Optimal Schedules for Data-Parallel Cycle-Stealing
in Networks of Workstations™

Arnold L. Rosenberg
Department of Computer Science
University of Massachusetts

Amherst, MA 01003, USA

rsnbrg@cs.umass.edu

April 17, 2000

Abstract

We refine the model underlying our prior work on scheduling cycle-stealing
opportunities in networks of workstations [5, 16], obtaining a model wherein
the scheduling guidelines of [16] produce optimal schedules for ewvery such
opportunity. We thereby render prescriptive the descriptive model of those
sources. Although computing optimal schedules usually requires the use of
general function-optimizing methods, we show how to compute optimal sched-
ules efficiently for the broad class of opportunities whose durations come from
a concave probability distribution. Even when no such efficient computation of
an optimal schedule is available, our refined model always suggests a natural no-
tion of approximately optimal schedule, which may be efficiently computable.
We illustrate such efllicient approximability via the important class of cycle-
stealing opportunities whose durations come from a heavy-tailed distribution.
Such opportunities do not admit any optimal schedule—nor even a natural no-
tion of approximately optimal schedule—within the model of [5, 16]. Within our
refined model, though, we derive computationally simple schedules for heavy-
tailed opportunities, which can be “tuned” to have expected work-output that
is arbitrarily close to optimal.

*A portion of this paper was presented at the 12th ACM Symp. on Parallel Algorithms and
Architectures, Bar Harbor, Me. (2000).

Keywords: Cycle-stealing, Data-parallel computations, Networks of workstations
(NOWs), Optimal scheduling, Scheduling parallel computations

1 Introduction

Numerous sources eloquently argue the technological and economic inevitability of
an increasingly common modality of parallel computation, the use of a network of
workstations (NOW) as a parallel computer; cf. [1, 15]. Sources too numerous to list
describe systems that facilitate the mechanics of NOW-based computing, often via
the technique of cycle-stealing'—the use by one workstation of idle computing cycles
of another—which is our interest here. To this point, however, rather few sources
have studied the problem of scheduling individual computations on NOWs, and even
fewer present rigorously analyzed algorithms that schedule broad classes of individual
computations well. In the current paper, we refine the model introduced in [5] and
developed in [16], in a way thal allows one to devise schedules that maximize the
cxpected work-output from cvery cycle-stecaling opportunity, given knowledge of the
instantaneous probability that the opportunity will be terminated by the owner of
the “borrowed” workstation. We thereby render prescriptive the descriptive model of
[5, 16]. We also consider the issue of deriving (nearly) optimal schedules efficiently.

1.1 Background

The model of [5, 16] views cycle-stealing in NOWSs as an adversarial process in which
the owner of workstation A contracts Lo take control of workstalion B whenever its
owner is absent, with the commitment of relinquishing control of B immediately when
its owner returns. In this context, “relinquishing control immediately” implies killing
any active job(s)—thereby losing all results since the last checkpoint.

Note. Such a draconian cycle-stealing “contract” is inevitable, for instance, when
“workstation” B is a laptop that can be unplugged from the network. Such
“contracts” are reported to be quite popular even when not inevitable, because
of the degraded service that B’s owner experiences when A’s jobs remain active,
even with lowered priority.

L As detailed imminently, we view cycle-stealing as an adversarial enterprise, wherein the “bor-
rowed” workstation can be interrupted by the return of its owner. When implemented as a cooperative
enterprise, cycle-stealing is often known as work-sharing.

This contract presents a challenging scheduling dilemma for the owner of worksta-
tion A. On the one hand, the typically large overhead required to set up an inter-
workstation communication recommends that A communicate with B very infre-
quently, sending large quantities of work each time—in order to minimize the cumu-
lative communication setup time. On the other hand, the harsh interrupt provision of
the contract recommends that A communicate with B very frequently, sending small
quantities of work each time—in order to keep the amount of (vulnerable) remote
work small at all times.

Clearly, cycle-stealing within the described adversarial model can accomplish pro-
ductive work only if the metaphorical “malicious adversary” is somehow restrained
from just interrupting every period when B is doing work for A, thereby killing all
work done by B. The restraint studied in the Known-Risk model of [5, 16] and
the current paper resides in two assumptions: (1) that we know the instantaneous
probability that workstation I3 has not been reclaimed, and (2) that the life func-
tion that embodies this probabilistic information—hence, governs the opportunity’s
duration—is “smooth.” It is shown in [16] (c[. Theorem 2.1) that this simple model
cxposcs constraints that any optimal? schedule must satisfy and that the guidelines
that emerge from these constraints yield close-to-optimal schedules for large classes of
cycle-stealing opportunities. Moreover, one sees from the examples in [5, 16] that one
can often use situation-specific techniques to improve a guideline-prescribed schedule
so that it is exactly optimal.

