
HI-PLAN and Little-JIL: a Study of Contrast between

Two Process Languages

Hyungwon Lee
Department of Computer Science

Kangnung National University
Kangnung, Kangwondo 210-702 KOREA

lhw@knusun.kangnung.ac.kr

Leon J. Osterweil
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610 USA

ljo@cs.umass.edu

Abstract
A key issue for process languages is balancing the

need for technical rigor with this need for ease of use.

Little-JIL and HI-PLAN are new powerful, yet clear,

process languages that attempt to resolve above two

apparently conflicting objectives. This paper evaluates

both the languages and provides valuable directions to

the next-generation process language design. We de-

scribe their design goals and features, present solu-

tions to a well-known benchmark process, ISPW-6

software process example, and analyze the relative

strengths and weaknesses of each language through

detailed comparisons on a wide variety of issues.

1. Introduction

Process language research was an early emphasis of

software process studies, but it has still remained vital

and challenging. There have been two colliding ap-

proaches to the process language design [6, 11, 13].

First, many process languages are based on the pre-

mise that software processes can and should be de-

scribed in terms of a wide variety of semantics: or-

ganizations, activities, artifacts, resources, events,

agents, exceptions, and so on. These languages are

powerful and semantically rich, but likely to be com-

plex and hard to use, especially for non-programmers.

Contrarily, other language designers have adopted a

number of strategies toward simplification; these in-

clude narrowing of semantic focus or depth and the

use of graphical representations. While such strategies

may indeed foster linguistic simplicity, the practical

utility of simplified languages has been limited. Con-

sequently, first-generation process languages have ob-

vious limitations.

Little-JIL [6, 12, 13] and HI-PLAN [4, 5] are new

process languages that attempt to resolve above two

apparently conflicting objectives: semantic richness

and ease of use. Little-JIL is an executable, high-level

process language with a formal, yet graphical, syntax

and rigorously defined operational semantics. It fo-

cuses on agent coordination as a key process factor.

The premise of this focus is that processes are con-

ducted by agents who understand their tasks but who

can benefit from coordination with other agents [13].

HI-PLAN is a process language based on modeling

formalism using extended data flow diagram. It fo-

cuses specification of process entities and their rela-

tionships. Both the languages have different design

philosophies and valuable features that have not yet

been incorporated into each other, which means both

can benefit from each other.

In this paper, we introduce these two process lan-

guages and provide useful lessons for the next-

generation process language design through extensive

analyses on their relative strengths and weaknesses.

The applicability and efficiency of both the languages

have been explored and demonstrated by applying to a

variety of processes. However, in order to compare

and evaluate in the most objective way, both the lan-

guages are applied to the ISPW-6 software process

example (ISPW-6 example) [3], a standard benchmark

software process. ISPW-6 example, though may be

simpler than some specific domain processes, enables

to exercise a process language comprehensively, be-

cause it contains a large number of different types of

process issues seen in real world and provides a firm

and consistent basis for the solution.

The rest of this paper is organized as follows. Section

2 and 3 provides brief descriptions of Little-JIL and

HI-PLAN, respectively. Section 4 discusses the rela-

tive weaknesses and strengths of two languages, and

the conclusion is drawn in section 5.

2. ISPW-6 Example with Little-JIL

2.1 Overview of Little-JIL

Little-JIL is an agent coordination language; pro-

grams in Little-JIL describe the coordination and

communication among agents that enables them to

perform a process. A Little-JIL program is a tree of

steps whose leaves represent the smallest specified

unit of work and whose structure represents the way

in which this work will be coordinated. As processes

execute, steps go through several states. Normally, a

step is posted when assigned to an execution agent,

and then started by the agent. Eventually the step is

either successfully completed or terminated with an

exception. The followings are six main features of

Little-JIL language that allow a process programmer

to specify the coordination of steps in a process [13].

! Four non-leaf step kinds (“sequential”, “parallel”,
“try”, and “choice”) provide control flow and are

sufficiently expressive to capture a wide range of

step orderings.

