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Abstract

We optimally solve two problems related to work-sharing in a heterogeneous
network of workstations (NOW). In both problems, we have access to a NOW
comprising n workstations of differing computational powers, to assist us with a
large partitionable computational workload (c.g., from a data-parallel computa-
tion). In the NOW-Rental Problem, we must complete W units of work, and we
wish to “rent” the NOW for as short a time as is necessary to complete that work.
In the NOW-Exploitation Problem, we have access to the NOW for a fixed duration
of I time units, and we wish to accomplish as much work as possible during that
time. Using a single mathematical formulation that encompasses both of these
problems, we develop a protocol which takes a suite of 2n 4+ 3 parameters that
characterize the computational and communicational elliciency of the NOW and
determines therefrom both an amount of work to allocate to each workstation in
the NOW and a schedule for transmitting that work. The resulting work-allocation
plus schedule yields either an optimal value of L, given W, or an optimal value of
W, given L. Thus, the protocol solves both of the motivating problems.

*A portion of this work was presented at the Intl. Wkshp. on Cluster Computing — Technologies,
Environments, and Applications (CC-TEA’2000), Las Vegas, Nev. (2000).

tOn sabbatical at the Laboratoire de Recherche en Informatique, Université de Paris-Sud, 91405
Orsay cedex France.
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1 Introduction

1.1 The Scheduling Problem for a “Rented” Network of Work-
stations

Numerous sources eloquently argue the technological and economic inevitability ol an
increasingly common modality of parallel computation, the use of a network of worksta-
tions (NOW) as a parallel computer; cf. [1, 14]. Sources too numerous to list describe
systems that facilitate the mechanics of NOW-based computing, often via the technique
of work-sharing'—the use by one workstation of idle computing cycles of another—which
is our interest here. To this point, however, rather few sources have sought rigorously
analyzed guidclines for scheduling broad classes of individual computations on NOWs.
In the current paper, we develop a formalism within which we optimally solve the fol-
lowing two scheduling problems related to work-sharing in a heterogenous NOW that is
available for some prespecified period of time. In both problems, we have a large, parti-
tionable supply of computational work (such as one might encounter in a data-parallel
computation), and we have access to a NOW A comprising n workstations of differing
computational powers. We seek optimal work-allocation and scheduling regimens for
the following two work-sharing problems.

The NOW-Rental Problem. We have W units of work that we must complete.
We wish to “rent” the NOW N for as short a period of time as is necessary to complete
that work.

The NOW-Exploitation Problem. We have access to the NOW N for a duration

of I, time units, and we want to accomplish as much work as possible during that time.

1.2 Our Results

In Section 2, we formulate a model for work-sharing, which encompasses both of our
motivating problems. Section 2.1 isolates the parameters we use to characterize the
computational efficiency of the workstations in the “rented” NOW A and the cost of

L As detailed imminently, we view work-sharing as a cooperative enterprise. When implemented as
an adversarial enterprise, wherein the “borrowed” workstation can be interrupted by the return of its
owner, work-sharing is often known as cycle-stealing.
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inter-workstation communication; Sections 2.2 and 2.3 formulate the generic protocol
we use to implement the process of work-sharing. In Section 3, we specialize our generic
protocol to obtain the LIFO Protocol, which optimally solves both of our motivating
problems. A high-level analysis of our generic protocol, in Section 3.1, exposes the
general structure of any optimal work-sharing protocol. In Section 3.2, we demonstrate
that this general structure uniquely specifies the LIFO Protocol, which, consequently,
is uniquely optimal. In Section 3.3, we analyze the LIFO Protocol. We show that the
Protocol is self-scheduling, in the sense that its allocations of work to A’s workstations,
and the timing of the transmissions of that work, are determined completely by the
2n + 3 elliciency parameters identiflied in Section 2.1. We determine explicit expressions
for both the optimal allocations of work to A’s workstations and for the aggregate
work-output W of the Protocol, as a function of L. We thereby see how the resulting
work-allocation plus schedule yields either an optimal value of L, given W—thereby
solving the NOW-Rental Problem—or an optimal value of W, given L—thereby solving
the NOW-Exploitation Problem. We further see that, during sufficiently long work-
sharing opportunities, the LIFO Protocol provides good parallel speedup. Finally, in
Section A, we suggest, by illustration, how our generic protocol can be used to solve yet
other problems related to work-sharing. We present there a self-scheduling competitor
of the LIFO Protocol, which we call the FIFO Protocol, which attempts to incorporate
a notion of fairness into the allocation of work. While the I'TI'O Protocol produces less
work-output than the LIFO Protocol, it also provides good parallel speedup.

