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Abstract

In this paper, we present surplus fair scheduling (SFS), a

proportional-share CPU scheduler designed for symmet-

ric multiprocessors. We first show that the infeasibility

of certain weight assignments in multiprocessor environ-

ments results in unfairness or starvation in many existing

proportional-share schedulers. We present a novel weight

readjustment algorithm to translate infeasible weight as-

signments to a set of feasible weights. We show that

weight readjustment enables existing proportional-share

schedulers to significantly reduce, but not eliminate, the

unfairness in their allocations. We then present surplus

fair scheduling, a proportional-share scheduler that is

designed explicitly for multiprocessor environments. We

implement our scheduler in the Linux kernel and demon-

strate its efficacy through an experimental evaluation.

Our results show that SFS can achieve proportionate al-

location, application isolation and good interactive per-

formance, albeit at a slight increase in scheduling over-

head. We conclude from our results that a proportional-

share scheduler such as SFS is not only practical but also

desirable for server operating systems.

1 Introduction

1.1 Motivation

The growing popularity of multimedia and web applica-

tions has spurred research in the design of large multipro-

cessor servers that can run a variety of demanding appli-

cations. To illustrate, many commercial web sites today

employ multiprocessor servers to run a mix of http appli-

cations (to service web requests), database applications

(to store product and customer information), and stream-

ing media applications (to deliver audio and video con-

tent). Moreover, Internet service providers that host third

party web sites typically do so by mapping multiple web

domains onto a single physical server, with each domain

running a mix of these applications. These example sce-

narios illustrate the need for designing resource manage-

ment mechanisms that multiplex server resources among

diverse applications in a predictable manner.

Resource management mechanisms employed by a

server operating system should have several desirable

properties. First, these mechanisms should allow users

to specify the fraction of the resource that should be allo-

cated to each application. In the web hosting example, for

instance, it should be possible to allocate a certain frac-

tion of the processor and network bandwidth to each web

domain [2]. The operating system should then allocate

resources to applications based on these user-specified

shares. It has been argued that such allocation should

be both fine-grained and fair [11, 20, 30, 31]. Another

desirable property is application isolation—the resource

management mechanisms employed by an operating sys-

tem should effectively isolate applications from one an-

other so that misbehaving or overloaded applications do

not prevent other applications from receiving their spec-

ified shares. Finally, these mechanisms should be com-

putationally efficient so as to minimize scheduling over-

heads. Thus, efficient, predictable and fair allocation of

resources is key to designing server operating systems.

The design of a CPU scheduling algorithm for symmetric

multiprocessor servers that meets these objectives is the

subject matter of this paper.

1.2 Relation to Previous Work

In the recent past, a number of resource management

mechanisms have been developed for predictable alloca-

tion of processor bandwidth [2, 8, 13, 15, 17, 19, 21, 31].

Many of these CPU scheduling mechanisms as well as

their counterparts in the network packet scheduling do-
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main [4, 6, 22, 26] associate an intrinsic rate with each

application and allocate resource bandwidth in proportion

to this rate. For instance, many recently proposed algo-

rithms such as start-time fair queuing (SFQ) [11], bor-

rowed virtual time (BVT) [8], and SMART [19] are based

on the concept of generalized processor sharing (GPS).

GPS is an idealized algorithm that assigns a weight to

each application and allocates bandwidth fairly to ap-

plications in proportion to their weights.1 While GPS-

based algorithms can provide strong fairness guaran-

tees in uniprocessor environments, they can result in un-

bounded unfairness or starvation when employed in mul-

tiprocessor environments as illustrated by the following

example.

Example 1 Consider a server that employs the start-time

fair queueing (SFQ) algorithm [11] to schedule threads.

SFQ is a GPS-based fair scheduling algorithm that as-

signs a weight to each thread and allocates bandwidth

in proportion to these weights. To do so, SFQ maintains

a counter for each application that is incremented by

every time the thread is scheduled ( is the quantum

duration). At each scheduling instance, SFQ schedules

the thread with the minimum on a processor. Assume

that the server has two processors and runs two compute-

bound threads that are assigned weights and

, respectively. Let the quantum duration be

. Since both threads are compute-bound and

SFQ is work-conserving,2 each thread gets to continu-

ously run on a processor. After 1000 quantums, we have

and . Assume that

a third cpu-bound thread arrives at this instant with a

weight . The counter for this thread is initialized

to (newly arriving threads are assigned the

minimum value of over all runnable threads). From

this point on, threads 2 and 3 get continuously sched-

uled until and “catch up” with . Thus, although

thread 1 has the same weight as thread 3, it starves for

900 quanta leading to unfairness in the scheduling algo-

rithm. Figure 1 depicts this scenario.

Many recently proposed GPS-based algorithms such as

stride scheduling [31], weighted fair queuing (WFQ) [21]

and borrowed virtual time (BVT) [8] also suffer from

this drawback when employed for multiprocessors (like

SFQ, stride scheduling and WFQ are instantiations of

1GPS assumes that threads can be scheduled using infinitesimally

small quanta to achieve weighted fairness. Practical instantiations,

such as SFQ, emulate GPS using finite duration quanta.
2A scheduling algorithm is said to be work-conserving if it never

lets a processor idle so long as there are runnable threads in the system.

