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Abstract 

Relational data offer a unique opportunity for improving the classification accuracy 
of statistical models. If two objects are related, inferring something about one object 
can aid inferences about the other. We present an iterative classification procedure 
that exploits this characteristic of relational data. This approach uses simple 
Bayesian classifiers in an iterative fashion, dynamically updating the attributes of 
some objects as inferences are made about related objects. Inferences made with 
high confidence in initial iterations are fed back into the data and are used to 
strengthen subsequent inferences about related objects. We evaluate the performance 
of iterative classification on a corporate dataset, using a binary classification task. 
Experiments indicate that iterative classification significantly increases accuracy 
when compared to a single-pass approach. 
 

 

1. Introduction 
The past two decades have seen a dramatic increase in the amount of stored information, 
creating a need for a new generation of automated and intelligent data analysis 
techniques. Many of the data being captured are relational in nature, yet most analysis 
techniques work with “flattened” attribute-value data. Attribute-value data record the 
characteristics of a set of homogeneous and statistically independent objects, whereas 
relational data record characteristics of heterogeneous objects and the relations among 
those objects. The inherent structure of relational data presents a unique opportunity to 
use knowledge of one object to infer something about related objects. The goal of this 
work is to explore how conventional analysis techniques can be used in new ways to 
exploit this opportunity. 
 
Classification is a well-studied problem in the field of data analysis for which many 
machine-learning techniques have been developed. One of these techniques is the simple 
Bayesian classifier. This classifier offers good performance in many domains and it is 
also simple to train and easy to understand. We investigate using simple Bayesian 
classifiers in an iterative fashion to improve classification accuracy by taking advantage 
of relational information in the data.  
 
The hypothesis underlying this approach is that if two objects are related, inferring 
something about one object can help you infer something about the other. Inferences 
made with high confidence in initial iterations can be fed back into the data to strengthen 
inferences about related objects in subsequent iterations. Experimental evidence reported 
here shows that iterative classification leads to a significant increase in classification 
accuracy when compared with a single-pass approach. This suggests that there are 
distinctive characteristics of relational data that can be used to improve classification 
accuracy.  
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2. Relational Knowledge Discovery 
The amount of data being collected by organizations and businesses around the world has 
grown explosively in the past 10 years. AT&T logs over 35 gigabytes of telephone call 
data every day; The Second Palomar Observatory Sky Survey (POSS-II) has over 3 
terabytes of high-resolution image data from an astronomical sky survey; WalMart has 
transaction detail from over 2,900 stores in its 7.5 terabyte data warehouse (Pregibon 
2000, Brodley and Smyth 1996, Palace 1996). In addition to the many business, 
government, and scientific databases growing at an unparalleled rate, the World Wide 
Web grows by roughly a million electronic pages every day, developing into the world’s 
largest interconnected information base (Chakrabarti et al. 1999).  
 
For structured data captured and stored on a daily basis, a relational model is the most 
commonly chosen representation (Friedman et al. 1999). Relational databases are used 
routinely to store everything from marketing and sales transactions, to scientific 
observations and medical records. The Web’s network of hyperlinked pages is another 
good example of a relational data structure. The power of relational data lies in 
combining intrinsic information about objects in isolation, with information about the 
connections among objects.  
 
Hidden in this expanse of information are vital clues and general regularities that could 
be used to improve decision making, if they could be discovered and represented. For 
example, customer demographic, lifestyle, and purchasing information could be used to 
reduce the cost of a direct-mail marketing campaign by targeting a set of consumers most 
likely to buy the product being promoted. Credit card companies could use transaction 
histories, purchase patterns, and examples of past fraudulent activity to predict possible 
cases of fraud in current credit card transactions.  
 
The volume and pace of data storage far exceeds our ability to summarize and evaluate 
data without the use of automated analysis techniques. Knowledge discovery is the field 
evolving to provide automated tools for these growing amounts of data, building on 
techniques from statistics, artificial intelligence and databases. Knowledge discovery is 
the process of automatically identifying previously unknown, and potentially useful 
patterns in data (Fayyad et al. 1996). Knowledge discovery techniques are finding wide-
ranging applications in science, government and business. 
 
Most current knowledge discovery techniques take attribute-value data as input, where 
each instance is assumed to be structurally identical and statistically independent. For 
example, current techniques can learn simple rules to use for diagnosis from a collection 
of independent medical records with identical fields. However, in some cases a useful 
diagnostic rule will need to consider genetic and environmental factors in addition to 
patient records. In this situation we would like to examine an interconnected group of 
patients, their medical records, family members, home environments, and workplaces. 
Such a relational data structure violates the previously mentioned assumptions by 
allowing numerous objects of varying structure to have associations among themselves.  
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Relational data can be converted into attribute-value data by transforming relationships 
into attributes. For example, <father’s blood type> and <mother’s blood type> could be 
represented as attributes of a patient rather than as associations among related family 
members. In order to flatten the data we must decide in advance which combinations of 
relationships may be useful and which of the large number of potential relational 
attributes to include. The flattening process removes the richer relational structure from 
the data, and in doing so, may omit information crucial to the discovery of useful 
patterns. Relational knowledge discovery looks for new ways to make use of relational 
structure in discovery techniques, in order to support and enhance the pattern detection 
process. 
 