1.3 Related Work

There have been relatively few rigorously analyzed studies of work-allocation /scheduling
in NOWs, even fewer in heterogeneous ones. Among the most intimately related to our
study is [2], which develops an “auction”-based model wherein one determines that
subset of workstations which—according to the source’s cost model—promises the best
performance on one’s workload. Indeed, one can view our study as a follow-up to [2],
wherein one seeks to allocate segments of one’s workload to the individual workstations in
the seleclted subset, in a way thatl optimizes the amount of work that can be accomplished
within the period of the subset’s availability. The study in [9] is concerned with far-flung
assemblages of NOWs, but its results are relevant to individual NOWs also. The study’s
focus, however, is on providing a “fair” allocation of resources to the members of its
“Co-Op,” (using a ticket-based resource-allocation scheme), rather than on optimizing
either parallel speedup or work-throughput. The notion of fairness used in [9] is much
stronger than the notion we use in our FIFO protocol in Scction A. Finally, the model
studied in [4, 11] bears strong similarities to the communication-oriented portion of the
model we develop in Section 2.1, but those studies focus on the problem of scheduling



collective communications within a NOW, rather than entire computations.

T'here have also been several noteworthy studies of scheduling algorithms that share
work with one workstation at a time within a NOW. Among such sources, [3, 5, 15, 16]
deal with an adversarial model of cycle-stealing, wherein one is in danger of losing shared
work if the “rented” workstation is interrupted by the return of its owner. One finds in [3]
a work-sharing strategy that accomplishes within a polylogarithmic factor of an optimal
amount of work on a randomly chosen workstation of the NOW, with high probability,
as long as some workstation in the NOW will be available long enough to complete the
work. In [5, 15, 16, 17], cycle-stealing is viewed as a game against a malicious adversary
who seeks to interrupt the “rented” workstation in order to minimize the work-output
of a cycle-stealing opportunity. One finds in [16] guidelines that maximize, to within
low-order additive terms, the guaranteed work-output of a work-sharing opportunity,
providing that the “master” workstation knows the duration of the opportunity, plus an
upper bound on the number of potential interruptions by the adversary. One finds in
[15, 17] guidelines that exactly maximize the expected work-output of a work-sharing op-
portunity, providing that the “master” workstation knows the instantaneous probability
of the “rented” workstations being interrupted.

The CILK system studied in [6, 7, 8] implements a (work-stealing) multi-threading
protocol wherein idle workstations borrow load asymptotically optimally, with respect
to both speed of computation and space overhead.

We do not enumerate here the many studies of computation on NOWs, which focus
either on systems that enable one workstation to steal cycles from another or on specific
algorithmic applications. However, we point to [12] as an exemplar of the former type
of study and to [18] as an exemplar of the latter.

2 A Formal Notion of Work-Sharing Protocol

2.1 The Basic Setting

We are the owners of workstation Fy, and we have a large, partitionable supply of com-
putational work to do. We have the opportunity to “rent” n workstations, of possibly
differing computational powers, for a predetermined lifespan, during which the n work-
stations are dedicated to our workload. Our goal is to develop a scheduling protocol
which utilizes the “rented” NOW optimally, in the sense of the NOW-Rental and NOW-
[ixploitation problems described in Section 1.1. (1) When we have a fixed supply of
W units of work to complete, we wish to “rent” the NOW for as short as time as is
necessary to complete that work. (2) When we have access to the “rented” NOW [or



a fixed lifespan of [ time units, we wish to get as much work done on the NOW as
possible.

Computation rates. We measure time in terms of work wunits, which are calibrated
to workstation Fy’s computational power; that is, by convention, Fy works at unit rate.
For all of the workstations in question, we denote by p(P) the time required by work-
station P to perform one unit of work?—so that p(Fy) = 1. We label the n “rented”
workstations P, Ps, ..., P,, in decreasing order of computational power—which means
increasing order of p-value; i.e., for each ¢« € {1,2,...,n — 1}, p(P;) < p(Piy1). For
simplicity, we henceforth use the notation p; = p(F;).