GPS, while BVT is a derivative of SFQ with an addi-

tional latency parameter; BVT reduces to SFQ when the

latency parameter is set to zero). The primary reason for

this inadequacy is that while any arbitrary weight assign-

ment is feasible for uniprocessors, only certain weight

assignments are feasible for multiprocessors. In partic-

ular, those weight assignments in which the bandwidth

assigned to a single thread exceeds the capacity of a pro-

cessor are infeasible (since an individual thread cannot

consume more than the bandwidth of a single proces-

sor). In the above example, the second thread was as-

signed of the total bandwidth on a dual-processor

server, whereas it can consume no more than half the to-

tal bandwidth. Since GPS-based algorithms do not dis-

tinguish between feasible and infeasible weight assign-

ments, unfairness can result when a weight assignment

is infeasible.3 In fact, even when the initial weights are

carefully chosen to be feasible, blocking events can cause

the weights of the remaining threads to become infeasible

(for instance, a feasible weight assignment of 1:1:2 on a

dual-processor server becomes infeasible when one of the

threads with weight 1 blocks). Even when all weights are

feasible, an orthogonal problem occurs when frequent ar-

rivals and departures prevent a GPS-based scheduler such

as SFQ from achieving proportionate allocation. Con-

sider the following example:

Example 2 Consider a dual-processor server that runs

a thread with weight 10,000 and 10,000 threads with

weight 1. Assume that short-lived threads with weight

100 arrive every 100 quantums and run for 100 quan-

tums each. Note that the weight assignment is always

feasible. If SFQ is used to these schedule threads, then it

will assign the current minimum value of in the system

to each newly arriving thread. Hence, each short-lived

thread is initialized with the lowest value of and gets

to run continuously on a processor until it departs. The

thread with weight 10,000 runs on the other processor;

all threads with weight 1 run infrequently. Thus, each

short-lived thread with weight 100 gets as much proces-

sor bandwidth as the thread with weight 10,000 (instead

of of the bandwidth). Note that this problem does not

occur in uniprocessor environments.

3This is true only for work-conserving schedulers. Non work-

conserving schedulers, in which a processor can idle even in the pres-

ence of runnable threads, can achieve any weight assignment. For

instance, a weight assignment of can be achieved by sim-

ply scheduling the first thread once every ten quantums and keep-

ing one processor idle for the remaining nine quantums (the second

thread runs continuously on the other processor). Since non-work-

conserving schedulers result in lower resource utilization, most sched-

ulers employed in practice tend to be work-conserving [14].
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and departures of threads. To overcome this drawback,

we develop the surplus fair scheduling algorithm for pro-

portionate allocation of bandwidth in multiprocessor en-

vironments. A key feature of our algorithm is that it does

not require the quantum length to be known a priori, and

hence can handle quantums of variable length.

We have implemented the surplus fair scheduling al-

gorithm in the Linux kernel and have made the source

code available to the research community. We have exper-

imentally demonstrated the benefits of our algorithm over

a GPS-based scheduler such as SFQ using sample appli-

cations and benchmarks. Our experimental results show

that surplus fair scheduling can achieve proportionate al-

location, application isolation and good interactive per-

formance for typical application mixes, albeit at the ex-

pense of a slight increase in the scheduling overhead. To-

gether these results demonstrate that a proportional-share

CPU scheduling algorithm such as surplus fair scheduling

is not only practical but also desirable for server operating

systems.

The rest of this paper is structured as follows. Section 2

presents the surplus fair scheduling algorithm. Section 3

discusses the implementation of our scheduling algorithm

in Linux. Section 4 presents the results of our experi-

mental evaluation. Section 5 presents some limitations

of our approach and directions for future work. Section

6 presents related work, and finally, Section 7 presents

some concluding remarks.

2 Proportional-Share CPU Scheduling for
Multiprocessor Environments

Consider a multiprocessor server with processors that

runs threads. Let us assume that a user can assign

any arbitrary weight to a thread. In such a scenario, a

thread with weight should be allocated

fraction of the total processor bandwidth. Since weights

can be arbitrary, it is possible that a thread may request

more bandwidth than it can consume (this occurs when

the requested fraction ). The CPU scheduler

must somehow reconcile the presence of such infeasible

weights. To do so, we present an optimal weight readjust-

ment algorithm that can efficiently translate a set of infea-

sible weights to the “closest” feasible weight assignment.

By running this algorithm every time the weight assign-

ment becomes infeasible, the CPU scheduler can ensure

that all scheduling decisions are always based on a set of

feasible weights. Given such a weight readjustment algo-

rithm, we then present generalized multiprocessor shar-

ing (GMS)—an idealized algorithm for fair, proportion-

ate bandwidth allocation that is an analogue of GPS in

the multiprocessor domain. We use the insights provided

by GMS to design the surplus fair scheduling (SFS) al-

gorithm. SFS is a practical instantiation of GMS that has

lower implementation overheads.

In what follows, we first present our weight readjust-

ment algorithm in Section 2.1. We present generalized

multiprocessor sharing in Section 2.2 and then present the

surplus fair scheduling algorithm in Section 2.3.