3. Classification in Relational Data 
Relational knowledge discovery builds on existing work in machine learning, statistics 
and social network analysis to exploit the additional knowledge implicit in relations. 
There are at least two approaches to take when developing relational knowledge 
discovery techniques. One approach is to devise entirely new techniques for relational 
data structures, leaving behind the conventional attribute-value framework. An 
alternative approach is to adapt and extend current attribute-value techniques for use with 
relational data. The latter approach stands to benefit from the advances made in the field 
of knowledge discovery over the past 10 years, utilizing known techniques that have been 
fine-tuned on attribute-value data. The work reported here takes the second approach, 
using a conventional classification technique in new ways on relational data. 
 
Classification is probably the oldest and most widely studied of all the knowledge 
discovery tasks, and it is one area where techniques stand to benefit from the relations 
among instances. Classification takes a set of labeled training examples and builds a 
model to map previously unseen, unlabeled examples to discrete class values. For 
example, we may want to identify cases of cellular phone fraud using call data and 
customer histories (Fawcett and Provost 1997), or we may want to predict whether a 
person is a potential money launderer based on bank deposits, international travel 
documents and known associations (Jensen 1997).  
 
The goal of this work is to explore and evaluate a specific application of classification 
techniques on relational data: simple Bayesian classifiers. Simple (or “naive”) Bayesian 
classifiers (SBCs) make the simplifying assumption that all attributes are independent 
given the class. Empirically, it has been found that SBCs perform surprisingly well in 
many domains. Domingos and Pazzani (1997) provide a formal analysis of the reasons 
for this robust behavior and show that SBCs produce optimal predictions of class labels, 
even when the assumption of independence is violated by a wide margin. An attractive 
feature of SBCs is they require no explicit search through the space of possible models. 
Instead, a model is built using simple probabilities, estimated from the training examples. 
This results in a classifier that is both incremental and relatively easy to code.   
 
Simple Bayesian classifiers take traditional attribute-value data as input. In order to use 
SBCs with relational data we have to flatten the data first. As mentioned above, flattening 
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the data removes much of the richer relational structure. Flattening relational data is task-
specific. Once flattened for one classification problem, it is often misleading or 
impossible to use the flattened data to analyze an alternative classification problem. 
However, if we maintain a relational representation of the data and flatten dynamically 
only when needed, then the relational structure is still accessible and it is possible to 
leverage it in order to improve predictions. 
 
Keeping the data in a relational format preserves the relationships among objects so they 
can be used in analysis dynamically. A relational representation makes it possible to 
extract data, perform a series of calculations and then feed the results back into the 
relational structure for use in future calculations. The ability to perform iterative 
calculations in this manner is one of the benefits of maintaining a relational data 
representation. For example, some measures of centrality in social network analysis 
(Wasserman and Faust 1994) can only be calculated in such an iterative fashion. 
Kleinberg’s Hubs and Authorities algorithm for Web searching (1998) also uses iterative 
calculations in this manner. Below, we will examine how to use an iterative application 
of SBCs to improve classification accuracy in relational data by using initial inferences to 
aid later inferences about related objects. 
 

4. Iterative Application of Selective Bayesian Classifiers 

4.1. Learning a Simple Bayesian Classifier 
The simple Bayesian classifier (SBC) is a probabilistic method for classification that 
makes predictions as follows (Mitchell 1997). Let A1, A2, ..., Ak be attributes used to 
predict a discrete class C. For a given set of attribute values v1 through vk, the classifier 
calculates the conditional probability for each class label ci. The optimal prediction, 
under a zero-one loss function, is the class label ci for which  P( ci | v1 ! v2 ! … ! vk )  is 
maximized.  
 
Bayes' Rule states that we can determine the probability that a particular example, 
represented by the attribute vector E = { v1 , v2 , … , vk }, is of class ci with the following 
formula (for notational simplicity, we will substitute the notation P( ci | E ) for            
P( C = ci | E ) along with other similar substitutions): 
 

P( ci | E ) = P( E | ci ) P( ci ) / P( E ) 
 
The probability P( E ) in the denominator is the same for each class label ci; 
consequently, the denominator can be dropped from the equation if the probabilities      
P( ci | E ) are normalized across all class labels ci. Also, instead of estimating the joint, 
conditional probability P( E | ci ), the SBC makes the assumption that the individual 
attributes of E are conditionally independent given C. As such, the conditional 
probability can be rewritten as follows: 
 

P( ci | E ) = P( ci ) "k P( vk | ci ) 
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Figure 1: Graphical representation of a Simple Bayesian Classifier 
 
An SBC model consists of a set of associated probability distributions, which the model 
uses to make its class predictions. In particular, a model is comprised of a single discrete 
distribution for the class, and a set of associated conditional probabilities that characterize 
probability distributions for each attribute given a particular class label. For discrete 
attributes, the model maintains a discrete distribution ranging over all possible values of 
that attribute, storing the probabilities P( vk | ci) for each value vk, given an instance of 
class ci.  
 
Discrete distributions will contain zero counts when a class label and attribute value 
never occur together in the training data. A zero count results in a zero probability 
estimate, causing the entire joint probability to become zero. For this reason, a Laplace 
correction is incorporated into all discrete probability estimates to adjust for zero counts 
(Domingos and Pazzani 1997). The uncorrected estimate of P( vk | ci ) is nik / ni where nik  
is the number of times class ci and value vk occur together, and ni is the total number of 
times class ci occurs in the training set. The Laplace corrected estimate of P( vk | ci ) is      
( nik + f ) / ( ni + f nk ) where nk is the number of distinct values of attribute Ak and             
f = 1 / n where n is the number of examples in the training set. 
 