Work-related quantities. We denote by w; the number of units of work that F
allocates to workstation Py, for ¢ € {0,1,2,...,n}. Hearkening back to the description
(in Section 1.1) of our motivating problems, then, the aggregate work-production of a
work-sharing opportunity is

Aggregate Work-Production ¥ W = wy 4wy + - - - + w,.

Note. The assumed partitionability of our workload is manifest in our ability to par-
tition our aggregate W units of work into » + 1 allocations of respective sizes
Wo, W, - -« 5 Wi,

We assume throughout that a unit of work produces § units of results; we expect that
6 < 1, although we make no use of this inequality. To enhance legibility, we henceforth
denote the quantity 1 + §, which pervades our analyses, by 4.

Communication rates. We assume a single-ported communication model, meaning
that Fy can communicate with only one “rented” workstation at a time. A communi-
cation consists either of Fy’s sending work to some F; or receiving work from some F;.
Every communication begins with a setup procedure whose duration is fixed, indepen-
dent of the length of the transmission. As is argued in [4], this setup is likely to be faster
in workstations having faster processors and memories; therefore, we assume that each
workstation F;, for ¢+ € {0,1,...,n}, has communication-setup cost ¢;, where ¢; < ¢;
whenever p; < ,oj;3 in common with [10], we shall call the ¢; communication overheads.
After the fixed overhead, communication proceeds at the uniform rate of ¢ time units
per unit of work. In common with the p;, the rate ¢ is calibrated to workstation Fy’s
computation rate.

2Since the “rented” workstations arc dedicated to our computation, we know cxactly what their
computation ratcs arc on the tasks in our computation load.

30ur setup costs ¢; correspond to the message preparation times of [4]; they are the heterogeneous
analogues of the (homogeneous) communication-cost parameter of [13] and the “overhead” parameter
o of [10].



Note 1. Our assumption of a uniform communication rate ¢ reflects our focus on a
single NOW whose workstations are interconnected by a single SAN or LAN.

Note 2. We expect ¢ to be tiny compared both to a unit of work and to the maximum
achievable uni-processor speedup 1/p;.

Note 3. We expect the work allocated to each “rented” workstation to be so coarse-
grained that, for all workstation indices ¢ and 7, every ¢; is smaller than every
quantity dew.

While the setup of a communication by a workstation P ties up P’s processor, the actual
transmission of data does not; therefore, P can do “work of its own” while transmitting
or receiving data.

An Aside. The model we study here differs in two respects from our earlier studies
[5, 15, 16, 17]. Since those studies focus on sharing work with (or, stealing cycles
from) a single “rented” workstation, we were able to simplify the mathematical
setting there by the following two conventions.

1. In those sources, we let ¢ be the overhead for an inter-workstation interchange;
the ¢ used in those studies is, therefore, replaced by an expression of the form
co + ¢; here.

2. In those sources, we absorbed ¢ into p;.

In the current, multi-workstation, setting, we cannot afford these simplifying lux-
uries, because the analyses of our work-sharing protocols must reflect:

1. the cost of a “rented” workstation’s having to wait while /% transmits work
to other workstations before transmitting work to it,

2. the degree to which one “rented” workstation can successfully “hide” the over-
head time for its communication to F, within the work- or communication-
time of another “rented” workstation.

2.2 Orchestrating the Use of a “Rented” Workstation
The orchestration underlying our work-sharing protocol takes the general form illustrated
in Fig. 1, which depicts the timeline for Fy’s use of a single “rented” workstation F;,

from the vantage point of both F, and F,. The protocol proceeds as follows.

1. Transmission of work: [’ sends w; units of work to /7 in aggregate time ¢y + cw;.
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Figure 1: The timeline for a single “rented” workstation.

The first ¢y time units are used to set up the communication; the re-
maining w; time units are used to effect the transfer.

2. The remote computation: P, does the transmitted work in time p;w;.

3. Transmission of results: P, transmits the results of its work to Fy in aggregate
time ¢; + dew;.

Here again, the first ¢; time units are used to set up the communication;
the remaining dzw; time units are used to effect the transfer.