The current paper is motivated by the inability ol the Known-Risk model to deal
satisfactorily with all possible cycle-stealing opportunitics. Specifically, there exist
opportunities that provably do not admit any optimal schedule within the model
[16]. Thus, the scheduling guidelines of the latter source, while necessary for optimal
scheduling, are not sufficient. This shortcoming is not of just academic interest,
since the important class of opportunities whose durations come from a heavy-tailed
distribution®—wherein the probability that B has not been reclaimed roughly halves
as the length of the opportunity doubles—do not admit optimal schedules within
the model. Even worse, these opportunities have infinite mean durations, which
obscures even a plausible definition of “approximately optimal” schedule for such an
opportunity.

ZThroughout this study, a schedule’s optimality is measured in terms of ils expecied work-oulpul.
3[11, 12] discuss the occurrence of heavy-tailed distributions in important computational settings.

1.2 Our Main Results

In the present paper, we refine the Known-Risk model, obtaining a model within
which the scheduling guidelines of [16] yield an optimal schedule for every cycle-
stealing opportunity ('I'heorem 3.1). Our refinement, developed in Section 3, resides
in the notion of a bounded-lifespan analogue (BLA) of a cycle-stealing life function P—
a [inite-duration life function thatl captures the essential risk-exposing structure ol P.
While the process of computing optimal schedules for (BLAs of) arbitrary life func-
tions usually requires the use of (often inefficient) general function-optimizing tech-
niques (such as, e.g., simulated annealing), we show in Section 4.1 that our scheduling
guidelines vield efficiently computable optimal schedules for every cycle-stealing op-
portunity whose duration is governed by a concave life function (Theorem 4.1). Even
when dealing with an opportunity whose life function is not concave, our scheduling
guidelines for BLLAs often suggest a natural notion of approximately optimal schedule,
which may be efficiently computable. We illustrate this latter situation in Section 4.2,
where we craft computationally simple schedules for (bounded-lifespan) heavy-tailed
opportunities, which can be “tuned” to be arbitrarily close to optimal (Theorem 4.2).

1.3 Related Work

The literature contains relatively few rigorously analyzed scheduling algorithms for
parallel computing in NOWs. Among those we know of, only [3, 5, 16, 17] and the
current study deal with an adversarial model of cycle-stealing. One finds in [3] a
randomized cycle-stealing strategy which, with high probability, accomplishes within
a logarithmic factor of optimal work-output. In [5, 16, 17], and the current paper,
cycle-stealing is viewed as a game against a malicious adversary who seeks to interrupt
the borrowed workstation in order to kill all work in progress and thereby minimize the
work-output of a cycle-stealing opportunity. As noted earlier, the Known-Risk model
of [5, 16] provides the starting point for our study; [17] develops the Guaranteed-
Output model of [5], providing guidelines which optimize, to within low-order additive
terms, the guaranteed work-output of a cycle-stealing opportunity—given knowledge
of the duration of the opportunity, plus an upper bound on the number of potential
interruptions by the adversary.

A number of sources view parallel computing in a NOW as a cooperative venture,
wherein overloaded workstations share their load with idle ones (work-sharing) [2, 18]
or idle workstations borrow load [rom busy ones (work-stealing) [6, 7, 8]. The study
in [2] develops an “auction”-bascd model wherein one determines that subset of work-
stations which—according to the source’s cost model—promises the best performance
on one’s workload. One can view [18] as a follow-up to [2], wherein one determines

both how much work to allocate to the individual workstations in the selected subset
and a schedule for sending this work, in a way that optimizes the amount of work that
can be accomplished within the period of the subset’s availability. The study in [9] is
concerned mainly with far-flung assemblages of NOWs, but its results are relevant to
individual NOWs also. The study’s focus, however, is on providing a “fair” allocation
of resources to the members of its “Co-Op,” (using a ticket-based resource-allocation
scheme), rather than on optimizing either parallel speedup or work-output. Finally,
one finds in [4] the beginnings of a model for scheduling collective communication in
a heterogeneous NOW, similar to the communication-oriented portion of the model
developed in [18]. Finally, the CILK system of [6, 7, 8] iinplements a work-stealing
multithrecading protocol wherein idle workstations borrow load asymptotically opti-
mally, with respect to both speed of computation and space overhead.

We do not enumerate here the many studies of computation on NOWs, which
focus either on systems that enable one workstation to steal cycles from another or
on specific algorithmic applications. However, we point to [13] as an exemplar of the
[ormer type of study and to [19] as an exemplar of the latter.

2 Formal Background

2.1 The Known-Risk Model for Data-Parallel Cycle-Stealing

We focus on NOWSs wherein a fixed overhead? ¢ is incurred for setting up each pair of
communications in which workstation A sends work to workstation 73 and I3 returns
the results of that work to A. We keep ¢ independent of the marginal per-task cost
of communicating between A and B by incorporating the latter cost into the time for
computing a task. Our schedules view tasks as indivisible; and, they assume that we
know exactly how long each task takes on workstation B (which is consistent with our
model’s view that B is dedicated to our work during the cycle-stealing opportunity).