For continuous attributes, we model the probability distributions using kernel density 
estimators (Silverman 1986). Many implementations of SBCs either discretize continuous 
attributes or model them with Gaussian distributions, which can be conveniently 
represented in terms of their mean and variance. However, choosing appropriate 
discretizations can be difficult and the assumption that an attribute obeys a Gaussian 
distribution may not hold in all domains. It has been shown that Bayesian classifiers 
using kernel density estimators for continuous probability distributions perform better 
than those that assume a single normal distribution (John & Langley 1995). Our 
implementation of a kernel density estimator stores every value of an attribute seen 
during training. When asked for an estimate of P( vk | ci), the estimator calculates a 
Gaussian distribution (kernel) around each observed value and returns a density averaged 
over the set of all kernels. This method of kernel estimation produces more accurate 
probability calculations in domains where the Gaussian distribution assumption is 
violated, with only moderate computational cost. 
 
Training an SBC model is quite simple and can easily be done incrementally. For each 
new labeled training instance the model increments the counts for the class label and each 
of the discrete attribute values, and stores the values of each of the continuous attributes. 
Once the model is learned it can be applied to predict classes of previously unseen 
instances. 

C

A1 A2 Ak-1 Ak…
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4.2. Selective Bayesian Classifier 
Although SBCs are known to be robust in the presence of irrelevant features (Duda & 
Hart 1973), we would like the model to select and use only the relevant attributes to 
improve the comprehensibility of the results. Relational data have a large number of 
potential attributes since each object has not only its own intrinsic attributes, but also 
relational attributes involving objects to which it is linked. Removing useless attributes 
before classification, and consequently reducing the number of attributes used by the 
final classifier, simplifies the results and can improve the comprehension of human 
analysts. 
 
The model can use either a filter approach or a wrapper approach to detect and remove 
irrelevant attributes (Kohavi & John 1997). In the filter approach, a subset of features is 
selected as a preprocessing step, ignoring the effects of the selected set on the 
performance of the model. In the wrapper approach, the model itself is used as a black 
box in the evaluation function, guiding the search for a good subset of features.  
 
The algorithm that we implemented for selectivity can be described as a wrapper model. 
In order to reduce the size of the feature subset search space, a “relevance” weight is 
calculated for each attribute, which signifies the correlation of the attribute to the target 
class. To use this approach, the weights must be comparable for discrete and continuous 
attributes. White & Liu (1994) suggest the use of p-values for this reason. P-values 
calculate the probability of incorrectly rejecting the null hypothesis when it is true — 
where the null hypothesis is that the attributes and the class are independent. P-values can 
be calculated easily for both discrete and continuous distributions using simple statistical 
significance tests. We use the G-statistic to obtain p-values for discrete attributes, and the 
Kolmogorov-Smirnoff test for continuous attributes (Sachs 1982). The resulting p-values 
are used to order the attributes and the SBC model is then used to determine a p-value 
threshold that maximizes cross-validated accuracy on the training set. The attributes with 
p-values less than, or equal to, the chosen threshold are used in the final classifier; all 
other attributes are ignored. 
 
Overview of learning a selective SBC model:  
1. For each labeled training instance 

a. Update class distribution 
b. Update conditional distribution for each attribute 

2. Calculate p-values for discrete and continuous attributes 
3. Determine threshold that maximizes cross-validated accuracy  
4. Select attributes with p-values # threshold 
 

4.3. Iterative Application of Bayesian Classifiers 
Relational datasets present a special opportunity for improving classification. The 
opportunity exists if, when two objects are related, inferring something about one object 
can help you infer something about the other. For example, if two people are involved in 
business together and one of them is identified as a money launderer then it is more likely 
that the other is also involved in money laundering. In this situation, knowledge inferred 



 8

about one object can be used to improve inferences about related objects. The ability to 
exploit associations among objects in this manner to “discover knowledge” has wide-
ranging applications in any field with relational data, including epidemiology, fraud 
detection, ecological analysis and sociology.  
 
A relational classification technique, which uses information implicit in relationships, 
should classify more accurately than techniques that only examine objects in isolation.  
Relational classification techniques could be particularly useful in domains where we 
have more information about relationships among objects than about their intrinsic 
properties in isolation. For example, we may be interested in identifying potential money-
laundering operations based on bank deposits and business connections (Jensen 1997). In 
such a situation, the existence of an employee making large cash deposits for more than 
one business gives little information as to the legitimacy of those businesses. Many 
service and retail companies have high volumes of cash sales and it’s not uncommon for 
a person to be employed by more than one company. However, if one of the businesses is 
discovered to be a front company for money laundering, then the related businesses are 
more likely to be front companies as well. In this case, the relationship of a common 
depositor is more useful in the context of knowledge about the related companies. 
 
There are multiple ways to approach classification in a relational context. One can ignore 
related objects and classify based only on the properties of an object in isolation. One can 
look at the properties of both the object and its related objects in a static manner, by 
taking a snapshot of the relational context at some time prior to classification. Or one can 
employ a more dynamic approach, using properties of related objects and updating those 
properties as predictions about those related objects change. Iterative classification is a 
dynamic method of relational classification, which uses SBCs in a dynamic way to fully 
leverage the structure of relational data.  
 
For example, in a data set we describe in section 5.1, relational data structures represent 
companies, their subsidiaries, corporate stockholders, officers and board members. 
Companies are linked indirectly through stockholders and through people serving 
simultaneously on several boards (see figure 2). In such an interlocking structure we have 
both intrinsic and relational attributes. Intrinsic attributes record characteristics of objects 
in isolation, for example, company type or officer salary. Relational attributes summarize 
characteristics of one or more related objects, for example, a company’s number of 
subsidiaries or the maximum salary of any board member.  
 