Note. The amount of work w; must be chosen in a way that honors the lifespan L; that
is, if Fy’s transmission begins at time ¢, then we must have t4(p;+de)w;+co+¢; <

L.

2.3 An Overview of a Multi-Workstation Protocol

We now extend the orchestration of Section 2.2 to a protocol for work-sharing within an
n-workstation NOW. In common with many master-slave scheduling scenarios (cf. [2]),
our protocol-formation stratcgy assumes the existence of some inter-workstation syn-
chronization mechanism.

Our strategy for work-sharing is described most easily via a pair of ordinal-indexing
schemes for the “rented” workstations, to complement the power-related indexing that
yields the workstations’ absolute names.* Each ordinal-indexing is a linear ordering of

4The “rented” workstations’ multiple names, which are necessitated by Py’s single-ported commu-
nication, will help us analyze our protocols. They should cause no confusion, as context will always
indicate which name we arc using at any given time.




the “rented” workstations, Pi, Fa,..., P,. The startup indexing specifies the order in
which F, transmits work to the “rented” workstations; for this purpose, we label the

P'Sn 9
begins working—before P, , does. The finishing indexing specifies the order in which the
“rented” workstations return the results of their work to Fy; for this purpose, we label the
workstations Py, Py, ..., P, with the understanding that Py, ceases working—hence,

transmits its results—before Py, does. The startup and finishing indexings are what

n workstations P, , P, with the understanding that P;, receives work—hence,

519 S29

distinguishes one protocol from another.

1. Transmission of work: Starting at time 0, Py sends wg, units of work to work-
station F; ; when this transmission is completed (¢o + cw,, time units later), F
sends wg, units of work to workstation FPg,; when this transmission is completed
(co 4+ cws, time units later), Py sends w,, units of work to workstation Pj,; and
so on. The transmissions continue in this contiguous fashion until each “rented”

workstation Pj, has been sent w,, units of work, for ¢ € {1,2,....n},

For each of these n transmissions, F, devotes ¢g time units to set up the commu-
nication, then performs work “of its own” during the actual transmission.

2. The computation: Each “rented” workstation [’ starts computing as soon as it
receives work from .

}

After the n work transmissions, Fy performs work “of its own,” uninterrupted until

the barrier at time L.

3. Transmission of results: As soon as “rented” workstation F, completes its work

(which, by definition, occurs p;w; time units after it has received the work), it
sends its results to Py, in an aggregate time of ¢; + dew; time units (¢; time units
for setup and dew; time units for transmission).
For each j € {2,3,...,n}, workstation P, “hides” the c;-unit overhead for re-
turning its results to F within the result-transmission time ol workstation Py _, .
(The assumed smallness of the ¢; allows such hiding.) Py, begins its transmission
immediately after Py _, completes its transmission.

Note 1. The work-allocations w; are determined in such a way that the “rented” work-
stations:

1. complete their work in the proper order (which is specified by the finishing
indexing);
2. can transmit their results one after the other, with no intervening delays;

3. complete all work and all communications by the barrier at time L.



Note 2. The reader can verify that (not surprisingly) the mandated overhead-“hiding”
during the transmission of results increases the aggregate work, wy +w; 4 - - 4+ w,,
performed by the “rented” workstations.

Aggregate work-production, revisited. Since workstation Fy does work “of its own”
while it is transmitiing data to a “rented” workstation—except during the setup phase
for the transmission—the prescribed form of a multi-workstation protocol means that

Fact 1 Under any multi-workstation protocol, during a lifespan of I time units, the
“master” workstation Py completes wg = L — ncy units of work.

In view of Fact 1, we can assess the work accomplished under a work-sharing protocol
by focusing only on the aggregate work-production by the “rented” workstations, namely,
the quantity W & W—wy = w +wat--+w, We shall, therefore, focus henceforth
on W, rather than W.

3 The LIFO Work-Sharing Protocol

3.1 The Motivation for the LIFO Protocol

In accord with the strategy of Section 2.3, let the “rented” workstations have the startup
order Ps, , Ps,,..., P, and the finishing order Py, Py,,..., P;,. We can analyze the
resulting multi-workstation work-sharing protocol at a very high level, in a way that
leads us toward our optimal LIFO Protocol.