! Requisites are a generalization of pre- and post-

conditions. A prerequisite/postrequisite must be

completed before/after the step to which it is at-

tached.

! Exceptions and handlers are used to indicate and
fix up exceptional conditions or errors during

program execution and provide a degree of reac-

tive control. Exceptions are passed up the tree

until a matching handler is found. After handling

an exception, a continuation badge determines

whether the step will continue execution, success-

fully complete, restart execution at the beginning,

or rethrow the exception.

! Messages and reactions are another forms of re-
active control. While exceptions propagate up the

program tree, messages are global in scope so that

any execution step can react to a message.

! Parameters passed between steps allow commu-
nication necessary for the completion of a step

and for the return of step execution results. The

type model for parameters has been factored out

of Little-JIL.

! Resources are representations of entities that are
required during step execution. Resources may

include the step’s execution agent, permissions to

use tools, and various physical artifacts.

The graphical representation of a Little-JIL step is

shown in figure 1. This figure shows the various

badges that make up a step, as well a step’s possible

connections to other steps.

The interface badge at the top is a circle by which this

step is connected to its parent. The circle is filled if

there are local definitions associated with this step,

and is empty otherwise. The interface includes the

declaration of the agent who is to carry out the step,

resource requirements of the step, variable declara-

tions, exceptions that may be thrown, and messages

that may be sent.

Below the circle is the step name. To the left is a tri-

angle called the prerequisite badge. The prerequisite

is a step that must be successfully completed for this

step to begin execution. If the prerequisite is not com-

pleted successfully, an exception is thrown and the

step is not allowed to execute. The badge appears

filled if the step has a prerequisite step, and an edge

may be shown that connects this step to its prerequi-

site (not shown). On the right is another similarly

filled triangle called the postrequisite badge. The

postrequisite step begins execution immediately after

the step completes execution and must also success-

fully complete for the parent to be notified of the

step's completion. If the postrequisite does not com-

plete successfully, an exception is thrown.

Within the box below the step name are three badges.

From left to right, they are the control flow badge, re-

action badge, and exception handler badge. Substeps

are connected to the control flow badge. The edge

connecting a step to a substep is annotated with

parameter passing. The control flow badge indicates

the order in which the substeps may be executed. Lit-

tle-JIL defines four control flow badges. A sequential

step executes its substeps in order from left to right,

beginning the next substep only after the preceding

substep completes successfully. A parallel step allows

the substeps to be executed concurrently. A sequential

or parallel step requires all of its substeps to be per-

formed. A choice step allows the agent performing the

step to choose which single substep to execute. A try

step identifies alternative ways of performing the step

but hardwires the order in which the alternatives

should be tried from left to right. A choice or try step

requires exactly one of its substeps to be performed

successfully. A step with no control flow badge is a

leaf step and is directly executed by an agent. A step

whose name is in italics is a reference step and is de-

fined elsewhere in the process.

The lightning bolt in the middle is the reaction badge

to which reaction steps are attached. A reaction identi-

fies a broadcast message that it responds to.

The X is the exception handler badge to which excep-

tion handlers are attached. An exception handler

identifies the exception that it is handling, optionally a

step to perform to handle the exception, and a con-

tinuation badge to indicate what to do after comple-

tion of the handler step. There are four continuation

badges. The continue badge indicates that the execu-

tion of the step should continue. For sequential and

parallel steps, this is as if the substep that threw the

exception completed successfully. For choice and try

steps, this allows an agent to perform a different alter-

native. The restart badge indicates that the entire step

should be restarted from the beginning. The complete

badge indicates that the entire step should be consid-

ered successful. The rethrow badge indicates that the

entire step should be considered unsuccessful and the

exception should be thrown again to the steps parent.

2.2 Little-JIL Solution to the ISPW-6 Example

In this section we illustrate the ISPW-6 example proc-

ess in Little-JIL. Figure 2 shows the entire solution.

The various steps of the figure could be elaborated to

capture further details of this process, but space does

not permit this here. The entire programs and descrip-

tions are provided in [4].