We view a cycle-stealing opportunity as a sequence of episodes during which work-
station A has access to workstation B, punctuated by interrupts caused by the return
of B’s owner. When scheduling an opportunity, we decrease our vulnerability to
interrupts, with their attendant loss of work in progress on B, by partitioning each
episode into periods, each beginning with A sending work to B and ending either with
an interrupt or with B returning the results of that work. Since our discretionary
power thus resides solely in deciding how much work to send in each period, we view

4Qur ¢ plays the role of the communication-cost parameter of [14] and the “overhead” parameter
o of [10].

an (episode-)schedule simply as a sequence of positive period-lengths: & = to,11,.. ..
A length-¢ period in an episode accomplishes t & ¢ & max(0, ¢t —¢) units of work if it

is not interrupted and 0 units of work if it is interrupted. Thus, the episode scheduled
k—1

by & accomplishes Z(tz O ¢) units of work when it is interrupted during period k.
=1
As noted earlier, we assume that we know the risk of B’s being reclaimed, via a
decreasing life function,

P(l) = Pr(Bis “alive” at time 1),

which: (a) satisfies P(0) = 1 (to indicate B’s availability at the start of the episode);
(b) when an upper bound L on the episodc’s lifespan (déf its maximum possible dura-
tion) exists, satisfies P(L) = 0 (to indicate that the interrupt will have occurred by
time L). Our earlier assertion that life functions must be “smooth” is embodied in
the formal requirement that P be twice differentiable. An important statistic of an

episode with life function P is its mean lifespan:®

U U
MEAN-LIFESPAN(P) = —/ tP'(t)dt = / P(t)dt. (2.1)
6] 6]

Note. The simplification of the integral in (2.1) results from the Known-Risk model’s
constraints on life functions, as just described.

The upper limit U of the integral is the episode’s lifespan L if it is finite, and is oo
otherwise. Our challenge is to maximize the expected work-output from an episode
governed by P, i.e., to find a schedule § whose expected work-output,

EXP-WORK(S;P) & > (t; & c)P(1}), (2.2)
i>0
is maximum, over all schedules for P. In summation (2.2): each 7; is the partial sum

T, = to+ta+ -+t

the upper limit of the summation is the episode’s lifespan [if it is finite, and is oo
otherwise.

We close this description of the Known-Risk model with a lemma which can be
helpful when one tries to compute (almost) optimal schedules. The lemma allows one
to use ordinary (—), rather than positive (&) subtraction in all but the last term of
summation (2.2) as one seeks good schedules.

5As usual, f’ (resp., f"') denotes the first (resp., the second) derivative of the univariate function

f.

Lemma 2.1 ([5, 16]) Onec can cffectively replace any schedule S for life function P
by a schedule S, each of whose periods—save the last, if S has finitely may periods—
has length > ¢, such that EXP-WORK(S;P) > EXP-WORK(S; P).

Proof Hint. One can never decrease the expected work-output of a schedule if one
combines a “short” nonterminal period with its successor. [|

lLemma 2.1 allows us to rewrite expression (2.2) for any finite schedule & =
tastiy ... tm—1 in the following form (whose “missing” last term reflects the fact that

the fact that P(L) = 0).

m—2
EXP-WORK(S;P) = > (t;, — o)P(17). (2.3)
=0
Henceforth, we restrict attention to productive schedules unless otherwise indicated.

2.2 The Scheduling Guidelines of [16]

In [16], we extended the case studies from [5] by deriving a set of guidelines for
(almost optimally) scheduling large classes of cycle-stealing opportunities within the
Known-Risk model. These guidelines partially expose the structure of any optimal
schedule for a “smooth” life function P—whenever P admits an optimal schedule.
The guidelines are, thus, necessary for the optimality of a schedule.

Henceforth, we say that a life function P is concave (resp., convez) if its sccond
derivative is nonincreasing (resp., nondecreasing) for all ¢ such that P(¢) > 0.

Theorem 2.1 ([16]) If the productive schedule S = tg,1s,... is optimal for the dif-
ferentiable life function P, then:

(a) For each period-index k > 0, save the last if § is finite, period-length t is given
implicitly by
P(Ty) = max (O, — > (t;— C)PI(T]‘)) . (2.1)
>k

Adjacent pairs of these equations combine to yield the following computationally friendlier
system.
(b) For each period-index k > 1, save the last if S s finite, period-length ty is given
implicitly by

P(Ty) = max (0, P(Tx—1) + (txe1 —)P (Th-1)) - (2.5)

(c) When P is convex (resp., concave), the initial period-length to is bounded above
and below as follows, with the parameter ¢ = 1 (resp., ¢ =1/2).

¢z Ply) ¢ 2 cPlto) .
< €<y < oSV 2.6
I P T2 S = J T Pty € (2.6)

Note 1. As is pointed out in [16], the guidelines inherent in the system (2.5) can
be applied in an online [ashion, computing (;4+q1 only alter period & ends. This
mcans that onc can correct crrors in life functions that arc known only approx-
imately, and/or one can use conditional rather than absolute probabilities to
craft one’s schedules.

Note 2. It is shown in [16] that the guidelines systematically yield optimal schedules
for the life functions that were optimized via ad hoc analyses in [5].