2.1 Efficient, Optimal Weight Readjustment

As illustrated in Section 1.2, weight assignments in which

a thread requests a bandwidth share that exceeds the ca-

pacity of a processor are infeasible. Moreover, a feasible

weight assignment may become infeasible or vice versa

whenever a thread blocks or becomes runnable. To ad-

dress these problems, we have developed a weight read-

justment algorithm that is invoked every time a thread

blocks or becomes runnable. The algorithm examines the

set of runnable threads to determine if the weight assign-

ment is feasible. A weight assigned to a thread is said to

be feasible if

(1)

We refer to Equation 1 as the feasibility constraint. If

a thread violates the feasibility constraint (i.e., requests

a fraction that exceeds ), then it is assigned a new

weight so that its requested share reduces to (which

is the maximum share an individual thread can consume).

Doing so for each thread with infeasible weight ensures

that the new weight assignment is feasible.

Assuming that weights of threads are sorted in de-

scending order, our algorithm proceeds by examining

each thread to see if it violates the feasibility constraint.

Since each such thread should be assigned the bandwidth

of an entire processor (the maximum it can consume), the

problem then reduces to recursively checking the feasi-

bility of the remaining threads on the remaining proces-

sors. After recursively identifying all threads that violate

the constraint, the algorithm then assigns a new weight

to each such thread so that its requested fraction equals

. See Figure 2 for the complete weight readjustment

algorithm.

Our weight readjustment algorithm has the following

salient features:

The algorithm is optimal in the sense that weights

of threads change by the minimum possible amount

and are the nearest weights that reflect the original

assignment. This is because threads with infeasible
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weights are assigned the nearest feasible weight, and

weights of threads that satisfy the feasibility con-

straint never change (and hence, they continue to re-

ceive bandwidth in their requested proportions).

The algorithm has an efficient implementation. To

see why, observe that in a -processor system, no

more than threads can have infeasible weights

(since the sum of the requested fractions is 1, no

more than threads can request a fraction that

exceeds ). Thus, the number of threads with in-

feasible weights depends solely on the number of

processors and is independent of the total number

of threads in the system. By maintaining a list of

threads sorted in descending order of their weights,

the algorithm needs to examine no more than the first

threads with the largest weights. In fact,

the algorithm can stop scanning the sorted list at the

first point where the feasibility constraint is satisfied

(subsequent threads have even smaller weights and

hence, request smaller and feasible fractions). Since

the number of processors is typically much smaller

than the number of threads ( ), the overhead

imposed by the readjustment algorithm is small.

Our weight readjustment algorithm can be em-

ployed with most existing GPS-based scheduling

algorithms to deal with the problem of infeasible

weights. We experimentally demonstrate in Section

4.2 that doing so enables these schedulers to signif-

icantly reduce (but not eliminate) the unfairness in

their allocations for multiprocessor environments.

Given our weight readjustment algorithm, we now

present an idealized algorithm for proportional-share

scheduling in multiprocessor environments.

2.2 Generalized Multiprocessor Sharing

Consider a server with processors each with capacity

that runs threads. Let the threads be assigned weights

, , , , . Let denote the instantaneous

weight of a thread as computed by the readjustment al-

gorithm. At any instant, depending on whether the thread

satisfies or violates the feasibility constraint, is either

the original weight or the readjusted weight. From the

definition of , it follows that at all times

(our weight readjustment algorithm ensures this prop-

erty). Assume that threads can be scheduled for infinitesi-

mally small quanta and let denote the CPU ser-

vice received by thread in the interval . Then

the generalized multiprocessor sharing (GMS) algorithm

readjust(array , int , int )

begin

if( )

begin

readjust( , , )

end

end.

Figure 2: The weight readjustment algorithm: The algo-

rithm is invoked with an array of weights sorted in de-

creasing order. Initially, ; denotes the number of

processors, and denotes the number of runnable threads.

If a thread violates the feasibility constraint, then the al-

gorithm is recursively invoked for the remaining threads

and the remaining processors. Each infeasible weight is

then adjusted by setting its requested processor share to

.

has the following property: for any interval , the

amount of CPU service received by any two threads and

satisfies

(2)

provided that (i) both threads are continuously runnable

in the entire interval, and (ii) both and remain fixed

in that interval. Note that, the instantaneous weight

remains fixed in an interval if the thread either satisfies

the feasibility constraint in the entire interval, or contin-

uously violates the constraint in the entire interval. It is

easy to show that Equation 2 implies proportionate allo-

cation of processor bandwidth.5

Intuitively, GMS is similar to a weighted round-robin

algorithm in which threads are scheduled in round-robin

order ( at a time); each thread is assigned an infinites-

imally small CPU quantum and the number of quanta

assigned to a thread is proportional to its weight. In

practice, however, threads must be scheduled using finite

duration quanta so as to amortize context switch over-

heads. Consequently, in what follows, we present a CPU

scheduling algorithm that employs finite duration quanta

5This can be observed by summing Equation 2 over all runnable

threads , which yields . Since

is the total processor bandwidth allocated to all threads

in the interval, we can substitute it by the quantity Hence,

we get . Thus each thread receives

processor bandwidth in proportion to its instantaneous weight .
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and is a practical approximation of GMS.

2.3 Surplus Fair Scheduling

Consider a GMS-based CPU scheduling algorithm that

schedules threads in terms of finite duration quanta. To

clearly understand how such an algorithm works, we first

present the intuition behind the algorithm and then pro-

vide precise details. Let us assume that thread is as-

signed a weight and that the weight readjustment algo-

rithm is employed to ensure that weights are feasible at all

times. Let denote the instantaneous weight of thread .