Consider the nl time units that our n “rented” workstations will collectively have
during the L time units of the work-sharing opportunity. In particular, let us focus on
those periods when some or all of the “rented” workstations cannot be performing work

for P,.

Start-up delays: Fach P;,, where ¢ € {1,2,...,n}, cannot work until F, has dis-
tributed work to it and to all of its predecessors in the startup indexing. The
resulting idle period for P,, has length ico + e(w,, + w,, + -+ + wy, ).

Mandate 1 This reckoning mandates that workstations be sent work in decreasing order
of their computation power, so that the faster a workstation is, the shorter startup delay
it is subjected to.



Wrap-up delays: FEach Py, where : € {1,2,...,n}, cannot work while it and all of its
successors in the finishing indexing transmit their results to F,. The resulting idle
period for Py, has length ¢; 4+ de(wy 4+ wy + -+ + wi).s

Mandate 2 This reckoning mandates that workstations finish their work in increasing
order of their computation power, so that the faster a workstation ts, the shorter finishing
delay it is subjected to.

We can sum up the two mandates as follows.

Fact 1 One maximizes the work-output of a work-sharing protocol by setting the startup-
and finishing-indices as follows: For cach i € {1,2,...,n}, s, =¢ and fy=n —1+ 1.

The ordering of I'act 1 specifies the LIIO Protocol, which we turn to now.

3.2 The Detailed Specification of the LIFO Protocol

The overall structure of the LII'O Protocol is set by I'act 1 and the work-sharing strategy
of Section 2.3. We turn now to the detailed specification of the Protocol.

Henceforth, we label the individual work-allocations, w;, and the aggregate work-
output, W, so as to identify the protocol in question; thus, we talk about W and wZ(L)
throughout this section, and about W) and wz(»F) in the Appendix.

In outline: under the LIFO Protocol one schedules, in turn: the largest possible

(L)

amount of work, call it wy”’, on the fastest workstation, namely, Fy;; the next largest

possible amount of work, call it ng), on the next fastest workstation, namely, P,; and

)

so on. One determines the actual values of the w; ’ via the following protocol-defining
orchestration, which is illustrated in Fig. 2. From the figure, one sees that, under the

LIFO Protocol:

e workstation P, is occupied during the entire [ time units of the opportunity:
receiving work from /% for a duration of ¢ + Eng) time units, performing the
work for a duration of plng) time units, and returning its results to Fy during the

.. L . .
remaining c¢; + 55w§ ) time units.

SRecall that Py, is delayed only by its own communication overhead, all subsequent ones being
“hidden” in successors’ transmissions.

10
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Figure 2: The LIFO Protocol timeline for n “rented” workstations. (The superscript
“(L)” is elided to enhance legibility.)

e Inductively, workstation P;iq, where ¢ € {1,2,...,n — 1}, is occupied for the L —
ico —ge(ng) —i—ng) +--F wZ(L)) time units during which workstations Py, Ps, ..., P;
are neither receiving work from nor returning results to Fy. During its allocated
time, which begins at time 2¢o+ 5(wEL) + ng) 4+ 4 wZ(»L))7 Piyq receives work from

(L)

Fy for a duration of ¢y + ew;}| time units, performs the work for a duration of
(L)

L .. . . . . L
Pit1 w2(+)1 time units, and returns its results to Fy during the remaining ¢; 41 +dcw; [y
time units.

Thus, under the LIFO Protocol, the ¢;-unit overhead during which “rented” workstation
P;, where i € {1,2,...,n — 1}, prepares to return its results to Py are “hidden” within
the &waz(»i)l time units when (the slower) workstation P;y; is transmitting its results to
Fy. F; begins to transmit its results immediately after F, 11 completes its transmission.

3.3 The Analysis of the LIFO Protocol

We turn now to the detailed analysis of the LIFO Protocol in terms of work-production
and parallel speedup. We shall see that the structure of the Protocol renders it self-
scheduling, in the sense that the appropriate allocations of work, {’LU,L(L) |1 <7< n}, to

11



the n “rented” workstations, as well as the times for all communications, are determined
completely by the lifespan I and the 2n + 3 performance-parameters

§, e, {e; | 0<i<n}, {p; |1 <7< n}.

