generation and evalu-
ation.
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Abstract

We designed the GRASP planner to operate in continu-
ous, uncertain, adversarial, real-time domains. Impor-
tant problems in these domains include resource alloca-
tion amongst multiple goals, determining plan operator
effects, reacting to and exploiting unforeseen events,
and generating workable plans quickly. We describe
how GRASP combines new and old techniques to effec-
tively handle these problems. We introduce the notion
of multi-goal partial hierarchical planning and the effi-
cient evaluation of plans using forward simulation with
so-called critical points. The paper concludes with an
example of how GRASP was applied to the problem of
Course of Action generation and evaluation.

Introduction

Continuous and adversarial domains pose particularly
challenging problems for today’s planners. An adver-
sary confounds the problem of having uncertain infor-
mation about the state of the world or the effects of
operators: An uncertain domain may introduce ran-
domness into the world states that can result from an
application of an operator, whereas an adversary will
actively try to steer the world into a state that is un-
desirable. Moreover, since an effective adversary is one
who can surprise us, this new state may be very hard
to predict.

Adversarial search algorithms assume that the world
jumps from one state to another as the the two oppo-
nents make their moves. The paradigmatic example is
game tree search. It is difficult, however, to fit con-
tinuous domains into this mold. Continuous domains
are characterized by processes that change continuously
over time. By forcing a rigid and often arbitrary set of
states upon the world, the planner loses access to the
dynamics of these processes, instead of exploiting them.

Furthermore, the number of states greatly affects the
tractability of generating a solution to a given problem.
If the operators are too primitive, and correspondingly
the plan space large, the solution to a given problem
will involve a deeper search through the space than if
the state space were smaller. If the operators become
too abstract, however, important features of the domain
may be lost, resulting in a solution that is not useful.
In order for a game-tree to be feasible in a continuous
domain, the set of operators that is applicablein a given
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state has to reduced drastically for the branching factor
to be reasonable.

Other problems that are particularly pronounced in
adversarial planning are the ability to achieve multiple
concurrent goals, react gracefully to plan failure, and
generate a solution in real-time.

In this paper, we describe how our planner, GRASP
(General Reasoning using AbStract Physics), addresses
the above concerns:

¢ Plans are not generated from atomic planning oper-
ators at run-time; instead, we view plans as general
solution skeletons that have been distilled from pre-
vious experiences. This reduces the combinatorics of
the planning problem to a feasible level.

e We avoid the problem of having to pre-specify plan
post-conditions by using a simulator to establish the
world state after a plan has executed.

¢ State boundaries are not specified by a priori, but are
created dynamically as plans are executed (or simu-
lated). So-called critical points mark the state bound-
aries.

e The planner operates at a fairly high level and does
not plan out every detail, which improves planner
performance and reduces the combinatorics. Plan op-
erators are assumed to be competent; they can cope
with some unforeseen events.

¢ The planner is integrated into a general agent control
architecture, HAC (Hierarchical Agent Control) that
can deal with plan failures, unexpected opportunities,
and resource conflicts.

The Capture The Flag Testbed

We have been developing a dynamic and adversarial
domain in which to test GRASP. This domain is based
on the game of “Capture the Flag” (CtF). In CtF (see
Figure 1) there are two teams; each has a number of
movable units and flags to protect. They operate on a
map which has different types of terrain. Terrain influ-
ences movement speed and forms barriers; terrain also
affects unit visibility. A team wins when it captures
all its opponent’s flags. This game appears deceptively
simple. The player must allocate forces for attack and
defense, and decide which of the opponent’s units or
flags he should attack. The player must react to plans
that do not unfold as expected, and possibly retreat
or regroup. We model limited visibility and inaccurate
sensor data. This leads to additional strategies involv-
ing feints, sneak attacks, and ambushes.
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Figure 1: The Capture the Flag domain.

HAC: Hierarchical Agent Control

As we will see, GRASP takes full advantage of our agent
control architecture, HAC. HAC can be viewed as a
language for writing agent actions. HAC takes care of
the mechanics of executing the code that controls an
agent, passing messages between actions, coordinating
multiple agents, arbitrating resource conflicts between
agents, updating sensor values, and interleaving cogni-
tive processes such as planning.

HAC organizes the agent’s actions in a hierarchy (see
Figure 2). As one goes up the hierarchy, actions become
increasingly abstract and powerful. They solve more
difficult problems, such as path planning, and can react
to wide range of eventualities. Although actions lower
in the hierarchy will tend to be more reactive, whereas
those higher up tend to be more deliberative, the tran-
sition between them is smooth and completely up to
the designer. Unlike other architectures, we do not pre-
scribe a preset number of behavioral levels (Georgeff &
Lansky 1987; Cohen ef al. 1989).