Let denote the amount of CPU service received

by thread in the duration , and let

denote the amount of service that the thread would have

received if it were scheduled using GMS. Then, the quan-

tity

(3)

represents the extra service (i.e., surplus) received by

thread when compared to GMS. To closely emulate

GMS, a scheduling algorithm should schedule threads

such that the surplus for each thread is as close to

zero as possible. Given a -processor system, a simple

approach for doing so is to actually compute for each

thread and schedule the threads with the least surplus

values. If the net surplus is negative, doing so allows a

thread to catch up with its allocation in GMS. Even when

the net surplus of a thread is positive, picking threads with

the least positive surplus values enables the algorithm to

ensure that the overall deviation from GMS is as small as

possible (picking a thread with a larger would cause a

larger deviation from GMS).

A scheduling algorithm that actually uses Equation 3

to compute surplus values is impractical since it requires

the scheduler to compute (which in turn requires a

simulation of GMS). Consequently, we derive an approxi-

mation of Equation 3 that enables efficient computation of

the surplus values for each thread. Let de-

note the weighted CPU service received by each thread so

far. If thread runs in a quantum, then is incremented

as , where denotes the duration for which

the thread ran in that quantum. Since is the weighted

CPU service received by thread , represents the

total service received by thread so far.6 Let denote

the minimum value of over all runnable threads. Intu-

itively, represents the processor allocation of the thread

that has received the minimum service so far. Then the

6This assumes that the instantaneous weight remains un-

changed.

surplus service received by thread is defined to be

(4)

Observe that, the first term approximates ,

which is the service received by thread so far. The sec-

ond term approximates the quantity in Equa-

tion 3. Thus, measures the surplus service received by

thread when compared to the thread that has received the

least service so far (i.e., ). Scheduling a thread with the

smallest value of ensures that the scheduler approx-

imates GMS and each thread receives processor band-

width in proportion to its weight. Since a thread is chosen

based on its surplus value, we refer to the algorithm as

surplus fair scheduling (SFS).

Having provided the intuition for our algorithm, the

precise SFS algorithm is as follows:

Each thread in the system is associated with a weight

, a start tag and a finish tag . Let denote the

instantaneous weight of a thread as computed by the

readjustment algorithm. When a new thread arrives,

its start tag is initialized as , where is the

virtual time of the system (defined below). When a

thread runs on a processor, its finish tag at the end of

the quantum is updated as

(5)

where is the duration for which the thread ran in
that quantum and is its instantaneous weight at
the end of the quantum. Observe that can vary
depending on whether the thread utilizes its entire
allocated quantum or relinquishes the processor be-
fore the quantum ends due to a blocking event. The
start tag of a runnable thread is computed as

max if the thread just woke up

if the thread is continuously

runnable

(6)

Initially, the virtual time of the system is zero. At

any instant, the virtual time is defined to be the min-

imum of the start tags over all runnable threads. The

virtual time remains unchanged if all processors are

idle and is set to the finish tag of the thread that ran

last.

At each scheduling instance, SFS computes the sur-

plus values of all runnable threads as

and schedules the thread with the least ; ties are

broken arbitrarily.
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Our surplus fair scheduling algorithm has the following

salient features. First, like most GPS-based algorithms,

SFS is work-conserving in nature—the algorithm ensures

that a processor will not idle so long as there are runnable

threads in the system. Second, since the surplus of a

thread depends only on its start tag and not the finish tag,

SFS does not require the quantum length to be known

at the time of scheduling (the quantum duration is re-

quired to compute the finish tag only after the quantum

ends). This is a desirable feature since the duration of

a quantum can vary if a thread blocks before it is pre-

empted. Third, SFS ensures that blocked threads do not

accumulate credit for the processor shares they do not uti-

lize while sleeping—this is ensured by setting the start

tag of a newly woken-up thread to at least the virtual time

(this prevents a thread from accumulating credit by sleep-

ing for a long duration and then starving other threads

upon waking up). Finally, from the definition of and

the virtual time, it follows that for all runnable

threads. Moreover, at any instant, there is always at least

one thread with (this is the thread with the mini-

mum start tag, i.e., and also has the least surplus

value). Since the thread with the minimum surplus value

is also the one with the minimum start tag, surplus fair

scheduling reduces to start-time fair queuing (SFQ) [11]

in a uniprocessor system. Thus, SFS can be viewed as a

generalization of SFQ for multiprocessor environments.

We experimentally demonstrate in Section 4.3 that SFS

addresses the problem of proportionate allocation in the

presence of frequent arrivals and departures described in

Example 2 of Section 1.2.

3 Implementation Considerations

We have implemented surplus fair scheduling in the

Linux kernel and have made the source code publicly

available to the research community.7 The entire im-

plementation effort took less than three weeks and was

around 1500 lines of code. In the rest of this section, we

present the details of our kernel implementation and ex-

plain some of our key design decisions.

3.1 SFS Data Structures and Implementation

The implementation of surplus fair scheduling was done

in version 2.2.14 of the Linux kernel. Our imple-

mentation replaces the standard time sharing sched-

uler in Linux; the modified kernel schedules all

7The source code for our implementation is available from

http://www.cs.umass.edu/˜lass/software/gms.

threads/processes using SFS. Each thread in the system

is assigned a default weight of 1; the weight assigned

to a thread can be modified (or queried) using two new

system calls—setweight and getweight. The pa-

rameters expected by these system calls are similar to the

setpriority and getpriority system calls em-

ployed by the Linux time sharing scheduler. SFS allows

the weight assigned to a thread to be modified at any time

(just as the Linux time sharing scheduler allows the pri-

ority of a thread to be changed on-the-fly).