While the guidelines of Theorem 2.1 are shown in [16] to be quite useful in crafting
near-optimal schedules for many life functions, it is also shown there that some cycle-
stealing opportunities do not admit any optimal schedule within the Known-Risk
model. The important (cf. footnote 3) opportunities whose durations are governed
by the feavy-tailed life function

o1
Puo(t) =

[all within this intransigent class.

Proposition 2.1 ([16]) The heavy-tailed life function Pwyy does not admit an opti-
mal schedule.

Proof Hint. One can always increase expected work-output by replacing any given
schedule & = to,t1,... for P by the schedule S opg oy, [

P(ne)’s intransigence, as exposed in Proposition 2.1, is exacerbated by its resistance to
approximation: Since MEAN-LIFESPAN(P)) is infinite, there is no apparent natural
notion of “approximately optimal” expected work-output to strive for when crafting
a schedule for Pg).

3 Bounded-Lifespan Analogues of Life Functions

We now refine the Known-Risk model by replacing each life function with its family
of BLAs, as described in Section 1.2. After defining BLLAs formally and determining
their impact on the Known-Risk model (Section 3.1) and on our scheduling guidelines
(Section 3.2), we show that BLLAs achieve the desired goal: Every BLA of every life
function admits a computable optimal schedule whose period-lengths are given by
our guidelines (Section 3.3). We turn to the issue of the ease of computing optimal
schedules in Section 4.

3.1 Lifespan-L Analogues of Life Functions

Say that the lifespan L > 0 is relevant for the life function P if P(t) > 0 for all ¢ < L.
For each function P and each relevant L, the lifespan-L analogue of P, denoted P
is the life function Pl — P(L)
pL)py & 2N AT 3.1

= PR (3.1)
Easily, each BLA P®) is a valid life function (cf. the definitions in Section 2.1) with
maximum lifespan L. Moreover, BLAs extend the Known-Risk model gracefully, in
the sense that P1)(¢) = P(t) whenever P intrinsically has maximum lifespan L (as,
e.g., do the uniform-risk life functions, Pr(t) = 1 — ¢/ L, which form one of the case
studies in [5]).

Note. Each BLA PW) is intended to preserve the “essential structure” of its parent
life function P, including mathematical properties such as differentiability and,
when appropriate, concavity or (as with P)) convexity.

To illustrate the transformation from a life function to its BLA:

e For L < L, the lifespan-L BLA of the uniform-risk life function Pr(t) is
PW@) = 1—1/L.

e The lifespan-L BLA of the infinite mean-lifespan heavy-tailed life function
P(ht)(t) iS
1 /L —t

Py = 7 (1) (32)

3.2 The Impact of BLAs on the Scheduling Guidelines of [16]

Theorem 2.1’s guidelines for a life function P translate easily to guidelines for P’s
lifespan-L analogue P&

Proposition 3.1 (a) The difference in the system (2.4) for P and P resides only
in the effect of the term (—P(L)) from the numerator of (3.1). The system thus
becomes

P(Ty) — P(L) = max (O, — > (4 — c)’P'(Tj)) . (3.3)
izk
(b) The recurrence of system (2.5) for the non-initial period-lengths of life function

P s identical to the analogous recurrence for P.

(c) The difference in the bounds (2.6) on to for P and PE) when P is concave or
conver, resides only in the effect of the term (—P(L)) from the numerator of (3.1).

Proof Sketch. The factor (1 — P(L)) from the denominator of (3.1) cancels out in
all three cases. In Part (c), this is because

PW(ty) _ Plto) = P(L)

(PH Y (oto) P'(eto)
In Part (b) the term (—P(L)) from the numerator of (3.1) also cancels out when
instantiated in (2.5). (]

We now illustrate Proposition 3.1 by instantiating the guidelines of Theorem 2.1
for both P and 'Pgﬁt)). This is not an empty cxercise, cven though Py docs not
admit any optimal schedule (Proposition 2.1). First, we shall see in Theorem 3.1 that

these guidelines do specify an optimal schedule for 73253 . Second, the “guidelines” for
P (ne) supply the inspiration for the computationally simple, provably good schedules

for Pgﬁt)) that we present in Section 4.2.

Proposition 3.2 Assume that the heavy-tailed life function Py admitted an opti-
mal schedule S = tg,t,,... and that the heavy-tailed BLA Pgﬁt)) admitted an optimal
schedule S = téL),t(lL), B Then:

»¥“m—1-
(a) Letting t; (resp., fﬁ) ambiguously denote t; and tz(»L) (resp., T; and TZ»(L)) fore >0,
the sequence of period-lengths for both S and S would satisfy the recurrence

~ - Tp+1 ‘
Ticr+c+1

10

(b) The initial period-length to for S would be bounded as follows.

c+vett+e < tg < 3¢+ V92 + 4e.

(c) The initial period-length t((JL) for S®) would be bounded as follows.
cL n \/(cL)2 n cL - D (3L —1)c n (3L — 1)c)? n el
L+2 L+2 L+2 — % = L+5 L+5 L+5

3.3 The Universal Optimizability of BLA-Governed Oppor-
tunities

We show now that BLAs do, indeed, serve the purpose that motivated their invention.
I'o wit, the guidelines of T'heorem 2.1 provide optimal schedules for the BLLAs of every
life function P. Modulo the complexity of actually computing these optimal schedules,
we have thus succeeded in solving the scheduling problem for the Known-Risk model.

