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Abstract

Widespread deployment of multicast depends critically on the existance of conges-
tion control protocols that are provably fair to unicast traffic. In this work, we present
an optimization-based congestion control mechanism for one-to-many communication
with provable fairness properties. The optimization-based approach attempts to find
an allocation of rates that maximizes the aggregate utility of the network. We show
that the utility of multicast sessions must be defined in a particular way if a widely ac-
cepted property of aggregate utility is to hold. Our definition of session utility amounts
to maximizing a weighted sum of simple utility functions, with weights determined by
the number of receivers. The fairness properties of the optimal rate allocation depend
both on the weights and form of utility function used. We show that although it is
not strictly fair to unicast, the unfairness of our mechanism is bounded and can be
controlled.

1 Introduction

Widespread deployment of multicast communication in the Internet depends critically on
the existence of practical congestion control mechanisms that allow multicast and unicast
traffic to share network resources fairly. Most service providers recognize multicast as an

essential service to support a range of emerging network applications including audio and



video broadcasting, bulk data delivery, and teleconferencing. Nevertheless, these network
operators have been reluctant to enable multicast delivery in their networks, often citing
concerns about the congestion such traffic may introduce. There is a clear need for multicast
congestion control algorithms that are provably fair to unicast traffic if these concerns are
to be addressed. In this paper, we present a congestion control mechanism for single-rate
multicast traffic based on an economic pricing model and show that although it is not strictly
fair to unicast traffic, its unfairness is bounded and can be controlled.

We first formulate the multicast congestion control problem as a utility maximization
problem, extending existing work for unicast. A naive generalization of the existing formula-
tion would treat single-rate multicast sessions no differently from unicast sessions, modeling
each by an unweighted utility function and maximizing the sum of session utilities. One
problem with the naive approach is that it penalizes individual multicast sessions for using
more network resources than unicast sessions without rewarding them for the bandwidth
saved on links shared by multiple receivers. More serious than its unfairness to multicast
sessions, an approach that maximizes the unweighted sum of utilities turns out to violate a
generally accepted property of aggregate utility, namely, that the preference of the aggregate
does not change if we simply measure utility on a different scale. This common-sense notion
is why, for example, we reject as nonsense the statement that, as a group, residents of New
York prefer a temperature of 70 degrees to 60 degrees Fahrenheit, but prefer a temperature
of 15.5 to 21 degrees Celsius. If this invariance property is violated in the congestion control
problem, the network operating point deemed most desirable would depend on an arbitrary
choice of utility scale. We define an approach that uses session weights based on the number
of receivers that satisfies this property. Moreover, we show that this approach is necessary
to preserve invariance under a change in utility scale.

A consequence of adding session weights based on the number of receivers is that the
the resulting rate allocations tend to favor sessions with more receivers over those with
fewer. Since the weighted sum does not remove the original penalty against sessions that use
more resources, it is not immediately clear whether multicast sessions fare better or worse
than unicast under our modified formulation. We show that while our formulation favors

multicast sessions, the resulting unfairness can be controlled and remains bounded in the



network topologies we have considered.

There has been much recent interest in understanding the behavior of networks in the
presence of diverse congestion control mechanisms. Because network users are widely dis-
tributed, they only become aware of each other through the congestion signals they receive as
they make use of network resources. Several conditions impact the degree of effectiveness of
closed-loop congestion control in this environment. First, congestion signals must accurately
inform the users about the effect of their own traffic on the state of the network. Second,
users at the edges of the network must be able to adapt their rates in response to these
signals in ways that are both fair to other users and appropriate for the application at hand.
Third, users must have an incentive to engage in congestion control. The issue of incentives
is perhaps controversial since it is well known that successful protocols such as TCP provide
no such incentive and yet appear to operate in a fair and stable manner. However, as Floyd
and Fall have observed [1], the continued stability of the network is by no means assured as
a diversity of applications with different types of control mechanisms account for a growing
portion of network traffic. In particular, TCP itself may be at risk of being starved by more
aggressive control mechanisms.