Our implementation of SFS maintains three queues.

The first queue consists of all runnable threads in de-

scending order of their weights. The other two queues

consist of all runnable threads in increasing order of start

tags and surplus values, respectively. The first queue

is employed by the readjustment algorithm to determine

the feasibility of the assigned weights (recall from Sec-

tion 2.1 that maintaining a list of threads sorted by their

weights enables the weight readjustment algorithm to be

implemented efficiently). The second queue is employed

by the scheduler to compute the virtual time; since the

queue is sorted on start tags, the virtual time at any in-

stant is simply the start tag of the thread at the head of the

queue. The third queue is used to determine which thread

to schedule next—maintaining threads sorted by their sur-

plus values enables the scheduler to make scheduling de-

cisions efficiently.

Given these data structures, the actual scheduling is

performed as follows. Whenever a quantum expires or

one of the currently running threads blocks, the Linux

kernel invokes the SFS scheduler. The SFS scheduler

first updates the finish tag of the thread relinquishing the

processor and then computes its start tag (if the thread

is still runnable). The scheduler then computes the new

virtual time; if the virtual time changes from the previ-

ous scheduling instance, then the scheduler must update

the surplus values of all runnable threads (since is a

function of ) and re-sort the queue. The scheduler then

picks the thread with the minimum surplus and schedules

it for execution. Note that, since a running thread may

not utilize its entire allocated quantum due to blocking

events, quantums on different processors are not synchro-

nized; hence, each processor independently invokes the

SFS scheduler when its currently running thread blocks

or is preempted. Finally, the readjustment algorithm is in-

voked every time the set of runnable threads changes (i.e.,

after each arrival, departure, blocking event or wakeup

event), or if the user changes the weight of a thread.
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3.2 Implementation Complexity and Optimiza-
tions

The implementation complexity of the SFS algorithm is

as follows:

New arrival or a wakeup event: The newly ar-

rived/woken up thread must be inserted at the ap-

propriate position in the three run queues. Since

the queues are in sorted order, using a linear search

for insertions takes , where is the number of

runnable threads. The complexity can be further re-

duced to if binary search is used to deter-

mine the insert position. The readjustment algorithm

is invoked after the insertion, which has a complex-

ity of . Hence, the total complexity is .

Departure or a blocking event: The termi-

nated/blocked thread must be deleted from the run

queue, which is since our queues are doubly

linked lists. The readjustment algorithm is then in-

voked for the new run queue, which takes .

Hence, the total complexity is .

Scheduling decisions: The scheduler first updates

finish and start tags of the thread relinquishing the

processor and computes the new virtual time, all of

which are constant time operations. If the virtual

time is unchanged, the scheduler only needs to pick

the thread with minimum surplus (which takes

time). If the virtual time increases from the previous

scheduling instance, then the scheduler must first up-

date the surplus values of all runnable threads and

re-sort the queue. Sorting is an operation,

while updating surplus values takes . Hence, the

total complexity is . The run time perfor-

mance, in the average case, can be improved by ob-

serving the following. Since the queue was in sorted

order prior to the updates, in practice, the queue re-

mains mostly in sorted order after the new surplus

values are computed. Hence, we employ insertion

sort to re-sort the queue, since it has good run time

performance on mostly-sorted lists. Moreover, up-

dates and sorting are required only when the virtual

time changes. The virtual time is defined to be the

minimum start tag in the system, and hence, in a -

processor system, typically only one of the cur-

rently running threads have this start tag. Conse-

quently, on average, the virtual time changes only

once every scheduling instances, which amortizes

the scheduling overhead over a larger number of

scheduling instances.

Since the scheduling overhead of SFS grows with the

number of runnable threads, we have developed a heuris-

tic to limit the scheduling overhead when the number of

runnable threads becomes large. Our heuristic is based

on the observation that and hence,

the thread with the minimum surplus typically has either

a small weight, a small start tag, or a small surplus in

the previous scheduling instance. Consequently, exam-

ining a few threads with small start tags, small weights,

or small prior surplus values, computing their new sur-

pluses and choosing the thread with minimum surplus is

a good heuristic in practice. Since our implementation al-

ready maintains three queues sorted by , and , this

can be trivially done by examining the first few threads in

each queue, computing their new surplus values and pick-

ing the thread with the least surplus.8 This obviates the

need to update the surpluses and to re-sort every time the

virtual time changes; the scheduler needs to do so only

every so often and can use the heuristic between updates

(infrequent updates and sorting are still required to main-

tain a high accuracy of the heuristic). Hence, scheduling

overhead reduces to a constant and becomes independent

of the number of runnable threads in the system (updates

to and sorting continue to be , but this over-

head is amortized over a large number of scheduling in-

stances). We conducted several simulation experiments

to determine the efficacy of this heuristic. Figure 3 plots

the percentage of the time our heuristic successfully picks

the thread with the minimum surplus (we omit detailed re-

sults due to space constraints). The figure shows that, in

a quad-processor system, examining the first 20 threads

in each queue provides sufficient accuracy ( ) even

when the number of runnable threads is as large as 400

(the total number of threads in the system is typically

much larger).