Theorem 3.1 FEvery BLA P admits an optimal productive schedule whose period-
lengths are determined by system (3.3).

Proof. We first establish nonconstructively that every BLA admits an optimal finite
schedule. We then invoke Lemma 2.1 to infer that every BLA admits a productive
optimal schedule. We finally invoke Theorem 2.1 and Proposition 3.1 to infer that
the period-lengths of a productive optimal schedule are specified by system (3.3).

The existence of optimal schedules. Wec build on two lemmas. The first lemma
establishes an upper bound on the amount of expected work-output that one can
achieve during a finite-lifespan episode.

Lemma 3.1 For any schedule S for life function P,

EXPr-WORK(S;P) < MEAN-LiFESPAN(P).
Proof of Lemma. By delinition (2.2), the expected work-output of & = lg, {4, ...
can be viewed as an underestimate, obtained by abutting rectangles of widths t; & ¢

and heights P(7};) (for ¢ = 0,1,...), of the area under the curve P(¢). By equation
(2.1), the latter area is the mean-lifespan of the associated episode. ®m-Lemma

Next, we invoke the weak-inequality version of Lemma 2.1 (which is the version
that appears in [5]) to infer that, if a lifespan-L BLA P admits an optimal schedule,

11

then it admits one of the form & = to,%1,...,tm_1, Where t,,_; > 0 (by definition),
and each other ¢; > ¢. One consequence of these constraints on the period-lengths of
S is that we lose no generality if we restrict our search for optimal schedules for pE)
to schedules that have < [L/c] periods.

Embarking on this scarch, let us define, for cach m € {2,3,...,[L/c]}, the m-
variable formal® work-function for P®):

m—2
Wgnr,l)(7—07 Tl oy Tm—l) d:ef Z (Ti - C)P(L)(TO —+ 71 4+ - 4 Ti)- (35)

=0

By equation (2.3), the expected work-output of any m-period schedule & =
to, 1, .-yt for P s given by

EXP-WORK(S;P) = WW (o, 41, ... tmy).

As just noted, therefore, we need consider only these | L/c¢| — 1 work-functions as we
search for a work-optimizing schedule for P By Lemma 3.1, each work-function
WU is a bounded, continuous (indeed, differentiable) function. Therefore, on the

compact set of real m-tuples (19, 71,..., Tin—1) defined by the three constraints:
& T,p-1 2 0
e ecach other 7, > ¢ (3.6)

o TotTit A+ T =L,
W;f) must achicve a maximum valuc. It follows that any p-tuple
def
ST =501, -, oy
which simultaneously

e satisfies constraints (3.6);

e achieves the largest W) _value over all relevant numbers of periods m

We term the function Wr(nL) “formal” because it presents the m period-lengths as mutually
independent variables. We know by Lemma 2.1 and Theorem 2.1 that the period-lengths for optimal
schedules are not mutually independent.

12

is an optimal schedule for P, Since the last sentence may be hard to read due to its

many quantifiers expressed in natural language, we state formally that our intention
is that:

V\/;r’)(t;7 sty) = WUty 1y, .. tm_1) | constraints (3.6) hold}.

mas
me{2,3, L/}
The existence of productive optimal schedules. We can now invoke the strong-
inequality version of Lemma 2.1 to infer the existence of a productive schedule S*
whose expected work-output matches S*’s. (Of course, 8 may have fewer than p
periods.)

Computing a productive optimal schedule. Finally, we invoke Theorem 2.1 to
complete the proof. u

We remarked in [16] on the computational unfriendliness of system (2.4). This ob-
servation led us there to propose the less comprehensive, but (in our experience) quite
friendly system (2.5) to specify the noninitial period-lengths of optimal schedules,
augmented, in the case of concave and convex life functions, by the bounds (2.6) on
the initial period-lengths of optimal schedules. The noncomprehensive nature of (2.5,
2.6) means that, even with Theorem 3.1’s guarantee that optimal schedules always
exist for BLAs, one may have to employ general (and usually inefficient) function-
maximizing techniques (such as, e.g., simulated annealing) to the work-functions (3.5)
in order to find those schedules. In the next section, we show that such inefliciency
can sometimes be avoided, at least in special cases.

4 BLAs that Efficiently Admit (Almost) Optimal
Schedules

This section is devoted to the question of the computational efficiency of deriving
(almost) optimal schedules for bounded-lifespan cycle-stealing opportunities. In Sec-
tion 4.1, we show that the guidelines of Theorem 2.1 efficiently yield exactly optimal
schedules for concave life functions. In Section 1.2, we exhibit a parameterized family
of simply computed schedules for the important family of heavy-tailed BLAs, which
can be tuncd to be as closc to optimal in cxpected work-output as desired.