Relational attributes fall into two categories which we will call static relational and 
dynamic relational. Any intrinsic attribute has the potential to be predicted by an SBC 
model; from the same company data we could predict any of the intrinsic attributes 
mentioned above. Static relational attributes involve “known” intrinsic attributes of 
related objects and as such they can be computed without the need for inference. The 
values of static relational attributes remain constant over the course of classification. 
Dynamic relational attributes involve “inferred” intrinsic attributes of related objects so 
they require that at least some related objects be classified before the attribute can be 
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computed. The values of dynamic relational attributes may change as classification 
progresses and inferences are made about related objects. 
 
For example, if we were predicting company type: 

" Static relational attributes  
- number of board members who have the title CEO  
- average salary of officers.  

" Dynamic relational attributes  
- most prevalent type of corporate stockholder  
- maximum number of subsidiaries that share the same type.  

 
For notational simplicity, for the remainder of this paper we will refer to intrinsic and 
static relational attributes as static attributes, and dynamic relational attributes as dynamic 
attributes. 
 
In a relational corporate data set, knowing the type of one company might help us infer 
the type of another company to which it is related, and vice versa.  For instance, we may 
find that individuals tend to serve on boards of companies with the same type, so if a 
person is on the board of both company X and company Y, and company X is a bank, 
then company Y is more likely to also be a bank. Or we may find that companies tend to 
own stock in companies with the same type, so if a company owns company X and 
company Y, and company X is a bank, then company Y is more likely to also be a bank. 
In situations of this type, the relations among objects assist the inferences. 
 
In iterative classification, a model is built using a variety of static and dynamic attributes. 
Classifiers that include dynamic attributes rely on the previous (inferred) classification of 

P1

P2

P3

P4

C1

O1

C2

P = Person
C = Company
O = Owner

O2

C3

board member of

owner of

Figure 2: Graphical representation of corporate data linkage
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related objects. When training the model, the class labels of all objects are known and 
consequently the values of all dynamic attributes are also known. 
 
The trained classifier is then applied to previously unseen examples in which the class 
labels are unknown. Initially, because class labels of related objects are unknown, values 
of dynamic attributes are also unknown, but their values can be estimated as the 
classification progresses. At the onset, the classifier makes predictions for all objects 
based only on the values of static attributes. Classifications made with high confidence 
are accepted as valid and are written into the data as “known” class labels. SBCs are 
useful for iterative classification because each prediction has an associated probability 
estimate that can be used as a confidence score. 
 
After some percentage of the most certain classifications are “accepted” the classifier 
starts the next iteration, recalculating all dynamic attributes in light of this new 
information and proceeding with classification once again. At each iteration, additional 
dynamic attributes are filled in and a greater percentage of classifications are accepted. 
 
Because each prediction is both recalculated and reevaluated for each iteration, a 
prediction about a given object may change over the course of iterations. If the 
probability associated with a particular prediction falls out of the top percentage of 
accepted predictions, the inference will be removed from the data. Also, if the predicted 
class label changes for a particular object (and the prediction is accepted), the new class 
label will be written into the data for that object. 
 
After a given number of cycles, when all classifications have been accepted, the process 
terminates. We conjecture that iterative classification will produce more accurate 
predictions of class values than conventional classification involving intrinsic and static 
relational attributes alone.  
 
Overview of iterative application of SBC model:  
1. Build SBC model on fully labeled training set 
2. Apply trained model to test set of N instances. For each iteration i : 1 to m 

a. Calculate values for dynamic relational attributes 
b. Use model to predict class labels 
c. Sort inferences by probability 
d. Accept k class labels, where k = N ( i / m ) 

3. Output final inferences made by model on test set 
 

4.4. Necessary Conditions 
We conjecture that a relational dataset must exhibit several characteristics before an 
iterative classification approach will improve on a single-pass technique. An initial 
outline of these characteristics is given below; however, further investigation is needed to 
determine the exact nature and scope of these conditions.  
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First, the floor classification accuracy, using only static attributes, should not be too high. 
If a classifier can make highly accurate predictions without dynamic attributes, there is 
little room for improvement via iteration. For this reason, there must be insufficient 
predictive power in the static attributes of the dataset for iteration to exhibit an increase in 
accuracy over a single-pass approach.  
 
Next, inferences made by the model must be relevant to the classification task. If when 
objects are related, an inference about one object does not help subsequent inferences 
about the other objects, then dynamic attributes will not aid classification. The relevance 
of dynamic attributes can be gauged with a single “full knowledge” classification pass — 
where the true class labels of related objects are used to calculate the values of dynamic 
attributes. Such a test indicates how effective the dynamic attributes would be if the 
inferences made by the model were 100% accurate; the test reveals the ceiling accuracy 
for the chosen set of attributes. If the ceiling accuracy is not significantly higher than the 
floor accuracy (using only static attributes), iteration will not produce a discernible effect.  
 
Also, the dataset must be sufficiently connected. An iterative approach uses relational 
structure to maximize the use of its inferences. Because the results of classification are 
spread through the relational structure by way of dynamic attributes, if the dataset has 
insufficient linkage, there is less opportunity to make use of prior inferences. However, 
what constitutes “sufficient” linkage is not clear, and it may vary significantly across 
datasets. Both the degree of linkage, as well as the type of linkage, may affect the results 
of iterative classification. Further exploration is needed to determine the success of 
iterative classification for various types of relational structures. 
 