Decomposition into the details
A Little-JIL program is a tree of steps with a root step

that represents the entire process. Each step represents

a unit of work in the process and may be decomposed

into substeps. Ellipses indicate when substeps have

been omitted for clarity.

Figure 1 Little-JIL Legend

Step ordering
As described in section 2.1, the control flow badge of

each step indicates how substeps should be executed.

In figure 2, for example, the sequential step ISPW-6
Example is used to authorize the change before de-

veloping it. The TechnicalSteps and MonitorPro-
gress steps can be executed concurrently as indicated

by the control flow badge of their parent step Tech-
Steps&MonitorProgress.

Input/source, output/destination, and agent
Local definitions associated with a step, such as re-

sources and parameters are attached to the interface

badge of the step. Resources of a step include an ex-

ecution agent, physical inputs from file, and so on.

The declaration of a resource is distinguished by a dot,

such as ProjPlans in the Schedule&Assign step in

figure 2. If no agent is specified for a step, the execu-

tion agent is inherited from the step’s parent. Artifacts

can be passed between steps via parameters. They

have to be declared in the interface badge as one of

four parameter modes: in parameter (!) whose value
is copied into a step when the step is started, out pa-

rameter (") whose value is copied out when the step

completes, in/out parameter (!") whose value is
copied into a step when the step is started and copied

out when the step completes, and local parameter (#)
allowing the passing of information between its sub-

steps. Arrows attached to the parameters indicate

whether a parameter is copied into the substep’s scope

from the parent, copied out, or both. A sequence of

parameter passing represents information flow. In fig-

ure 2, for example, the ReqChg is passed from the

Authorize step to the DevelopChange&TestUnit
step via the parent of both steps.

3. ISPW-6 Example with HI-PLAN

3.1 Overview of HI-PLAN

HI-PLAN [5] is a structured process modeling lan-

guage. The internal concepts and the external nota-

Figure 2 ISPW-6 in Little-JIL: Upper Steps

tions of HI-PLAN are based on the Ward and Mellor's

extended structured analysis for the real time system.

Process models of HI-PLAN are described with three

modeling tools as followings.

! Information Flow Diagram (IFD): A set of IFDs
is to visualize the entities and their various rela-

tionships. A step in an IFD can be decomposed

into the substeps that will compose a sub-IFD.

! Information Definition Dictionary (IDD): An IDD
is a form to define entities represented in IFDs.

IDDs enable to describe artifacts, their physical

storages, and agents.

! Task Specification (TSPEC): A TSPEC is to de-
scribe a step in detail.

Due to space constraints, we can only give an over-

view of IFD. The legend of IFD is shown in figure 3.

IFD provides three entity types: step, personnel, and

deliverables store. A step of an IFD is considered as a

black box whose agent is represented below step

name. Steps can be grouped for sending or receiving

common information. A personnel can be individual

or decomposable organization. A deliverables store is

the physical storage of related artifacts that can be

used or produced by steps. These entities and the in-

formation flows connecting them1 allow representing

both behavioral and functional perspectives together

in a diagram and simulating or tracing step behaviors

1 At least, one of the entities should be a step.

easily. The basic idea is that the state of a step tends to

be changed when the step produces some output, whi-

ch influences the executions of other steps.

An information flow may be either deliverables flow

or message flow. Whether the arc of an information

flow is solid or dashed depends on its type. A deliver-

ables flow can be used to transfer any artifact to an

entity and a message flow can be used to transfer noti-

fication of message to an entity.

An information flow between entities can have two

indicators at the ends of its arc: SAS (State After

Sending) near the source entity and SAR (State After

Receiving) indicator near the destination entity. The

SAS indicator of an information flow represents the

state of its source step after the step sends the desig-

nated information. The SAR indicator of an informa-

tion flow represents the state of its destination step

after the step receives the designated information. If

any indicator of an information flow is not specified,

the state of the step relevant to it is not changed after

sending or receiving the designated information.

A step in IFD can be in one of four states NEWS: N

(Not wait), E (End), W (Wait), and S (Start). Possible

state transitions are shown in figure 4. Normally, a

step starts when an artifact or message with S SAR

indicator arrives to the step, then goes through sus-

pension and resumption, and eventually ends.