4.1 Efficient Optimal Schedules for Concave Life Functions

When the life function P that governs a cycle-stealing opportunity is concave, we
can improve on Theorem 3.1 by guaranteeing a rather efficient computation of an

13

optimal productive schedule for P, using the computationally friendly guidelines of
(2.5), supplemented by the bounds of (2.6).

The reader may have noted that, in contrast with our careful distinction between
a life function and its BLAs since the beginning of Section 3, we have been careless
in the last two paragraphs about making this distinction. We begin our development
in this section by justifying this carelessness, via a lemma which verifies the (not-
surprising) fact that every cycle-stealing opportunity which is governed by a concave
life function has a bounded lifespan. This fact follows from a bound on how fast
the period-lengths of the opportunity’s optimal schedule must decrease. This rate
of decrease shows also that optimal schedules for lifespan-L concave life functions
have only (roughly) (/2L /c periods, in contrast to our bound of [L/c] for general

lifespan- L life functions.

Lemma 4.1 I[f S = to,ty,... is an optimal productive schedule for a concave life
function P, then:

(a) for cach nonterminal period-index v, t; < ;1 — ¢;
(b) the life function P has a bounded lifespan Lp;

2L 1 1
TP + 1 + 5 periods.

(c) schedule S has fewer than {

Note 1. The rcader can casily adapt the proof of Lemma 4.1 to prove that, when P
is convex, then each nonterminal ¢; > ¢;_; — c.

Note 2. In contrast to concave life functions, general life functions need not have fi-
nite schedules, nor need their optimal schedules have decreasing period-lengths:
the unique optimal schedule for the life function P(¢) = 27 is infinite and has
all period-lengths equal [5].

Note 3. The quantitative claims of Lemma 4.1 cannot be improved in general: the
unique optimal schedule & = tq,%,,...,t,_ for the lifespan- L uniform-risk life

[2L 1 1
function has m = \‘ LA 1 + 5‘ periods, and, for each nonterminal period-
c

index ¢, t; = t,_1 — ¢ [5].

Note 4. Lemma 4.1’s assertion that the period-lengths of optimal schedules for con-
cave life functions are strictly decreasing strengthens an analogous result in [5],
which is proved there only with weak inequalities and only for the uniform-risk
life function.

14

Proof. (a) We exploit the optimality of § only to infer that it is at least as productive

as any of its é-perturbations, SU € ¢o ¢4, ... ti_1,t; + 8, ti41 — 6, ti42,.... In other

words, for every nonterminal period-index 7 and every real § > 0, the following
difference is nonnegative:

EXP-WORK(S; P) — EXP-WORK(SIH; P)
= (1 Q[P(T) P(T 4)] + 6[P(Toa) — P(T: 4 6)]
After some calculation, we infer from this nonnegativity that:

tig1 — O -) '

(4.1)

ti—c

Next, the Mcan Value Theorem of the differential calculus asserts that, for cvery

6 > 0, there exist real numbers £ € (1}, T; +6) and n € (T; + 6, T;41) such that
P(T; +6) — P(T;) P(Tiv1) — P(T; 4+ 6)

P& = ; and P(n) = P— (4.2)
IMinally, the concavity of P implies that
P& = P'n), (4.3)

because & < n. Since P’ is negative, inequality (4.3) can coexist with inequality (4.1)
and equations (4.2) only if t;11 — § < t; — ¢. Since this last inequality holds for each
1 and for arbitrarily small é, we conclude that each t,,; <, — c.

(b) The bound on P’s lifespan follows by conjoining the fact that S’s period-lengths
decrease at the rate of at least ¢ per period (by part (a)) with the fact that all of &’s
periods, save the last, have length > ¢ (Lemma 2.1).

(c) Part (a) implies that schedule S has some finite number m < ty/c periods. If we
look at parts (a) and (b) “from the vantage point of ¢,,_;,” we find that

m m
LP = t0+t1+"'+tm—2+tm—1 Z mtm—1+<2>c > <2)C

Part (¢) now fOHOWS ffOlll “SOlViH ? the)rec,edin bound on m in terms Of L’p a‘nd C.
I
|

We are now ready for the main theorem of the section.

Theorem 4.1 FLvery concave life function admits an efficiently computed optimal
productive schedule whose period-lengths are determined by system (2.4).

15

Proof. We address the theorem’s two assertions in turn.

The existence of an optimal schedule. All that Theorem 3.1 needed in order
to establish the existence of guideline-based optimal schedules for BLAs of general
life functions were upper bounds on the BLAs’ work-outputs and on the numbers of
periods of their optimal productive schedules. Since Lemma 4.1 affords us analogous
bounds for any concave life function, we can invoke the proof of Theorem 3.1 to
infer that every concave life function admits an optimal productive schedule whose
period-lengths are determined by system (2.4).