A hierarchy of sensors parallels the action hierarchy.
Just as a more complex action uses simpler ones to ac-
complish its goal, complex sensors use the values of
simpler ones. These are abstract sensors. They are
not physical, since they do not sense anything directly
from the world. They take the output of other sensors
and integrate and re-interpret it. Abstract sensors are
used throughout HAC and GRASP to notify actions
and plans of unexpected or unpredictable events.
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Figure 2: Actions form a hierarchy; control information
is passed down, messages are passed up. The lowest
level are agent effectors; the middle layer consists of
more complex, yet domain-general actions called phys-
ical schemas (Atkin et al. 1998). Above this level we
have domain-specific actions.

HAC executes actions by scheduling them on a queue.
The queue is sorted by the time at which the action will
execute. Actions get taken off the queue and executed
until there are no more actions that are scheduled to run
at this time step. Actions can reschedule themselves,
but in most cases, they will be rescheduled when woken
up by messages from their children.

HAC is a supervenient architecture (Spector &
Hendler 1994). It abides by the principle that higher
levels should provide goals and context for the lower
levels, and lower levels provide sensory reports and mes-
sages to the higher levels (“goals down, knowledge up”).
A higher level cannot overrule the sensory information
provided by a lower level, nor can a lower level inter-
fere with the control of a higher level. Supervenience
structures the abstraction process; it allows us to build
modular, reusable actions. HAC simplifies this process
further by enforcing that every action’s implementation
take the following form:

1. React to messages coming in from children.
2. Update state.

3. Schedule new child actions if necessary.

4. Send messages up to parent.

Figure 2 shows a small part of an action hierarchy.
The follow action, for example, relies on a move-to-
point action to reach a specified location. Move-to-
point will send status reports to follow if necessary;
at the very least a completion message (failure or suc-
cess). The only responsibility of the follow action is to
issue a new target location if the agent being followed
moves. HAC is an architecture; other than enforcing a
general form, it does not place any constraints on how
actions are implemented. Every action can choose what
messages it will respond to. Actions can be delibera-
tive or reactive. Parents can run in a parallel with their
children or only when the child completes.



An action or a plan posts a set of goals G = {g1,92,...gn}- This invokes the following process:
1. For every g;:
1.1 Search the list of plans for those that can satisfy g;.
1.2. Evaluate each potential plan’s pre-conditions and only keep only those whose pre-conditions match.
1.3. For each remaining plan, estimate it's required resources.
2. Sort G by the priority of g;.
3. candidate_plan_sets := nil.
4. Loop over g; in order of priority:
4.1 If only one plan achieves g;, instantiate it (bind unbound variables) and add it to every plan set in candi-
date_plan_sets; otherwise:
4.2 If several plans achieve g;, score each one based on:
e how many resources it uses
e how many other goals in G it (partially) satisfies
e other plan-specific heuristics
4.3 Choose m (m is rarely > 1 to limit combinatorics) of the highest scoring plans: py, ..., pm
4.4 Loop over remaining g;(j > 4): if g; partially satisfies g;, merge g; into p1, ..., P
4.5 Copy the plan sets in candidate_plan_sets m times; add p;. to copy k.
5. Loop over plan_set in candidate_plan_sets:
5.1 Evaluate plan_set using forward simulation.

6. Execute the plan set (make them child actions of the goal poster) that in simulation, results in a world state with
the highest score.

Figure 3: The planning algorithm.
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Figure 4: A planning example: White is trying to satisfy the goal win-the-game. Several top-level plans match
this goal; the example explores what happens when defensive-stance is expanded. This plan emphasizes defense,
which is reflected in the list of subgoals generated. There are several sets of plans that achieve these subgoals, and
many ways to allocate resources to these plans. The planner uses heuristics to prune this set. In the first case, two
units are allocated to flag defense, and one is sent out to attack. In the second case, only one unit is needed to block

the mountain pass, thus protecting the flags, leaving two units for the attack. This plan set is more likely to succeed
and is ranked higher.

Multi-goal Partial Hierarchical Planning

A number of difficult problems face any planner oper-

ating in a real-time, continuous, uncertain, and adver-

sarial domain:

e In the presence of multiple competing goals, how are
resources allocated to plans?

e How are plan post-conditions determined if the do-

main is inherently unpredictable?

e How do plans react to unexpected pitfalls or oppor-
tunities?

o How can plans be generated quickly, under real-time
pressure?

GRASP integrates new and established techniques
to deal with these problems. GRASP is a least-



commitment partial hierarchical planner (Georgeff &
Lansky 1986). By having a set of pre-compiled skele-
tal solutions, we avoid the enormous branching fac-
tor a generative planner would face in this domain.
GRASP further reduces the combinatorics by not plan-
ning for every eventuality. Plans are built within the
HAC framework, using operators that are assumed to
be flexible and competent.