In IFD, an information flow incident on a step should

be connected to a flow transceiver attached to the step.

Flow transceivers are used to reduce the ambiguity

and increase the traceability of step behaviors when a

number of information flows are connected between

Figure 4 State Transitions of Step in IFD

Figure 3 IFD Legend

entities. A flow transceiver is filled if the indicator

relevant to it exists, and is empty otherwise. Flow

transceivers can be utilized in several ways. If one

transceiver is used for multiple input (output) infor-

mation flows, the step state transition occurs only

when all input (output) flows have been received

(sent). A group of overlapping transceivers attached to

a step represents a thread of step behavior, i.e. a se-

quence of step execution, when the step is included in

multiple sequences of step execution.

Conditional branch is used for the representation of

complex decision making to select or iterate more

than one step attached to it. An information flow from

a conditional branch can have a condition specifica-

tion to decide which destination step(s) should be se-

lected or iterated.

3.2 HI-PLAN Solution to the ISPW-6 Example

In this section we illustrate the ISPW-6 example proc-

ess in HI-PLAN. The partial solution is composed of

three IFDs.

Decomposition into the details
In HI-PLAN, any entity can be decomposed. Also, ar-

tifact can be decomposed. IFDs in figure 5, 6, and 7

show the decompositions of the Develop Change
and Test Unit step and its substep Technical Steps
in turn. Each component in an IDD can be decom-

posed further and defined in another IDD.

Step ordering
HI-PLAN has no explicit notation for the representa-

tion of step ordering. Instead, how steps should be ex-

ecuted is derived from the SAS/SAR indicators at-

tached to the information flows and the conditional

branches, which enables to derive various step orders

sufficient to model the complex software processes. In

figure 5, the Develop Change and Test Unit step is

started after the Guide and Authorize step ends. In

figure 7, the Test Unit step is started after both

Modify code and Modify Unit Test Package steps

end. In figure 6, the Technical Steps and Monitor
Progress steps are started simultaneously after the

Schedule and Assign Tasks step ends. In figure 7,

after the Review Design step ends, the Modify
Design step, the Modify Code step, or both the steps

can be started according to the designated condition.

Input/source, output/destination, and agent
A step’s agent represented in the step icon is defined

in an IDD. Inputs and outputs for a step are represent-

ed by the information flows that flow into and out the

step. Also, the source for each input or the destination

for each output can be identified easily. A source or a

destination can be a step, a file (i.e. deliverable store),

or a personnel. An information flow to a step, a deliv-

erables store, and personnel means transferring, stor-

ing, and notifying the designated information, respec-

tively.

Figure 5 ISPW-6 in HI-PLAN: Highest Level IFD

For example, in figure 7, the Test Unit step gets the

UTPkg artifact from the Test Package File and

stores the TestRst artifact at the Test History File.

The sending or receiving order of the information

flows for a step can be identified clearly within the

sub IFD of the step.

Figure 7 ISPW-6 in HI-PLAN: Technical Step IFD

Figure 6 ISPW-6 in HI-PLAN: Upper Level IFD

4. Comparisons

In this section, we evaluate Little-JIL and HI-PLAN

on four aspects: fundamental issues, step decomposi-

tion issues, semantics issues, and qualitative issues.

4.1 Fundamental Comparison

Little-JIL and HI-PLAN are graphical process lan-

guages, but have different design principles, objec-

tives, and features (Table 1).

First, Little-JIL is a language for programming agent

coordination in processes. Because the focus is nar-

rowed to coordination-related elements, Little-JIL

provides a rich set of control structures for agent co-

ordination. As mentioned earlier, Little-JIL is based

on the hypothesis that processes are executed by

agents who know how to perform their tasks but who

can benefit from coordination support. Each step in

Little-JIL is assigned to an execution agent (human or

automated) responsible for initiating the step and per-

forming the work associated with it [13]. On the other

hand, HI-PLAN is a language for modeling the vari-

ous aspects of a software process. The focus is the

specification of process entities and their relationships.