Efficiently computing optimal schedules. Let P be an arbitrary concave life
function, and let $* = 3, ¢7,...,t5,_; be an optimal productive schedule for P. Let
us revisit the definition (3.5) of the formal work-function ngp), which we henceforth
abbreviate as just W,, (since the lifespan Lp is a property of P here). By direct
calculation, one verilies that schedule §* satisfies system (2.4) if; and only il, every
first partial derivative

0
gwm(’r077—17~'~77—m—1) = Plro+mn+--+7)+ Z(Tk —)P (ro+ 71+ + %)
j k2
of W, vanishes at the point = (t5, 15, .. 17, _1). Since §* has maximum expected

work-output over all schedules [or P, we expect all of the second partial derivatlives
of W,, to be negative at point *. If we look at these derivatives, though, we find an
even stronger consequence of P’s concavity: all of W,,,’s second partial derivatives
are negative throughout the region of interest. To wit:

o llor k < 1:
82 m—2
A Walto, 7. Ter) = Pllotnt--47m)+ Z(tj*C)P”(TO+7—1+"'+Tj)-
87’28’7']c =
e For £ > 1:
62 m—2
—— W, (70,715 s Tim1) = Pllro+n++7m)+ > (=P (ro+ 1+ +75).
anam j=k
e For k= 1:
82 14 /
me(To,le---aTm—ﬂ = Pllro+n+--+7m)+Pro+mn+--+m)

3

Zt—c?(ro—krl—k -4 7).

16

The important thing to notice is that each second partial derivative is a sum of terms,
each containing precisely one instance of precisely one of P’ and P”. The negativity
of W,,,’s second partial derivatives therefore follows from the fact that for a concave
life function P, both P’ and P” are negative throughout the opportunity’s lifespan.
Since W,,,’s first derivatives vanish at point t_’i, and since its second derivatives are
always negative, we infer that {* is the unigue maximum of W,,. We now exploit this
uniqueness to compute the point £*, hence the desired optimal schedule S*.

1. We invoke the inter-period dependencies for optimal schedules specified by sys-
tem (2.5) to convert W, (19, 71, . .., Ty—1) into a (formally, rather complex) fune-
tion W,,, of the single variable .

2. We note from the preceding discussion of the derivatives of W,,, coupled with
the guarantees of Theorem 2.1, that the derivative of W, vanishes at a unique
value of 75 within the interval specified by the bounds (2.6).

3. We determine the unique root of W,, within the specified interval to any desired
accuracy, using the technique of recursive doubling followed by binary search.
This specifies the initial period-length ¢ of schedule S*.

4. We invoke system (2.5) again to determine all subsequent period-lengths of
schedule 8.

Of course, we cannot quantify our assertion of the “efficiency” of this procedure,
as such quantification depends on the functional form of P and the desired accuracy
in determining the period-lengths of schedule S™*. [

4.2 Provably Good Schedules for Heavy-Tailed BLAs

This final section is dedicated to indicating that, even in the absence of an efficient
algorithm for computing an optimal schedule, one can sometimes infer from the guide-
lines of Theorem 2.1 and the bound of Lemma 3.1 an efficient way to approximate
the expected work-output of an optimal schedule. Happily, we are able to illustrate
this for the important, intransigent heavy-tailed life function.

If the schedule S®) of Proposition 3.2 were, in fact, optimal for 77512’3)7 then by

system (3.4), the sequence of ratios of SUVs successive period-lengths would deviate
very slightly (but in a computationally complicated way) from being constant. This
suggests that a schedule whose period-lengths grow geometrically, with an appropriate
constant inter-period ratio @ > 1, would have quite good expected work-output—and

17

would be computationally very simple. We now craft a family of such schedules,
parameterized by the ratio «, that verify this conjecture. (Implicit in our using a
single inter-period ratio is the fact that the lifespan L for each BLA affects only a
schedule’s number of periods.) We shall see that by choosing values of a progressively
closer to 1, one obtains schedules with progressively greater expected work-outputs.

We begin by instantiating Lemma 3.1 for Pgﬁg), thereby obtaining an upper bound

on the maximum possible expected work-output of any schedule for 7’(} 0
Proposition 4.1 For any schedule S for the heavy-tailed BLA Pgﬁg)f
L L : 1
EXP-WORK (Eht)) / PEI 3)(t)dt = (1 + Z) In(L+1) —

Next, we define our family of schedules. For any lifespan L and inter-period ratio
a > 1, the mr-period schedule S(ht)[o] = to,t1,. ..ty —1, where

(mL = {]oga (a_]L—Foz)J),
c

is defined as follows.

o for each £ € {0,1,2,...,mp — 2}, tp = aftle;
mL—2 c

L t7nL—1 d:ef L_ Z tk — L_ 1 ((lmL —(,V).
a_

Notc that, for simplicity, we have not taken steps to cnsure that ¢, 1 < ¢. If
tm, -1, as defined, exceeds ¢, then one can easily increase EXP-WORK (Sgﬁt)) [a]; Pgﬁt)))
by splittin the schedule’s last period. Ewven without this improvement, though,
schedule S(ht)[a] has good expected work-output.

Theorem 4.2 For any fived ¢ > 0, there exists a fired o > 1 such that, [or sufficiently
large L, EXP-WORK (S(ht)[|E Pgﬁt))) is within a factor (1 + ¢) of optimal.

Proof. Invoking definitions (2.2, 3.2), we find by direct calculation and standard
estimates that, for any fixed constant c:

“In 2 denotes the natural logarithm of x.