Finally, there must be information present in the data to start off the iteration process. 
Initial classifications are made using only static attributes; therefore the classification 
model must have a way of making some initial inferences accurately. If none of the initial 
inferences are correct, then all subsequent predictions will be misled by those inferences 
that are accepted. In order to make accurate predictions in the first iteration but to still 
have room for improvement over the course of iterations, we must have attributes that 
represent “islands of certainty.”  
 
Islands of certainty denote knowledge from which some, but not all, objects can be 
classified accurately, with high confidence. Examples of islands of certainty include: 

" A highly predictive static attribute that is missing in many instances but known 
for some 

" A static attribute for which some values are highly predictive of particular class 
labels but other values are not 

" A partially labeled dataset 
 
The inferences made from islands of certainty jump-start the iterative procedure, feeding 
dynamic attribute calculations and improving predictions about related objects. In this 
way, knowledge spreads out through the data. Without such islands, the performance of 
iterative classification may degrade. Future work includes exploring extent of this 
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degradation and determining the size, type and number of islands needed for successful 
iterative classification. 
 
Before there is an opportunity to gain from iterative classification we should be operating 
in a domain that meets these conditions. Otherwise flattening the data and classifying a 
single time will result in accuracies comparable to those achieved with iterative 
classification. 
 

5. Experimental Evaluation 

5.1. Corporate Dataset 
The data set used for these experiments records the intrinsic and relational features of 
publicly traded corporations. The data are drawn from documents filed with the US 
Securities Exchange Commission (SEC). Due to the size of the entire database, we chose 
to work with data from only two industries, banks and chemicals companies. Data are 
maintained separately for each industry in the SEC database, so substantial consolidation 
was needed to combine data from two industries.  
 
The data consist of companies, their board members and officers, stockholders, 
contractors and subsidiaries. The data set contains 2142 central companies (892 chemical 
companies and 1250 banks). It also contains 18679 related companies: 5201 corporate 
owners, 969 contractors, and 12509 subsidiaries. Owners, contractors, and subsidiaries do 
not have the same intrinsic attributes as the banks and chemical companies, so we chose 
to represent then as separate objects. In addition to these objects, the data set also 
contains 25591 people who serve as officers and directors of the companies.  
 
We selected a relatively simple task: to classify companies as to their industry, either 
bank or chemical, using both relational and intrinsic attributes. Classification of 
companies by type is a surrogate task intended to illustrate the potential of iterative 
classification in other domains with similar organizational structure, such as fraud 
detection or money laundering analysis. Iterative classification is not restricted to binary 
classification tasks. Because the SBC makes prediction for each class label, the approach 
could easily be used for classes with more than two labels. Multiple class labels however, 
would make the queries for calculating and updating attribute values more complex, and 
would make the ROC curve analysis (section 5.4) more difficult. 
 
The data ontology is displayed below in figure 3. Nodes in the graph represent the objects 
in the data set. Links in the graph correspond to possible relationships among objects in 
the data set. Italicized labels indicate link or object type. All other labels correspond to 
intrinsic data associated with the links and objects. A distinctive feature of this ontology 
is that companies are never linked to directly to other companies; they are only linked 
indirectly through people, owners and contractors. 
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In the experiment reported below, we used four attributes for each company:  

" state of incorporation (static) 
" number of subsidiaries (static)  
" company X is linked to more than one chemical company through its board 

members: true/false (dynamic)  
" company X is linked to more than one chemical company through its insider 

owners: true/false (dynamic)  
 
A few informal tests with additional attributes showed no substantial improvement in 
accuracy, so for efficiency reasons the attributes were limited to these four. Although the 
SBC classifier itself is fast, there are efficiency issues regarding attribute calculation in 
the data set. Each dynamic attribute calculation involves aggregating information about 
company objects two links away. Recalculating a single dynamic attribute for companies 
in a sample takes approximately three minutes of computation. Because each iteration 
involves recalculating every dynamic attribute, experiments were greatly facilitated by 
keeping the number of attributes to a minimum.  
 

5.2. Sampling 
Devising a disjoint training and test set was a challenging task. It has been shown that 
partial sampling of linked data can bias statistical estimates of relational attributes 
(Jensen 1998). Fractional sampling of linkage in the data can produce under- and over-
estimates of attributes that will reduce the effectiveness of an induction algorithm. SBCs 
assume that the distribution of features is comparable between training and tests sets, so 
their effectiveness depends on a sampling procedure that produces similarly linked 
training and tests sets. Also, because the iterative classification involves inferences made 

Person
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Contractor

Contractor
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Insider Owner

Owner

Institutional 
Owner Beneficial 
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Subsidiary

Name
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Figure 3: Corporate data ontology
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about linked companies, a desirable sampling procedure would retain as much linkage to 
other companies as possible, to avoid handicapping iterative classification. 
 
The sampling procedure used is similar to the exhaustive approach described by Jensen 
(1998). The process for creating two samples A & B from the set of all companies X is as 
follows. 
 
1. Do until X is empty: 

a. Do until a company is placed in sample A: 
i. Randomly pick a company x and remove from X. 
ii. Gather all objects one link away from x. 
iii. If any of these objects is in sample B, discard x. Otherwise place x in sample 

A, along with all objects one link away from x. 
b. Do until a company is placed in sample B: 

i. Randomly pick a company y and remove from X. 
ii. Gather all objects one link away from y. 
iii. If any of these objects is in sample A, discard y. Otherwise place y in sample 

B, along with all objects one link away from y. 
2. For all discarded companies, randomly place half in sample A and half in sample B. 
3. Label all companies in sample A that have no links to sample B as objects in the core 

of sample A. Label sample B similarly. 