Accordingly, HI-PLAN concentrates on how easily

and efficiently the entities and their relationships are

represented. Second, the major usage of a Little-JIL

program is process execution, though agents are re-

sponsible for performing the work. The process speci-

fication written in HI-PLAN is for supporting process

understanding and communication. Third, both the

languages are different in their graphical models. Lit-

tle-JIL uses hierarchical tree model that emphasizes

the hierarchical breakdown of a process while keeping

the within-step flow simple. HI-PLAN uses hierarchi-

cal network model that emphasizes the horizontal

flow within a step while allowing hierarchical decom-

position. Fourth, step is the only central abstraction in

Little-JIL, but one of the central abstractions in HI-

PLAN. Last, in order to describe detailed, precise, and

adequate control, Little-JIL provides a variety of con-

trol structures for step execution. Contrarily, in order

to maximize simplicity, HI-PLAN provides only two

structures sufficient to represent step behavior.

4.2 Step Decomposition

Focus on step decomposition
In Little-JIL, step decomposition in Little-JIL is car-

ried out based on both process abstraction and control

abstraction, where process abstraction means that a

step can be divided into smaller steps and control ab-

straction means that the control flow badge of a step

determines the execution sequence of its substeps.

Such step decomposition enables to represent a wide

range of step orderings but causes two problems. First,

Little-JIL programs are likely to have long depth due

to the decomposition by control abstraction. Non-leaf

steps are essential for the control of their substeps, but

they may decrease understandability. Second, if both

the abstractions come into conflict when a step is de-

composed, control abstraction should prevail over

process abstraction for execution efficiency and as the

result, the steps constituting a step have to be scat-

tered (See example 1 in the next.).

In HI-PLAN, step decomposition is based on only

process abstraction. Control abstraction is handled in

Table 1 Little-JIL vs. HI-PLAN: Fundamentals

Little-JIL HI-PLAN
Main

objective Agent coordination Process
specification

Usage Process execution
Process

understanding &
Communication

Structure Hierarchical tree Hierarchical
network

Central
abstraction Step Step, Storage,

Personnel

Control
structure

Control flow badge
Pre/postrequisite

badges
Reaction badge

Exception handler
badge

Continuation badge

Information flow
Conditional

branch

each IFD through information flows. Therefore, step

decomposition is simpler and IFDs have shorter depth

than Little-JIL program has. Decomposed steps, how-

ever, are modeled in separate diagrams and the overall

process structure is not as clear at a glance as Little-

JIL program.

Development approach
Little-JIL is not always suitable for top-down ap-

proach. Top-down development in Little-JIL pro-

gramming may cause restructuring program structure.

This is due to the facts that process abstraction can

conflict with control abstraction while step decompo-

sition and that inputs and outputs of a step are treated

as parameters and results. HI-PLAN is adequate for

top-down approach i.e. “Divide and Conquer”. Let’s

consider following example.

Example 1. Development approach

1) Step S is decomposed into substep A and B

2) Step A outputs x and step B uses x

3) Step B is decomposed into substep B1 and B2

4) Step B2 starts after completing B1

5) Only step B2 uses x (step B1 does not use x)

Figure 8 shows how Little-JIL solves example 1.

From 1) and 2), step S seems to be a sequential step

(figure 8(a)). From 3) and 4), step B must be decom-

posed into sequential substeps (figure 8(b)). Now, the-

re are two possibilities to handle 5). One is to main-

tain process abstraction as in figure 8(c), where the

starting step B1 will have to be delayed until step A is

Figure 8 A Little-JIL Solution to Example 1

terminated and it is impossible for step B2 to start as

soon as step A is terminated. The other is to focus on

control abstraction to maximize execution efficiency

as in figure 8(d), where the program structure must be

changed and the substeps of step B are scattered. If

decomposition of these substeps is continued, re-

structuring may be repeated.

Figure 9 shows a HI-PLAN solution. Figure 9(a) is

the top-level IFD from 1) and 2). Figure 9(b) is the re-

sult of decomposition. After decomposition of step B,

the top-level IFD does not have to be changed except

adding the information flow to start step B (figure

9(c)).