18

EXpP-WORK (S(ht)[J; 7—’(ht))

_ L+1 mL_Z(O/H_l) (a—1)e o«
L oFt2e —ac+a—1 L+1

k=0
B L—Fl"'gQ a—1 —k) aftle — ¢ (4.4)
o L = o L+1

aoa—1 L+1

o L

> log, I — log, ¢ — O(1).

When we write the final inequality in the chain (4.4) in the more perspicuous form

oa—1

ExXp-WORK (Sgﬁt))[oz]; Pgﬁg)) > (1 + L) In L —log,, ¢ — O(1),

alno

it becomes clear that we can make EXP-WORK (Sgﬁg)[I; P(ht)> arbitrarily closc to
an additive constant away from the upper bound of Proposition 4.1 by choosing «
appropriately close to 1. For instance, when o = 1.015, (o —1)/(alna) = 0.993, so

that, for sufficiently large L, EXP-WORK (SE{:L))[I; T(}IL)> is within 1% of the optimal

expected work-output of any schedule for P(ht [|

Acknowledgments. This research was supported in part by NSIFF Grant #CCR-
97-10367. A portion of this research was done while visiting the Dept. of Computer
Science, The Technion; a portion of the writing was done while visiting the Lab. de
Recherche en Informatique, Univ. Paris-Sud, under the support of a Fulbright Senior
Scholar Grant and a grant from CNRS. It is a pleasure to thank Lenny Heath and
Ramesh Sitaraman for helpful conversations.

References

[1] T.E. Anderson, D.E. Culler, D.A Patterson, and the NOW Team (1995): A case
for NOW (networks of workstations). I[EEE Micro 15, 54-64.

[2] M.J. Atallah, C.L. Black, D.C. Marinescu, H.J. Siegel, T.L. Casavant (1992):
Models and algorithms for coscheduling compute-intensive tasks on a network of
workstations. J. Parallel Distr. Comput. 16, 319-327.

19

[3]

[11]

[12]

[13]

[14]

[15]

B. Awerbuch, Y. Azar, A. Fiat, F.T. Leighton (1996): Making commitments
in the face of uncertainty: how to pick a winner almost every time. 28th ACM
Symp. on Theory of Computing, 519-530.

M. Banikazemi and D.K. Panda (2000): Efficient collective communication on
heterogencous networks of workstations. Tech. Rpt., Ohio State Univ.

S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg (1997):
On optimal strategies for cycle-stealing in networks of workstations. [EFEE

Trans. Comp. 46, H45-HH7.

R. Blumofe and C.E. lLeiserson (1993): Space-efficient scheduling of multi-
threaded computations. 25th ACM Symp. on Theory of Computing, 362-371.

R. Blumofe and C.E. Leiserson (1994): Scheduling multithreaded computations
by work stealing. 35th IEEE Symp. on Foundations of Computer Science, 356—
368.

R. Blumofe and D.S. Park (1994): Scheduling large-scale parallel computations
on networks of workstations. 3rd Intl. Symp. on High-Performance Distributed
Computing, 96-105.

W. Cirne and K. Marzullo (1999): The Computational Co-Op: gathering clusters
into a metacomputer. 13th Intl. Parallcl Processing Symp., 160 166.

D. Culler, R.M. Karp, D. Patterson, A. Sahay, K.E. Schauscr, E. Santos, R. Sub-
ramonian, T. von Eicken (1996): LogP: towards a realistic model of parallel

computation. . ACM 39, 78-85.

M. MTarchol-Balter and A. Downey (1996): Tixploiting process lifetime distribu-
tions for dynamic load balancing. SIGMETRICS 96, 13-24.

W.E. Leland and T.J. Ott (1986): Load-balancing heuristics and process behav-
ior. Performance and ACM SIGMFETRICS 14, 54-69.

M. Litzkow, M. Livny, M.W. Mutka (1988): Condor — A hunter of idle worksta-
tions. 8th Intl. Conf. on Distr. Computing Systs., 104-111.

C.H. Papadimitriou and M. Yannakakis (1990): Towards an architecture-
independent analysis of parallel algorithms. SITAM J. Comput. 19, 322-328.

G.F. Pfister (1995): In Search of Clusters. Prentice-Hall.

20

[16] A.L. Rosenberg (1999): Guidelines for data-parallel cycle-stealing in networks
of workstations, I: on maximizing expected output. J. Parallel and Distr. Com-
put. 59, 31-53.

[17] A.L. Rosenberg (2000): Guidelines for data-parallel cycle-stealing in networks
of workstations, II: on maximizing guarantced output. Intl. J. Foundations of
Computer Science, to appear.

[18] A.L. Rosenberg (2000): Optimal sharing of partitionable workloads in heteroge-
neous networks of workstations. Intl. Wkshp. on Cluster Computing — 1echnolo-

gies, Environments, and Applications (CC-TEA’2000).

[19] S.W. White and D.C. Torney (1993): Use of a workstation cluster for the physical
mapping ol chromosomes. SIAM NEWS, March, 1993, 14-17.

21