Multiple Goals

GRASP extends the traditional partial hierarchical
planning framework by allowing multiple goals to be
associated with a resource or set of resources. These
are not simply conjunctive goals; instead, goals are pri-
oritized. GRASP uses heuristics in order to achieve the
largest set of high priority goals possible.

In CtF, winning involves coordinating multiple sub-
goals: protecting your own flags, thwarting enemy of-
fensives, choosing the most vulnerable enemy flag for
a counter-attack, and so on. Each requires resources
(units) to be accomplished. Sometimes one resource can
be used to achieve several tasks. For instance, if two
flags are close together, one unit might protect both.
Or, advancing towards an opponent’s flag might also
force the opponent to retreat, thus relieving some pres-
sure on one’s own flags.

Plans are part of the HAC action hierarchy. Plans
can be viewed as actions that explicitly state the goal
they achieve. Every plan must have associated with it
a set of functions to assist in the resolution of multiple
goals:

o pre-condition(plan): is the plan applicable in the cur-
rent situation?

e estimate-resources(plan): what resources is this plan
likely to need?

o goal-congruence(planA, planB): to what degree do
plans A and B achieve the same goal?

o merge-plans(planA, planB): create a new plan that
achieves both of plan A and B’s goals.

GRASP uses these functions and the algorithm out-
lined in Figure 3 to solve the resource allocation prob-
lem in the presence of multiple goals. Figure 4 shows an
example of the plan generation procedure. Each goal
is prioritized, then plans are generated to achieve each
one. Heuristics are used to generate a small number
of possible plan sets. If resource problems arise during
a plan’s execution (because a resource was destroyed
and the plan using it cannot succeed without it, for
example), a resource error message is sent to the plan
initiator using the HAC messaging mechanism, possi-
bly causing resources to be re-assigned or a complete
replan to take place.

Plan Evaluation Using Critical Points

When several plans apply, partial hierarchical plan-
ners typically select one according to heuristic crite-
ria. GRASP instead performs a qualitative simula-
tion on each candidate plan (or plan set). Potential
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Figure 5: An example for a critical point while execut-
ing an attack action.

plans are simulated forward, then a static evaluation
function is applied to select the best plan. The static
evaluation function incorporates such factors as relative
strength and the number of captured and threatened
flags of both teams to describe how desirable the result-
ing world state is. Simulation helps alleviate the prob-
lem of not being able to specify exact post-conditions
for every plan operator. Uncertainty in the world can
be addressed by Monte Carlo analysis. The world and
your opponent(s) are simply another set of processes to
simulate.

The downside is that simulation is a costly operation.
In order to do it efficiently and thus be able to evaluate
plans quickly, GRASP evaluates plans at a level that is
more abstract than the domain being operated in. This
is much in keeping with Minsky’s original conception of
planning (Minsky 1961). GRASP ignores certain de-
tails of the domain, such as obstacle avoidance, during
plan evaluation. More importantly, GRASP attempts
to identify the time periods during which no important
interactions between agents are likely to occur and skips
over them.

The problem that GRASP faces is having to impose
“states” on a continuous domain. The world moves
into a new state if and only if an event takes places
that might affect the outcome of the plan evaluation
process. GRASP defines states boundaries using crit-
ical points, which are established dynamically, as the
plan simulation unfolds. A critical point is a time dur-
ing the execution of an action or plan where a decision
might be made. If this decision can be made at any
time during an interval, it is the latest such time.

Simple actions, such as moving from point A to point
B, only have one critical point: the time at which the
action completes. This is the time at which a new deci-
sion has to be made about what to do with the unit that
was moving. The critical time can easily be estimated
given the terrain and the unit’s typical movement speed.
More complicated actions have larger critical point sets.
The attack action depicted in Figure 5 makes a decision
during its execution: it will abandon the attack if the



1. Add all plans in the plan set P to all the actions
currently ongoing in the simulator.

2. In simulation, loop either until a fixed time in the
future or until too many errors have accumulated in
the simulation:

2.1 Compute the minimum critical time ¢ of all ac-
tions being simulated.
2.2 Advance all actions by ¢ time units.

3. Evaluate the resulting world state; return this value

as the score for the plan set P.

Figure 6: The plan evaluation algorithm.

thing being attacked is protected by a unit larger than
the attacker. In this example, a white unit is attack-
ing a black flag and there is a large black unit nearby.
The critical point is the time at which the white unit
is closer to the flag than the black unit is now. This is
the latest point in time at which Black could interfere
with the attack action. If Black has started moving to
the flag by this time, White will abandon the attack.
If Black has remained stationary or gone somewhere
else, the attack will be successful and the flag will be
captured.