(L)

We now determine explicit expressions for the work-allocations w;
how the relative computation rates p; and overheads ¢; of the “rented” workstations

, which will illustrate

inlluence the allocation of work under the Protocol.

The timeline in Fig. 2 indicates that, for each 7 € {1,2,...,n},°

i—1
(pi + g@)ng) = L—ico—¢i—de- ) wﬁL).

=1

These n cquations arc represented most perspicuously via the matrix cquation

p+de 0 0 0 w{” L—co— e
oe P2 + be .- 0 0 U)EL) L — 200 — Co
§€ §€ a1t Se 0 wLQl L—(n—1)eg— ¢p
de o€ e oe Pn -+ Oc w1 L —ncyg — ¢,

(3.1)
The system (3.1), being lower-triangular, hence nonsingular, determines the values of
the wZ(L) uniquely. In the light ol the timeline in Fig. 2, these values also determine
uniquely the times of all communications under the Protocol.

The first equation of system (3.1) readily determines w§L) explicitly:”

(pr+ o)™ = L — (co+ 1) (3.2)
Focusing next on any two consecutive equations in system (3.1), we find that
(pi+3s)wi™ = pisywll) — (co+ i = eim), (3.3)

for each ¢ € {2,3,...,n}. We can unroll system (3.3) and invoke (3.2) to derive explicit,

5Recall that § = 1 + 4.
“To enhance legibility of our somewhat cumbersome expressions, we actually present explicit expres-

sions for the products (p; + ge)ng).

12



albeit cumbersome, expressions for all of the w . For each i € {1,2,...,n},

SN B =)
(pi + dg)w; = H ——— | L

7=1 P + 55

1—1 ¢—1
—(1+ZH +5C)0—Ci

kl]zkpj

p; i—1 o
+ E 7 | | ——— ] c
( P; + ‘St) k=j+1 Pk + os !

i—1
P1 Pj
+ 11 — 7_) || — | .
( p1 + de (j:29j+55) '

The reader who will be interpreting our results numerlcally should have no problem
with the complicated exact expressions for the w in (3.4), especially since n is likely
to be fixed—and rather small. However, the 1ea‘del who will be attempting to ana-
lyze the w(-L) symbolically—as we s(h)all—will likely appreciate somewhat simpler, albeit
tion, which may be suitable even for numerical estimation, and a coarse approximation,
which may be uscful for “back-of-the-cnvelope” calculations and for getting a general
impression of how W depends on the computation rates p; and the overheads ¢;. Both
approximations overestimate the true values of the wl(»L), hence of WX,

approximate, expressions for the w; 7. It is not difficult to derive both a fine approxima-

One readily obtains a good fine approximation for the wf;L) from the fact that, when
de is tiny—as we expect it to be—then, for all .,

x 1 de ~ 6_55/(x+§6) )

;U—Fga':‘ - ;L‘—|—g€

Applying this approximation to the exact expressions in (3.4), we obtain the following

close approximate expressions for the w . Letting

¥
Qlk, (] = >

zkp 5

we have

BOf course, this approximation overestimates the true value of z/(x + 35)

13



A fine overestimate for wl(»L). For ¢ € {1,2,...,n}:

(Pi—I-ge)w?(;L) ~ emteRILiEL

k=1
i-1 Y FQli+Lio1] (3.5)
+ 1 — 7J_ 6—5EQ J+1,i—1 cs
2 (-75%) f
+ (1 = PL_ e—SEQ[z,i—ﬂcl
p1 + oe ’

(L)

Our coarse overestimate for the w; ” merely ignores the tiny de terms in the denom-
inators of all expressions of the form (p; 4+ d=).

A coarse overestimate for wz(-L). Forie {1,2,...,n}:
(L) 1 L .
w,  ~ —L — —(ico+ ¢). 3.6
L~ lic+ ) (3.6)

The coarse estimate (3.6) affords us an easy perspicuous overestimate for W,

wa — 'w£L) + ng) 4o wgJ) ~~ (Z —) L — (Z ! ) co — (Z —Q) . (3.7)

=1 P =1 Pi i=1 7

One can obviously derive a finer, but less perspicuous, approximation via our finer
estimates (3.5) of the w™. Even from the coarse approximation (3.7), though, one can
see thal the LIFO Protocol yields good parallel speedup when L is sulliciently large and
¢ 1s sufficiently small.