4.3 Qualitative Issues

Understandability
Basically, both the languages are easy to understand

due to their visual syntax. Especially, in order to

maintain simplicity, Little-JIL separates out many

process-related factors not directly relevant to coordi-

nation. Furthermore, its graphical notation centered on

the step keeps well-organized program with few con-

nections, and the various badges making up a step

represents a variety of control structures in clear and

easy manner. However, Little-JIL programs tend to

have long depth, because step decomposition of Lit-

tle-JIL concentrates on control abstraction as well as

process abstraction.

The graphical notation of HI-PLAN is intuitive. IFD

of HI-PLAN has shorter depth and fewer steps than

Little-JIL program has, because step decomposition of

IFD concentrates on process abstraction. But, IFD can

become cluttered because it uses net-based model.

Also, understandability may decrease according to the

placements of entities.

Ease of use
In spite of rich and rigorous semantics Little-JIL pro-

vides, the separation of the semantic issues into sepa-

rate graphical components makes programming in

Little-JIL easier than that of general-purpose pro-

gramming language. Little-JIL editor makes it easier

to program and modify. A caution is that artifact de-

pendencies among steps largely influence the program

structure. So, careful analysis on those dependencies

must precede actual programming.

HI-PLAN provides relatively small set of features fa-

miliar to most software engineers, which makes user

comfortable. HI-PLAN is easy to use at the beginning

of modeling, but it may become difficult to draw or

modify due to the placements of entities even with

editor, as diagram becomes complicated. So, careful

placements and decomposition are required.

Ease of use is more important to Little-JIL because

process is executed according to Little-JIL program;

therefore, Little-JIL programmer is responsible for the

results of process execution. Programmer describes

not only every sequence of steps but also artifact de-

pendencies between steps. Contrarily, HI-PLAN is a

process modeling language; thus all sequences of

processes are derived by (human) interpreter.

Figure 9 A HI-PLAN Solution to Example 1

Flexibility
Little-JIL is designed to interoperate with additional

specification languages and supporting services to al-

low for the expression of process factors that are not

addressed in Little-JIL. Also, Little-JIL provides ex-

plicit, scoped exception handling to handle the ab-

normal situations. Resource-bounded recursion and

resource-bounded parallelism [13] allows a step ex-

ecuted flexibly when resource constraints exist. The

rich semantics of Little-JIL enable a control issue to

be solved in several ways.

HI-PLAN provides flexible semantics on sending and

receiving information. For example, it’s possible for

non-leaf steps to receive information before starting

their executions. This enables top-down decomposi-

tion without having upper level IFDs affected. Also,

any information transfer can cause state transition.

5. Conclusions and Future Work

Ease of use is an important requirement for process

languages because the individuals and organizations

responsible for defining processes are often not expe-

rienced at programming or modeling. The semantic

richness of process languages means, however, that

significant software engineering skills are required to

program or model in them effectively. This is an im-

pediment to the widespread adoption of process lan-

guages. A key issue for process languages is thus bal-

ancing the need for technical rigor with this need for

ease of use [11]. In order to examine a process lan-

guage whether it satisfies this or refine to do so, there

should be some experiments to evaluate and analyze a

process language by detailed and close comparison

with other languages on a variety of issues concerning

above two language design goals. This approach also

enables to find what state-of-the-art process languages

can provide and what next-generation process lan-

guages should provide.

 In this paper, we have presented two powerful, yet

clear, process languages, Little-JIL and HI-PLAN,

and described their design philosophies and features.

Also, we have identified their relative strengths and

weaknesses through applying them to a well-known

benchmark process, ISPW-6 software process exam-

ple. We found that both the languages have their own

merits, but also found that they should be refined to be

better languages. We believe Little-JIL and HI-PLAN

to benefit much from this experiment.

We will evaluate the languages continuously through

applying to other process domains. Also, We are con-

tinuing to refine the languages so that our experience

can be reflected in them.