Every simulatable action (and plan) must have two
functions associated with it. The first computes the
next critical time for the action. The second, (advance
t), takes as an argument a time parameter ¢ and will
change the world state to reflect the execution of this
action ¢ time units into the future. These functions are
currently written by the designer of the action. Critical
point estimations are local to the action; they are based
on what this action is likely to do based on the current
state of the world and predictions that can be made
from it.

Using GRASP for COA Analysis

GRASP and HAC were used to evaluate abstract plans
called Courses of Action (COA’s) in the High Perfor-
mance Knowledge Base project (HPKB). We used our
simulator to model a military domain and simulated the
possible outcomes of a COA using Monte Carlo analy-
sis. The initial conditions of a scenario were then varied
slightly and the effect on the overall outcome of the sce-
nario was measured.

We used GRASP to fill in gaps in a COA that had
been sketched by a human planner. An underspecified
COA fails to provide actions and goals for all the units
under their control, which can happen when an engage-
ment goes in a direction that was not predicted. Adding
the planner serves two purposes: creating more realistic
opponents and aiding human planners. A COA must
specify both what the friendly units are told to do and
what the enemy units are likely to do. Rather than be-
ing forced to create plans for both sides, it is much more
desirable to use the planner to create a reactive and in-
telligent opponent who can truly test the strength of
the COA.

Final Force Delta
o

0 Initial Force Delta
-500
750 .
1000 high
-1250
medium
-1500
1750
2000 low
2250
2500
neither blue red both
plans plans plans plan

Figure 7: The effect of planning condition and initial
force delta on final force delta.

Our goal was to evaluate scripted engagements be-
tween Red and Blue forces. We compared four condi-
tions: the COA as specified, the COA plus the Blue
planner, the COA plus the Red planner, and the COA
plus the both Red and Blue planners.

We ran the simulation 100 times, collecting final Red
and Blue mass (an abstract measure of unit strength),
the total time of the simulation and the end result. A
simulation ended either when one team won or after 300
time units (12 simulated hours). Each simulation ran-
domized the positions and masses of the units on each
side. The basic composition of the forces and the tasks
specified in the COA were the same in every simulation.

As expected, running either planner alone greatly im-
proves matters for the side that is planning and running
both planners moved the averages towards the middle
(Figure 7). We found that even in the “no planning”
condition, variance in outcome (e.g., final force delta:
Red mass minus Blue mass at the end of a trial) was
very large, driving home the point that in domains such
as this, small differences in the start state can greatly
affect the end state. The initial force delta accounts
for only 15% of the final force delta. Qut of all possi-
ble factors, the ability to plan was the best predictor of
success.

On the surface this is not a surprising result. It
is, however, a qualitative measure of GRASP's abil-
ity to produce workable plans in a continuous complex
domain under real-time pressure. Furthermore, these
plans have the same level of quality that plans designed
by human planners have: using the planner, we were
able to confirm that one variant of the scenario labeled
“Red Most Dangerous” was in fact the most danger-
ous variant for Blue, and that certain events will lead
to Blue's defeat, for example that a Blue counterattack
must begin before a certain time.



Contributions and Related Work

The GRASP planner integrates a number of new and
old ideas to deal with continuous and adversarial do-
mains in real-time. GRASP builds upon the partial
hierarchical planners used in RESUN (Carver & Lesser
1993), PHOENIX (Cohen et al. 1989) and the data
analysis system AIDE (St. Amant 1996). GRASP is
unique in that it extends the partial hierarchical plan-
ning framework by explicitly representing multiple goals
and integrating the planner into an action hierarchy
that handles resource arbitration and failure recovery.
This hierarchy, implemented in HAC, allows us to plan
with operators that are flexible and competent. The
HPKB COA evaluation experiment provides a qualita-
tive demonstration of GRASP’s ability to generate good
and timely plans in a realistic application.

Others have used simulation to evaluate (Lee & Fish-
wick 1994) or test plans (Beetz & McDermott 1994;
Hammond 1990; Lesh, Martin, & Allen 1998). To the
best of our knowledge, the idea of combining simula-
tion with critical points in order to improve its effi-
ciency is novel. Not all planning approaches represent
state in the same way, and there is indeed an entire
subfield of planning that seeks to reason about contin-
uously changing processes (e.g. (Dean & Wellman 1991;
Penberthy & Weld 1994)).

Critical points themselves are well known in Qual-
itative Physics (Weld & deKleer 1989; Forbus 1984).
Roboticists, in particular those dealing with motion
planning (Canny 1988; Latombe 1991), have long had
to face the problem of continuous search spaces. In
both these fields, however, states are defined a priori,
before the reasoning or search algorithms begin oper-
ation. We, on the other hand, induce the state space
dynamically based on information that is local to every
action.
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