Attempts to achieve effective congestion control have included improvements to the qual-
ity of congestion signals provided by the network [2, 3] and the development of guidelines
for designers who wish to develop application-specific protocols that are both fair and effec-
tive [4, 5]. In multicast congestion control, responding to congestion is complicated by the
source’s need to handle both the feedback implosion and potential redundancy associated
with receiving congestion signals from a large set of receivers. Many proposals address both
problems by responding to congestion feedback from a small set of representatives. Since
the criteria for selecting these representatives affects the fairness of the resulting protocol, a
common heuristic is to respond to feedback from the most congested receiver, causing the
multicast session to share bandwidth fairly on its most congested path [6]. Identifying the
potentially changing set of representatives and suppressing feedback from other receivers
in a practical protocol remains a difficult problem. The congestion control mechanism we
present here does not require identifying distinguished receivers, allowing the problems of

eliminating redundancy and feedback implosion to be treated separately from the problem



of ensuring fairness.

In the field of economics, the allocation of resources among autonomous, self-interested
actors has long been a subject of study. The similarity of network congestion to other
resource allocation problems commonly studied in economics has not escaped the atten-
tion of researchers [7, 8, 9, 10, 11], who have tried to adapt economic mechanisms such
as auctions and markets to problems in communications networks. Pricing mechanisms in
economics have the same features mentioned above that contribute to effective congestion
control. Market prices convey an accurate summary of resource supply levels to consumers.
Consumers, in turn, determine their own usage levels by weighing the cost of the resource
against their subjective estimation of its worth. The monetary aspect of prices can provide
an incentive to consume resources conservatively in times of scarcity.

Our work is based on a promising economics-inspired approach called optimization-based
congestion control [12], which casts the congestion problem as one of utility maximization
(alternately, cost minimization). This approach provides an elegant theoretical framework
in which congestion signals are interpreted as prices, network users are modeled as utility
maximizers, and the network sets prices in such a way to drive this set of self-interested users
to a desirable operating point where their aggregate utility is maximized. This approach is
appealing because it provides a sound formal foundation with which to develop congestion
control mechanisms and understand their impact on the global behavior of the network.
Specific link service disciplines and rate-control algorithms at end-hosts can be thought of as
components of a distributed computation to solve the global optimization problem. Thus,
improvements in congestion control can proceed in a principled fashion, driven by improve-
ments in the underlying optimization algorithm. While the optimization-based approach has
received much attention [13, 14, 15, 16, 17, 18, 19, 20, 21], it has not yet, to our knowledge,
been applied to multicast congestion control. We will see in this paper, that applying this
model to multicast offers a formal foundation for developing fair multicast congestion control
algorithms.

The rest of this paper is structured as follows: In Section 2, we introduce the optimization-
based approach and review related work. We extend the problem formulation to single-

rate multicast in Section 3. In Section 4 we consider multicast session utility functions in
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detail, presenting an axiomatic argument in favor of a particular definition. The fairness
properties of our definition are analyzed in Sections 5-7, where we show that multicast
sessions are favored and present evidence that such unfairness can be controlled. We conclude
by briefly discussing the development of practical control mechanisms based on our results

and highlighting future work.

2 Background and Related Work

Optimization-based congestion control casts the problem of bandwidth sharing as one of
utility maximization. In a basic formulation, the network is modeled as a set of unidirectional
links £ = {1,..., L}. Associated with each link is a capacity, ¢; for link . Let C' = (¢;,l € L).
The workload for the network is generated by a set of sessions! S, which consume bandwidth.
The set of links used by a particular session, s, is L(s) C L. For a unicast session, the links
of L(s) are arranged end-to-end, forming an acyclic path between a source and a receiver.
However, the topology of sessions is not explicit in the formulation. The set L(s) can be any
subset of links—for example, a tree in the case of multicast. The set of sessions using any
particular link, [, is S(I) C S.

Each session is characterized by a utility function,
Us: Ry = R,

which is assumed to be an increasing and strictly concave function of session rate x,. The

network’s objective is to optimize social welfare:

gg%( Us(s) (1)
- seS
subject to szgcl l=1,...,L (2)
seS(l)

The desirable network operating point is defined by the vector of session rates that solves
this problem. The problem (1-2) can be solved using convex optimization techniques [22].