Acknowledgements

We wish to thank all the members of the LASER

Process Working Group for their helpful comments

and suggestions. This research was partially supported

by the Brain Korea 21 Project and the Defense Ad-

vanced Research Projects Agency, under Contract

F30602-97-2-0032.

REFERENCES

1. Aaron G. Cass, Hyungwon Lee, Barbara Staudt

Lerner, and Leon J. Osterweil. Formally Defining

Coordination Processes to Support Contract Ne-

gotiation. Technical Report 99-39, Department of

Computer Science, University of Massachusetts

at Amherst, June 1999.

2. David Jensen, Yulin Dong, Barbara Staudt Lerner,

Eric K. McCall, Leon J. Osterweil, Stanley M.

Sutton Jr., and Alexander wise. Coordinating

Agent Activities in Knowledge Discovery Proc-

esses. In Proceedings of International Joint Con-

ference on Work Activities Coordination and

Collaboration (WACC ’99), February 1999, San

Francisco, CA.

3. M. I. Kellner, P. H. Feiler, A. Finkelstein, T. Ka-

tayama, Leon J. Osterweil, M. H. Penedo, and H.

D. Rombach. ISPW-6 Software Process Example.

In Proceedings of the First International Confer-

ence on Software Process, pp. 176-186, IEEE

Computer Society Press 1991.

4. Hyungwon Lee. Evaluation of Little-JIL 1.0 with

ISPW-6 Software Process Example. Technical

Report 99-33, Department of Computer Science,

University of Massachusetts at Amherst, March

1999.

5. Hyungwon Lee and Chisu Wu. HI-PLAN: A

Structured Project Planning Method. In Journal of

Korea Information Science Society, Vol. 23, No. 8,

pp. 821-831, August 1996.

6. Barbara Staudt Lerner, Leon J. Osterweil, Stanley

M. Sutton Jr., and A. Wise. Programming Process

Coordination in Little-JIL - Towards the Harmo-

nious Functioning of Parts for Effective Results.

In Proceedings of the 6th European Workshop on

Software Process Technology (EWSPT ’98), num-

ber 1487 in Lecture Notes in Computer Science,

pp. 127-131, Weybridge, UK, September 1998,

Springer-Verlag.

7. Barbara Staudt Lerner, Stanley M. Sutton, Jr., and

Leon J. Osterweil. Enhancing Design Methods to

Support Real Design Processes. In 9th IEEE Inter-

national Workshop on Software Specification and

Design, pp. 159-161. IEEE Computer Society

Press, April 1998.

8. Leon J. Osterweil. Software Processes Are Soft-

ware Too, Revisited. In Proceedings of the Nine-

teenth International Conference on Software En-

gineering, pp. 540-548, May 17-23, 1997, Boston,

MA.

9. Stanley M. Sutton Jr., Dennis Heimbigner, and

Leon J. Osterweil. APPL/A: A Language for

Software-Process Programming. ACM Trans. on

Software Engineering and Methodology,

4(3):221-286, July 1995.

10. Stanley M. Sutton Jr., Barbara Staudt Lerner, and

Leon J. Osterweil. Experience Using the JIL

Process Programming Language to Specify Des-

ign Processes. Technical Report 97-68, Depart-

ment of Computer Science, University of Massa-

chusetts at Amherst, September 1997.

11. Stanley M. Sutton Jr. and Leon J. Osterweil. The

Design of a Next-Generation Process Language.

In Proceedings of the Joint 6th European Soft-

ware Engineering Conference and the 5th ACM

SIGSOFT Symposium on the Foundations of

Software Engineering, pp. 142-158, Springer-

Verlag, 1997.

12. A. Wise. Little-JIL 1.0 Language Report. Techni-

cal Report 98-24, Department of Computer Sci-

ence, University of Massachusetts at Amherst,

April 1998.

13. A. Wise, Barbara Staudt Lerner, Eric K. McCall,

Leon J. Osterweil, and Stanley M. Sutton Jr..

Specifying Coordination in Processes Using Lit-

tle-JIL. Technical Report 99-71, Department of

Computer Science, University of Massachusetts

at Amherst, November 1999.