As a final caveat, the Linux kernel supports only in-

teger variables and does not support floating point vari-

ables as a data type. Since the computation of start tags,

finish tags and surplus values involves floating point oper-

ations, we simulate floating point variables using integer

variables. To do so we scale each floating point operation

in SFS by a constant factor. Employing a scaling factor

of for each floating point operation enables us to cap-

ture places beyond the decimal point in an integer vari-

able (e.g., the finish tag is computed as ).

The scaling factor is a compile time parameter and can

be chosen based on the desired accuracy—we found a

scaling factor of to be adequate for most purposes.

8The queue sorted on is examined backwards, since threads are

maintained in descending order of weights.
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Figure 3: Efficacy of the scheduling heuristic: the fig-
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fully picks the thread with the least surplus for varying

run queue lengths and varying number of threads exam-

ined.

Observe that, a large scaling factor can hasten the warp-

around in the start and finish tags of long running threads;

we deal with wrap-around by adjusting all start and finish

tags with respect to the minimum start tag in the system

and resetting the virtual time.

4 Experimental Evaluation

In this section, we experimentally evaluate the surplus fair

scheduling algorithm and demonstrate its efficacy. We

conducted several experiments to (i) examine the bene-

fits of the readjustment algorithm, (ii) demonstrate pro-

portionate allocation of processor bandwidth in SFS, and

(iii) measure the scheduling overheads imposed by SFS.

We used SFQ and the Linux time sharing scheduler as

the baseline for our comparisons. In what follows, we

first describe the test-bed for our experiments and then

present the results of our experimental evaluation.

4.1 Experimental Setup

The test-bed for our experiments consisted of a 500 MHz

Pentium III-based dual-processor PCwith 128 MBRAM,

13GB SCSI disk, and a 100 Mb/s 3-Com ethernet card

(model 3c595). The PC ran the default installation of Red

Hat Linux 6.0. We used version 2.2.14 of the Linux ker-

nel for our experiments; depending on the experiment,

the kernel employed either SFS, SFQ or the time sharing

scheduler to schedule threads. In each case, the maximum

quantum duration was 200 ms. The system was lightly

loaded during our experiments. Note that due to resource

constraints, our experiments were run on a system with

only two processors; we have verified the efficacy of SFS

on a larger number of processors via simulations (we omit

these results due to space constraints).

The workload for our experiments consisted of a com-

bination of real-world applications, benchmarks, and

sample applications that we wrote to demonstrate specific

features. These applications include: (i) Inf, a compute-

intensive application that performs computations in an

infinite loop; (ii) Interact, an I/O bound interactive ap-

plication; (iii) mpeg play, the Berkeley software MPEG-

1 decoder, (iv) gcc, the GNU C compiler, (v) disksim,

a publicly-available disk simulator, (vi) dhrystone, a

compute-intensive benchmark for measuring integer per-

formance, and (vii) lmbench, a benchmark that measures

various aspects of operating system performance. Next,

we describe the experimental results obtained using these

applications and benchmarks.

4.2 Impact of the Weight Readjustment Algo-
rithm

To show that the weight readjustment algorithm can

be combined with existing GPS-based scheduling algo-

rithms to reduce the unfairness in their allocations, we

conducted the following experiment. At t=0, we started

two Inf applications ( and ) with weights 1:10. At

t=15s, we started a third Inf application ( ) with a weight

of 1. Task was then stopped at t=30s.We measured

the processor shares received by the three applications (in

terms of number of loops executed) when scheduled using

SFQ; we then repeated the experiment with SFQ coupled

with the weight readjustment algorithm. Observe that

this experimental scenario corresponds to the infeasible

weights problem described in Example 1 of Section 1.2.

As expected, SFQ is unable to distinguish between fea-

sible and infeasible weight assignments, causing task

to starve upon the arrival of task at t=15s (see Figure

4(a)). In contrast, when coupled with the readjustment

algorithm, SFQ ensures that all tasks receive bandwidth

in proportion to their instantaneous weights (1:1 from t=0

through t=15, and 1:2:1 from t=15 through t=30, and 1:1

from then on). See Figure 4(b). This demonstrates that

the weight readjustment algorithm enables a GPS-based

scheduler such as SFQ to reduce the unfairness in its al-

locations in multiprocessor environments.

4.3 Comparing SFQ and SFS

In this section, we demonstrate that even with the weight

readjustment algorithm, SFQ can show unfairness in mul-

tiprocessor environments, especially in the presence of

frequent arrivals and departures (as discussed in Exam-

9
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Figure 4: Impact of the weight readjustment algorithm: use of the readjustment algorithm enables SFQ to prevent

starvation and reduces the unfairness in its allocations.
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Figure 5: The Short Jobs Problem. Frequent arrivals and departures in multiprocessor environments prevent SFQ from

allocating bandwidth in the requested proportions. SFS does not have this drawback.

ple 2 of Section 1.2). We also show that SFS does not

suffer from this limitation. To demonstrate this behav-

ior, we started an Inf application ( ) with a weight of

20, and 20 Inf applications (collectively referred to as

), each with weight of 1. To simulate frequent ar-

rivals and departures, we then introduced a sequence of

short Inf tasks ( ) into the system. Each of these

short tasks was assigned a weight of 5 and ran for 300ms

each; each short task was introduced only after the pre-

vious one finished. Observe that the weight assignment

is feasible at all times, and the weight readjustment algo-

rithm never modifies any weights. We measured the pro-

cessor share received by each application (in terms of the

cumulative number of loops executed). Since the weights

of , and are in the ratio 20:20:5, we ex-

pect and to receive an equal share of the total

bandwidth and this share to be four times the bandwidth

received by . However, as shown in Figure 5(a),

SFQ is unable to allocate bandwidth in these proportions

(in fact, each set of tasks receives approximately an equal

share of the bandwidth). SFS, on the other hand, is able

to allocate bandwidth approximately in the requested pro-

portion of 4:4:1 (see Figure 5(b)).