 
This approach produces two disjoint subsets — the core of each sample. By definition 
companies in core A have no links to companies in sample B. Likewise, companies in 
core B have no links to companies in sample A (see figure 4). The resulting size of the 

Sample A Sample B

Core A Core B

Figure 4: Graphical representation of indirect company linkage in samples A and B
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cores depends on the degree of linkage in the dataset. If the objects are highly linked then 
there will be very few objects in the core. 
 
Because the success of iterative classification in the corporate data depends on linkage 
among companies, we removed all companies from the sample with no links to other 
companies. This improved the statistical power of our evaluation by focusing on the 
portion of the task to which iterative classification is most applicable. It also reduced the 
total number of companies in the dataset to 1088. In order to increase the number of 
companies in the core of each sample, the definition of the core was relaxed. Because the 
only dynamic attributes used for classification involved links through people (insider 
owners or board members), the core objects were defined as those that have no links 
through people to companies in the other sample. Links to companies in the other sample 
through corporate owners and contractors however, were allowed. Core A therefore 
consists of those companies in sample A that have no links through people, to companies 
in sample B. The distribution of banks and chemical companies in both the samples and 
the cores are outlined in table 1. 
 
 

 Number of 
banks 

Number of 
chemicals 

Total number of 
companies 

Sample A 230 316 546 
Core A 170 113 283 
Sample B 236 306 542 
Core B 189 113 302 

 
Table 1: Distribution of samples and cores 

 

5.3. Experimental Procedure 
Using the two samples A and B we performed a two-fold cross validation test of iterative 
classification. The small number of objects in the resulting cores, when sampled for more 
than two sets, prohibited the use of more than two disjoint samples. The SBC classifier 
was trained on a fully labeled sample A and then tested on sample B with 10 iterations. 
Because the 10th iteration has only 90% of the inferences available for dynamic attribute 
calculation, a final classification pass (11th iteration) was also included which used 100% 
of the inferred class labels.  
 
During training, the dynamic attributes of sample A make use of some of the class labels 
in sample B but this does not include any of the companies in core B. When testing on 
sample B, the classifier makes inferences about all the companies in sample B; however, 
accuracy is measured only on the fully disjoint companies in core B. The companies of 
sample A must be fully labeled during the testing process in order to prevent biasing the 
attribute calculation of companies in sample B that are not in core B. In the second test, 
the classifier is trained on sample B and tested on sample A. 
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5.4. Results 
Accuracy results for the two test sets are shown in the table below; accuracy refers to the 
rate of correct predictions made by the model for the objects in the test set. The “Static” 
accuracy results are from a single classification pass using only static attributes of the test 
set, where the values for the dynamic relational attributes are all missing. “Iteration 1” 
and “Iteration 10” are the accuracy results after the first and tenth iteration respectively. 
“Full knowledge” indicates the accuracy results of a single classification pass using all 
attributes, where the dynamic attributes are calculated with complete knowledge of the 
true class labels of all related companies. 
 
 

 % Accuracy on 
Core B 

% Accuracy on 
Core A 

Static 69.2 68.6 
Iteration 1 72.2 78.1 
Iteration 10 75.2 80.9 
Full Knowledge 78.1 80.9 

 
Table 2: Classification accuracies 

 
 
McNemar’s test (Sachs 1982) was used the compare the difference in classification 
accuracy between the 1st iteration and 10th iteration. The McNemar statistic tests the null 
hypothesis that the differences in frequencies of correct and incorrect classifications in 
each iteration represent random variations in the class labels.  Let b be the number of 
instances that change from correct to incorrect classification from the 1st to the 10th 
iteration. Let c be the number of instances that change from incorrect to correct 
classification from the 1st to the 10th iteration. For (b + c) $ 30 the McNemar statistic is  
(b – c)2 / (b + c + 1) and it is distributed as %2 with one degree of freedom. 
 
Combining the results from both cross-validation trials, the value of the McNemar 
statistic was 5.558, which indicates the difference in classifications from the 1st to the 10th 
iteration is significant at the 2% level. 

 
Figure 5: Accuracy results on sample core objects for each iteration. 
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Accuracy results over the course of iterations for each cross-validation run are shown in 
figure 5. Accuracy increases steadily throughout the classification procedure except for a 
drop in the final pass (11th iteration). Dynamic attribute calculations in the final pass 
include the inferences for which the SBC model is most unsure about — the bottom 10%. 
This suggests that an improvement in classification could be achieved by the use of a 
threshold for accepting predictions, instead of accepting the top percentage.  
 
ROC Curve Analysis 
Because accuracy maximization assumes equal misclassification cost for false positive 
and false negative errors, it has been shown that the use of classification accuracy as a 
primary metric to compare classifiers is not always an indication of superior performance 
for other costs and class distributions (Provost et al. 1998). Receiver Operating 
Characteristic (ROC) analysis, an analysis method taken from signal detection theory, is 
an alternative means to evaluate the error tradeoffs associated with a given model.  
 
ROC curves show the predictive ability of a classifier across all possible error costs and 
class distributions. Each SBC model is represented in ROC space by a curve 
corresponding to its true positive rates and false positive rates (TP, FP), as the probability 
threshold between classes is varied between zero and one. In contrast to the SBC model, 
which associates probabilities with each class label, for ROC curve analysis one class 
label is considered positive (in this case bank) and the probabilities associated with the 
predictions of that class label are used to graph the ROC curves. 
 