In the next section, we specialize the analysis of the LIFO Protocol to the mathe-
matically much simpler setting of a homogeneous NOW, wherein the expressions for all
of the salient quantities are much more perspective.

3.4 The LIFO Protocol within a Homogeneous NOW

In order to get a better feeling for the parallel speedup one achieves via the LII'O
Protocol, we turn now to an analysis of the Protocol within the mathematically much

14



simpler setting of a homogeneous NOW, wherein all p; = 1 and all communication
overheads are equal: ¢; = ¢. In assessing the results of this section, one must keep
in mind that this is the [east favorable setting for the Protocol, since it minimizes the
advantage of the strategy of sending the most work to the fastest workstations.

For a homogencous NOW, the system of cquations (3.1) simplifics to:

143 0 - 0 0 wi L—2¢
e 1468 -~ 0 0 w L —3c
§5 §5 lirgs 0 w™), L — nc
oe de e de 1+ de w(L) L—(n+1)c
The relations among the work-allocations ’LUZ(»L) then simplify as follows. For i = 1,
cquation (3.2) becomes
w _ 1,2 3.8
i 1+ oc 1+0e (3.8)
For all other values of 7, the relations between successive work-allocations, wEL) and wZ(I:)l,

simplifies from the system (3.3) to

1 1
W = 0

BRI S

Unrolling this system of equations, we derive the following explicit analogues of (3.4).

For each ¢ € {2,3,...,n},

(L) 1>iL—i1—1—5<1>i
() [ oen(E)]e e

The structural simplicity of (3.8) and (3.9) allows us to compute an exact value for the
aggregate work-output W) of the LIFO-Protocol within the homogeneous setting.

0y = b () T b () () e o
W tiomo) de 1+ de de n o * de 1+ 3¢ e (3.10)

The expression for W((lf;)mo) in (3.10) is certainly much simpler than its heterogencous
analogue would be, yet it is still too complex to render obvious the parallel speedup
achieved under the LIFO Protocol within a homogeneous setting. Therefore, we combine

(3.10) with the identity
L ) (3.11)
(1—}—35)” - 1 4 e o




to determine the following bounds on W((}I:o)mo) (obtained by expanding the first few terms
of the polynomial in (3.11)).

W s D t]-/,_ =% (my o) 3.12
(homo) = 1 _1_(5'5 (‘0‘ ) (1 —|—(SE)2 9 (.0. ) c, ( . )

where the aggregate “low-order terms” in the coefficient of I grows no faster than

We see from Fact 1 and (3.12) that, even in a homogeneous setting, the LIFO Protocol
achieves close to (n+1)-fold—hence, maximal—parallel speedup via the use of n “rented”
workstations, as long as [ is sufficiently large—say, . >> nc—and ¢ is sufficiently
small—say, ¢ < n?/(1 + ).
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A The FIFO Work-Sharing Protocol

While the LIFO Protocol is optimal in work-production within our model, it is com-
pletely “user-centric,” in the sense that it occupies the most desirable “rented” work-
station for the entire lifespan of the work-sharing opportunity, the next most desirable
for just a bit less time, and so on. One can devise computationally good protocols
which have at least a rudimentary notion of fairness built in, which also have good
work-production, hence, achieve rather good parallel speedup. This section is devoted
to presenting one such, the FIFO Protocol. The fairness in the FIFO Protocol is pred-
icated on the relative computational powers of the “rented” workstations and is just
one step in the direction of the stringent notions of fairness that are common in many
environments where precious resources are contended [or. The notion here, lor instance,
is not nearly as strict as the corresponding notion in [9], which implements fairness via
the external mechanism of tickets which mandate how much work a workstation should
get. However, the FIFO Protocol may be more appropriate than the LIFO Protocol in
an environment wherein access to workstations is highly contentious, so that one cannot
request too many cycles from any particular workstation.