The primary reason for this behavior is that SFQ

schedules threads in “spurts”—threads with larger

weights (and hence, smaller start tags) run continuously

for some number of quanta, then threads with smaller

weights run for a few quanta and the cycle repeats. In

the presence of frequent arrivals and departures, schedul-

ing in such “spurts” allows tasks with higher weights (

and in our experiment) to run almost continuously

on the two processors; get to run infrequently.

Thus, each task gets as much processor share as

the higher weight task ; since each task is short

lived, SFQ is unable to account for the bandwidth allo-

cated to the previous task when the next one arrives. SFS,

10



on the other hand, schedules each application based on its

surplus. Consequently, no task can run continuously and

accumulate a large surplus without allowing other tasks

to run first; this finer interleaving of tasks enables SFS

to achieve proportionate allocation even with frequent ar-

rivals and departures.

4.4 Proportionate Allocation and Application

Isolation in SFS

Next, we demonstrate proportionate allocation and appli-

cation isolation of tasks in SFS. To demonstrate propor-

tionate allocation, we ran 20 background dhrystone pro-

cesses, each with a weight of 1. We then ran two more

dhrystone processes and assigned them different weights

(1:1, 1:2, 1:4 and 1:7). In each case, we measured the

number of loops executed by the two dhrystone bench-

marks per unit time (the background dhrystone processes

were necessary to ensure that all weights were feasible at

all times; without these processes, no weight assignment

other than 1:1 would be feasible in a dual-processor sys-

tem). As shown in Figure 6(a), the processor bandwidth

allocated by SFS to each dhrystone is in proportion to its

weight.

To show that SFS can isolate applications from one

another, we ran the mpeg play software decoder in the

presence of a background compilation workload. The de-

coder was given a large weight and used to decode a 5

minute long MPEG-1 clip that had an average bit rate of

1.49 Mb/s. Simultaneously, we ran a varying number of

gcc compile jobs, each with a weight of 1. The scenario

represents video playback in the presence of background

compilations; running multiple compilations simultane-

ously corresponds to a parallel make job (i.e., make -j)

that spawns multiple independent compilations in paral-

lel. Observe that, assigning a large weight to the decoder

ensures that the readjustment algorithm will effectively

assign it the bandwidth of one processor, and the compi-

lations jobs share the bandwidth of the other processor.

We varied the compilation workload and measured the

frame rate achieved by the software decoder. We then re-

peated the experiment with the Linux time sharing sched-

uler. As shown in Figure 6(b), SFS is able to isolate the

video decoder from the compilation workload, whereas

the Linux time sharing scheduler causes the processor

share of the decoder to drop with increasing load. We

hypothesize that the slight decrease in the frame rate in

SFS is caused due to the increasing number of interme-

diate files created and written by the gcc compiler, which

interferes with the reading of the MPEG-1 file by the de-

coder.

Table 1: Scheduling Overheads reported by lmbench

Test Time sharing SFS

syscall overhead 0.7 s 0.7 s

fork() 400 s 400 s

exec() 2 ms 2 ms

Context switch (2 proc/ 0KB) 1 s 4 s

Context switch (8 proc/ 16KB) 15 s 19 s

Context switch (16 proc/ 64KB) 178 s 179 s

Our final experiment consisted of an I/O-bound inter-

active application Interact that ran in the presence of a

background simulation workload (represented by some

number of disksim processes). Each application was as-

signed a weight of 1, and we measured the response time

of Interact for different background loads. As shown in

Figure 6(c), even in the presence of a compute-intensive

workload, SFS provides response times that are compa-

rable to the time sharing scheduler (which is designed to

give higher priority to I/O-bound applications).

4.5 BenchmarkingSFS: SchedulingOverheads

We used lmbench, a publicly available operating sys-

tem benchmark, to measure the overheads imposed by

the SFS scheduler. We ran lmbench on a lightly loaded

machine with SFS and repeated the experiment with the

Linux time sharing scheduler. In each case, we averaged

the statistics reported by Lmbench over several runs to

reduce experimental error. Note that the SFS code is

untuned, while the time sharing scheduler has benefited

from careful tuning by the Linux kernel developers. Ta-

ble 1 summarizes our results (we report only those lm-

bench statistics that are relevant to the CPU scheduler).

As shown in Table 1, the overhead of creating processes

(measured using the fork and exec system calls) is

comparable in both schedulers. The context switch over-

head, however, increases from 1 s to 4 s for two 0KB

processes (the size associated with a process is the size

of the array manipulated by each process and has im-

plications on processor cache performance [16]). Al-

though the overhead imposed by SFS is higher, it is still

considerably smaller than the 200 ms quantum duration

employed by Linux. The context switch overheads in-

crease in both schedulers with increasing number of pro-

cesses and increasing process sizes. SFS continues to

have a slightly higher overhead, but the percentage differ-

ence between the two schedulers decreases with increas-

ing process sizes (since the restoration of the cache state

becomes the dominating factor in context switches).
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Figure 7: Scheduling overheads reported by lmbench

with varying number of processes.