An ROC curve maps a classifier’s performance as the confidence threshold for 
acceptance of its predictions is varied between the extremes of accepting no 
classifications to accepting all classifications. If a model dominates the ROC space it can 
be regarded as the “best” predictive model for all domains, no matter what the cost and 
class distributions are in the test environment.   
 
The ROC curves for each cross-validation run are shown in figure 6. 

Figure 6: ROC Curves for classification on sample core objects. 
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5.5. Discussion 
Looking at the accuracy results we can make some interesting observations regarding 
iterative classification in this domain. First, the window for improvement in this dataset is 
quite small, with approximately a 10% difference between the floor and ceiling 
accuracies. The floor accuracy can be lowered artificially by dropping static attributes. 
This was attempted but the iterative approach failed without the inclusion of both static 
attributes. This indicates the importance of having strong static attributes as islands of 
certainty from which to jumpstart the iterative process. The limited variety of links in the 
data set constrained the number of potentially predictive dynamic attributes, so raising 
the ceiling accuracy was difficult. 
 
Next, the improvement of accuracy in the 1st iteration compared to the static approach is 
noteworthy. The difference between classification in the 1st iteration and the static test is 
that during the 1st iteration some dynamic attributes values are known. For companies 
with less than two links to other companies through people, we can return a value of false 
for the dynamic attributes without any knowledge of the company type. This suggests 
that dynamic attributes whose value can be determined with certainty from a small 
amount of evidence may be quite helpful to the iterative process. 
 
Also, it is worth mentioning that in the second trial on Core A, iterative classification was 
able to match the accuracy of classification with full knowledge. This shows the power of 
iterative classification to classify as if it had full knowledge of the surrounding 
environment. 
 
Finally, the ROC curves show that the 10th iteration performs better than, or equal to, the 
1st iteration for most thresholds. However, the ROC curves show that the primary effect 
of iteration occurs late in the curve when the probability of a company being a bank is 
relatively low. This may indicate that dynamic attributes are more helpful in the case of 
predicting chemical companies and do little to increase the probabilities associated with 
predictions of banks.     
 

6. Conclusions and Future Work 
A number of conclusions can be drawn from this work about the potential of iterative 
classification. We have shown that there is an opportunity to use relations in data to 
increase classification accuracy, and that an iterative approach exploiting this opportunity 
can produce a significant improvement in accuracy for a binary classification task in the 
corporate data set.  
 
We have outlined several necessary conditions for successful application of iterative 
classification. For iterative classification to improve on a static approach, a data set 
should exhibit the following characteristics: insufficient predictive power from static 
attributes and useful dynamic attributes, rich relational structure, and islands of certain 
knowledge from which to jump start the iterative process. Expansion and formal 
verification of these ideas is an important area for further investigation. 
 



 19

In addition to presenting opportunities for discovery, relational data also offer several 
challenges. Devising a sampling procedure that doesn’t bias statistical estimates of 
relational attributes is a difficult task. As the relational data structure becomes more 
complex, our opportunities for improving classification increase, but so do the challenges 
of sampling. Future work would be aided by the use of naturally disjoint datasets with 
similar distributions such as the university web sites used by Slattery (2000). 
 
Formulating helpful dynamic attributes is also challenging. It is difficult to define the 
value of a dynamic attribute when some, but not all of the related class labels have been 
inferred. Because the classifier is trained on full knowledge, dynamic attribute values 
expressing partial knowledge can bias or mislead the predictions of the classifier. A few 
incorrect inferences could have a “snowball effect” with the dynamic attributes cascading 
the mistakes throughout the test set. For this reason it is important to use dynamic 
attributes whose values are either known with complete certainty or not at all. Threshold 
attributes are a good example of this type of “robust” attribute, where the value is known 
as soon as a particular value threshold is exceeded. Both dynamic attributes used in this 
experiment are examples of threshold attributes.  
 
Consider the attribute “company X is linked to more than one chemical company through 
its board members”. The calculation for this attribute is as follows (where n is the total 
number of companies linked through board members to X, nb is the number of known 
banks, nc is the number of known chemical companies, and ‘?’ designates a missing 
value): 

if n # 1 then return false 
else if  nc > 1 then return true  
else if n – nb # 1 then return false 
else return ‘?’ 

 
When designing threshold attributes it is important to keep in mind that different sources 
of evidence can be used to determine the value of the attribute but some of the values 
must be known with certainty early on in the process for iteration to have a starting point. 
If none of the values can be determined in early iterations then either the process will stall 
and no gains will be made, or incorrect predictions will begin to reduce classification 
accuracy. Future work includes both establishing the effects of threshold attributes on 
iterative classification, and determining other types of robust attributes. 
 
Attributes that combine probabilistic evidence of all related class labels are a potential 
alternative to threshold attributes. Instead of accepting the top percentage of predictions, 
or those exceeding a threshold, the algorithm would accept all predictions. The values of 
these probabilistic attributes are then determined by a combination of the probabilities 
associated with the inferred class labels of related objects. As the certainty of predictions 
change over the course of iterations, the attribute values could be dynamically updated. 
This is an area that requires additional exploration; it is not clear that the probabilities 
produced by the SBC are accurate enough to be used effectively in this fashion. 
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A potential pitfall of the specific variety of iterative classification explored here is that 
SBCs often produce biased probability estimates. SBCs are known to produce optimal 
class predictions in a wide variety of domains; however, SBC probability estimates are 
biased except under conditions of attribute independence. Future work includes exploring 
iterative classification with other methods that output more accurate probabilities such as 
Bayesian networks or PRMs (Freidman et al. 1999). We will also investigate the use of a 
threshold for accepting predictions instead of accepting a percentage determined by the 
number of iterations.   
 