A.1 The Details of the FIFO Protocol

The FIFO Protocol has the “rented” workstations terminate their work in the same
order as they begin their work; i.e., for all ¢, s; = f; = ¢. This results in the following
orchestration, which defines the protocol and determines the values of the wl(»F); cf. Fig. 3.
From the figure, one sees that, under the FIFO Protocol:

e workstation P; is occupied for ¢o 4+ ¢; + (p1 + ge)ng) time units, receiving work
from Fy for a duration of ¢o + 5w§F) time units, performing the work for a duration
of pq ng) time units, and returning its results to £y during the remaining C—i—(Sa‘,ng)
time units.

e Inductively, workstation Py, where ¢ € {1,2,...,n — 1}, is occupicd for the
cotciv1+(pitt +55)w2(£)1 time units beginning at time ico+5(ng)+ng)+~ - ~+w2(-F)).
During its allotted time, Py receives work from Fy for a duration of ¢y + 5wg)1
time units, performs the work for a duration of ,02-+1w2(»_1i)1 time units, and returns

results to Fy during the remaining ¢; 4 + éawl(_,_)l time units.

Thus, under the FIFO Protocol, each workstation P;, wherei € {2.3,...,n}, “hides” the
)

¢;-unit overhead for returning its results to £, within the 55w£§1 time units when work-

18



o - Lo - -]
BARRIER
col ew col A | | col ew | wo- e (w +w + +wn)
L LY
| | | I l
p P, W | c, | dew
! b
P | szz | c, ; dew, |
g | | |
- - - -
- - - -
p | B % | Cu | O,
" | I

Figure 3: The FIFO-protocol timeline for n “rented” workstations. (The superscript
“(F)7 is elided to enhance legibility.)

station F,_1 is returning its results to Fy. F; then begins its transmission immediately
after F,_; completes its transmission.

A.2 The FIFO Protocol within a Homogeneous Setting

In order to suggest strongly that the FIFO I’rotocol achieves good parallel speedup—
albeit not as good as the LIFO Protocol does (cf. (3.12)—we analyze its performance
in a homogeneous NOW | wherein all p; = 1 and all ¢; = ¢. Nole thatl this setting is
the most favorable for the FIFO Protocol, for much the same reason that it is the least

favorable for the LIFO Protocol.

One sees from the timeline in Fig. 3 that the interelationships among the FIFO
Protocol’s work-allocations in a homogeneous setting are given by the matrix equation:

1+ de de — de ée ng) L —2¢
€ L+ --- de de ng) L — 3¢
: : e : : : = : . (A1)
€ € oo 14 de de w) L —nc
€ € : € 1+ de w(F) L—(n+1)c
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The nonsingularity of the coefficient matrix in (A.1) shows that the FIFO Protocol is
self-scheduling in the same sense that the LIFO Protocol is. By considering adjacent
pairs of equations from system (A.1l), one derives the following expressions for all but
the first of the FIFO Protocol’s work-allocations. For ¢ € {2,3,...,n}:

(F)y 14 de =t (F) 1 1 1—|—5€ =t
L N (1 d)c 1+te ¢

Summing these quantities, we find that
1 + 55 n—1 (F)
wy
1+¢

n—1 Lo [ 14 de\"™"
(I—8)e  (L— o)z L+e -
Finally, the first cquation of system (A.l) yiclds the following implicit expression for
(F)
wl .

(1 —29)e

(A.2)

w(F) _ 1 ) - 2 de
! 14 ée

1+$€~c 1+ de

(ng) 4+ wle)) . (A.3)

Completing the analysis of the FIFO Protocol to the point of obtaining explicit
expressions for all quantities—notably, the work-allocations ng) and the aggregate work-
output W) —requires extensive tedious and unenlightening computation, beginning
with solving the simultaneous system of two equations in two unknowns in (A.2) and
(A.3). We shall not burden the reader with these clerical details, proceeding instead
directly to the “bottom line,” namely the analogue for the FIFO Protocol of the bounds
(3.12).

) (1+de)n

Whowor = |y oi1 355 (l.o.t.)] L - [(1+5i;{1€+ 7 (g) _ (1.0.1;.)} e,
(A1)

where the aggregate “low-order terms” in the coefficient of I grows no faster than
(1—=348) [n
(1468)2\2/)°
Despite its rather good parallel speedup in the homogeneous setting, as exposed by

(A.4), the FIFO Protocol does not compete with the LIFO Protocol even in this most
favorable match-up.
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