Figure 7 plots the context switch overhead imposed

by the two schedulers for varying number of 0 KB pro-

cesses (the array sizes manipulated by each process was

set to zero to eliminate caching overheads from the con-

text switch times). As shown in the figure, the context

switch overhead increases sharply as the number of pro-

cesses increases from 0 to 5, and then grows with the

number of processes. The initial increase is due to the

increased book-keeping overheads incurred with a larger

number of runnable processes (scheduling decisions are

trivial when there is only one runnable process and re-

quire minimal updates to kernel data structures). The

increase in scheduling overhead thereafter is consistent

with the complexity of SFS reported in Section 3.2 (the

scheduling heuristic presented in that section was not

used in this experiment). Interestingly, the Linux time

sharing scheduler also imposes an overhead that grows

with the number of processes.

5 Limitations and Directions for Future
Work

Whereas surplus fair scheduling achieves proportionate

allocation of bandwidth in multiprocessor environments,

it has certain limitations. In what follows, we discuss

some of the limitations of SFS and opportunities for fu-

ture work.

In SFS, the QoS requirements of an application are

distilled to a single dimension, namely its rate (which

is specified using a weight). That is, SFS is a pure

proportional-share CPU scheduler. Applications can have

requirements along other dimensions. For instance, in-

teractive applications tend to be more latency-sensitive

than batched applications, or a certain application may

need to have higher priority than other applications. Re-

cent research has extended GPS-based proportional-share

schedulers to account for these dimensions. For instance,

SMART [19] enhances a GPS-based scheduler with pri-

orities, while BVT [8] extends a GPS-based scheduler to

handle latency requirements of threads. We plan to ex-

plore similar extensions for GMS-based schedulers such

as SFS as part of our future work.

GPS-based schedulers such as SFQ can perform hi-

erarchical scheduling. This allows threads to be aggre-

gated into classes and CPU shares to be allocated on a

per-class basis. Moreover, such schedulers support class-

specific schedulers, in which the bandwidth allocated to

a class is distributed among individual threads using a

class-specific scheduling policy. SFS is a single-level

scheduler and lacks such features. The design of hier-

archical schedulers for multiprocessor environments re-

mains an open research problem.

SMP-based time-sharing schedulers employed by con-

ventional operating systems take caching effects into ac-
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count while scheduling threads. Such schedulers take

processor affinities into account while making schedul-

ing decisions—scheduling a thread on the same proces-

sor enables it to benefit from data cached from previ-

ous scheduling instances (and improves the effectiveness

of a processor’s L1 cache). SFS currently ignores pro-

cessor affinities while making scheduling decisions. We

plan to explore the implications of doing so and de-

sign techniques for combining processor affinities with

proportional-share scheduling.

Finally, proportional-share schedulers such as SFS

need to be combined with tools that enable a user to

determine an application’s resource requirements. Such

tools should, for instance, allow a user to determine the

processing requirements of an application (for instance,

by application profiling), translate these requirements to

appropriate weights, and modify weights dynamically if

these resource requirements change [7, 24]. Translating

application requirements such as rate to an appropriate set

of weights is the subject of future research.

6 Related Work

Recently the design of predictable resource allocation

mechanisms has received increasing research attention,

both in the context of CPU scheduling [2, 5, 8, 19,

21, 27, 28, 31] as well as network packet scheduling

[4, 6, 22, 26]. Whereas each research effort has dif-

fered in the exact mechanism employed (e.g., reserva-

tions [13, 17], rate-based allocation [12, 15, 24, 26], GPS-

based fair allocation [8, 11, 21]), their broad goals are

similar—predictable allocation of resource bandwidth.

Most of these efforts have focused on uniprocessor en-

vironments. Multiprocessor scheduling has been studied

in the context of real-time environments [18, 23]; other

efforts have focused on a theoretical treatment of multi-

processor scheduling [3, 9]. Several complementary re-

search efforts have also focused on resource management

mechanisms for large-scale servers. Resource contain-

ers [2] define a new abstraction to account for resource

usage; our effort is complementary since we focus on re-

source allocation, while they focus on accounting for re-

source usage. Finally, application isolation and resource

allocation in clustered environments has been studied in

[1, 10, 29].

7 Concluding Remarks

In this paper, we argued that the infeasibility of cer-

tain weight assignments causes unfairness or starva-

tion in many existing proportional-share schedulers when

employed for multiprocessor servers. We presented a

novel weight readjustment algorithm to translate infea-

sible weight assignments to a feasible set of weights. We

showed that our algorithm enables existing proportional-

share schedulers such as SFQ to significantly reduce, but

not eliminate, the unfairness in their allocations. We then

presented the idealized generalized multiprocessor shar-

ing algorithm and derived surplus fair scheduling, which

is a practical instantiation of GMS. We implemented SFS

in the Linux kernel and demonstrated its efficacy through

an experimental evaluation. Our experiments indicate

that a proportional-share CPU scheduler such as SFS is

not only practical but also desirable for general-purpose

operating systems. As part of future work, we plan to

extend SFS to do hierarchical scheduling as well as en-

hance proportional-share schedulers to account for prior-

ities and delay.
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