Another direction for future work involves extending the iterative procedure for 
prediction of multiple object types by simply combining the results of multiple 
classifiers. Each classifier would make use of the dynamic attributes filled in through the 
efforts of the other classifiers.  In this sense the classifiers would collaborate with each 
other to improve accuracies for both classification tasks. Caruana (1997) has investigated 
the collaboration of multiple models for learning under the hypothesis that multiple, 
related learning tasks share the same representation, and learning one helps with learning 
another. A relational approach would be similar but would involve the collaborative 
application of models instead.   
 

7. Related Work 
Previous work of the WebKB project investigated classification in a relational context 
(Craven et al. 1998). WebKB uses FOIL, a greedy covering algorithm for learning 
function-free Horn clauses, to label web pages automatically. Relationships among pages, 
as encoded by their hyperlinks, are used along with intrinsic attributes to improve 
classification accuracy. While this approach uses relational attributes as inputs to the 
learned model, the values of those attributes remain static throughout the entire process. 
What is known about the test instances does not change dynamically during classification 
as it does in an iterative approach. 
 
Freidman et al. (1998) have also investigated the use of a relational framework to make 
complicated inferences. They have shown how to learn probabilistic relational models 
(PRMs) from relational databases. PRMs are sophisticated relational models, similar to 
Bayesian networks (Heckerman 1995) that allow the properties of an object to depend 
probabilistically on both properties of the object in isolation and on properties of other 
related objects. However, as with WebKB, the knowledge in these models remains fixed; 
the data representation is not updated to reflect the inferences made by the model. This 
approach does not exploit the relationships among objects as fully as iterative 
classification.  
 
The Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) is 
similar to in spirit to iterative classification, but it addresses a somewhat different 
problem.  The EM algorithm uses a two-step iterative procedure to find the maximum-
likelihood estimate of the parameters of an underlying distribution (a model) from a data 
set containing incomplete or missing data (Bilmes 1998).  The first step of EM (the 
"expectation" step) finds the expected value of missing data values, given the current 
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model.  The second step of EM (the "maximization" step) finds the maximum-likelihood 
model, given the inferred data.  After replacing the current model with the new model, 
the process repeats.  In contrast to iterative classification, EM readjusts the model in the 
second step, rather than adjusting the values of attributes that serve as inputs to the 
model.  Thus, it is a method of learning a model given attribute-value data, rather than a 
method of applying a learned model to relational data. 
 
“Co-training” is another iterative approach to learning models (Blum and Mitchell 1998, 
Mitchell 1999). Mitchell showed that a large number of unlabeled instances can be used 
to boost the performance of a learning algorithm when only a small set of labeled 
instances is available. Multiple classifiers are learned on independent sets of attributes, 
from the all the available training data. Each classifier is run and its most confidently 
predicted positive and negative instances are added to the common training set. By using 
the same training data, the classifiers each profit from the predictions of other classifiers. 
The classifiers are relearned with the larger, augmented training set, and the process is 
repeated. Co-training is tested in a relational context; however, it does not require 
relational knowledge for the process to operate, it can be applied to attribute-value data as 
well. As with the EM algorithm, this method uses iteration for learning models instead of 
using iteration in the application of learned models, as does iterative classification. 
 
Boosting and other methods of ensemble classification (Dietterich 1997) are related to 
iterative classification in the sense that what is known about the data changes over the 
course of the procedure. Boosting uses multiple classifiers collaboratively for a single 
classification task and manipulates the sampling distributions of the training sets used to 
learn each model in order to increase overall classification accuracy. Ensemble 
approaches such as these, change the knowledge available to models as they are learned. 
In contrast, iterative classification changes the knowledge available to the model as it is 
applied.  
 
Kleinberg (1998) developed an iterative algorithm, called Hubs & Authorities, for Web 
searching based on the network structure of hyperlinked pages on the Web. The 
algorithm uses a graph structure, with nodes corresponding to web pages and directed 
links indicating the presence of hyperlinks between pages. Given the task of identifying 
authoritative pages, two mutually-reinforcing attributes are defined: hub weight and 
authority weight. The weights are calculated in an iterative fashion by feeding the values 
of one attribute into the calculations of the other. The iterative nature of this algorithm is 
similar to our approach in that it maintains and updates attribute values throughout the 
procedure. However, the algorithm assumes the values of both attributes are known for 
each instance and starts by assigning equal weights to all pages, it does not use a 
predictive model to assign weight values. 
 
In work concurrent with our own, Slattery (2000) has investigated using relational 
information in the test set to classify web pages more accurately. FOIL-HUBS is an 
extension of FOIL inspired by the Hubs & Authorities algorithm (Kleinberg 1998). 
FOIL-HUBS identifies the existence of hubs for each target class (e.g., student-hubs 
point to many student pages) and hub weights contribute to the probability that pages 
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pointed to by the hubs are of a particular class. FOIL-HUBS employs an iterative 
classification scheme to predict class labels and estimate hub weights, which is very 
similar to our own algorithm for iterative classification, but it is limited to domains where 
uniform hub nodes exist.  In contrast, our work represents an initial attempt to provide a 
uniform framework for the calculation and use of a wider range of dynamic attributes, 
albeit within a simpler model representation (SBCs as opposed to function-free Horn 
clauses). 
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