Under a standard economic interpretation, the Lagrange multipliers of such techniques are

!The terms ’session’ and ’user’ are synonymous in this paper.



referred to as shadow prices and can be shown to function as prices of network links [23]. The
essential step in developing practical rate-control algorithms is to find a distributed algorithm
for solving (1-2) in which each individual session need only compute a local optimization to
set its own rates. There is a growing body of research devoted to finding such a distributed
algorithm and using it as a basis for unicast rate-control in practical protocols [13, 14, 15,
16, 17, 18, 20, 19, 21].

Kelly [13] decomposes the basic optimization problem (1-2) into session and link subprob-
lems, enabling the distributed computation of optimal rates. In addition to demonstrating
the possibility of such a decomposition, Kelly also shows that the fairness properties satis-
fied by the resulting rate allocation are dependent on the functional form of session utility.
In particular, proportional fairness is shown to result from the use of a logarithmic utility
function, Uy(z) = log(x).

A vector of session rates x* is said to be proportionally fair if it is feasible and for any

other feasible vector z

e

ses $
Proportional fairness favors smaller flows less strictly than the more commonly used fairness
criterion of max-min fairness [24]. A vector of rates z* is max-min fair if it is feasible and
no individual’s rate x,; can be feasibly increased without decreasing the rate of a less well-off
individual x4 < z,. Kelly formally identifies proportional fairness and max-min fairness as
two points on a continuum. An interesting finding in our work, presented in section 6.1, is
the location of tcp-fairness within this continuum.

Low and Lapsley [17] have proposed a distributed algorithm based on a solution to the
dual of problem (1-2); this work provides the basis for our work presented here. The basic
idea of their algorithm is that each link in the network continuously adjusts its price and
each session computes its optimal rate as a simple function of the total price of the links it
uses. In order to offset a bias that favors short unicast paths over long ones, Low and Laplsey
consider a modified optimization objective function that maximizes a weighted sum of session
utilities. We too will use session weights to deal with a similar source of unfairness and show

how these weights can be meaningfully assigned to multicast session utility functions.



Kunniyur and Srikant [16] use a penalty function formulation of problem (1-2) to sepa-
rate the problem into a set of session optimization problems that can be solved by individual
sender-receiver pairs using only end-to-end packet loss information, or with ECN-style marks
on packets if available. In addition to the logarithmic utility function, these authors inves-
tigate the minimum potential delay (MPD) utility function [25], U(z) = —1/z.? In the
penalty function formulation, the optimality condition for each session’s local optimization

problem is given by
T Ul(xs) - 5 (.’175 - ys) = O, (3)

where 3 is a constant and (z; — y,) is the difference between sent and received rates for the

session. For u(z) = —1/x, this condition is rewritten

1_ﬁxs($s_ys):0 (4)

A natural rate-control algorithm simply attempts maintain the optimality condition.

T, = 7(1 — B (-775 - ys))a (5)

where 7 is a step size parameter. We see that in the penalty function formulation, an
additive-increase/multiplicative-decrease control algorithm (the class of algorithm to which
TCP congestion control belongs) emerges as a natural way for individual sessions to maintain
a local optimality condition under the MPD utility function.

More recently, Bansal and Balakrishnan [26] have discovered a family of tcp-friendly

control algorithms of the form,

T, = Oé/xlsc - 6$l5 (xs - ys)a (6)

where k+1 =1 and [ < 1. It is straightforward to show that this entire family of algorithms
is consistent with the optimality condition (4). In light of these results, we will represent the
utility of unicast TCP sessions using the minimum potential delay utility function in this

paper.

2The minimum potential delay utility function gets its name from the fact that the reciprocal rate 1/z

can be thought of as a delay. Minimizing this delay is equivalent to maximizing —1/z.



3 Problem Formulation

3.1 Solving the Dual

Following the approach of Low and Lapsley [17], we find the solution to optimization problem
(1) by solving its dual. The Lagrangian of (1) is defined as

Lz A) = ZUS(JTS Z)\l Z Ts— )

seS(l

= Z s(Ts) — xg Z A1) —i—z)\lcl, (7)

s leL(s

~

separable in s

where the multipliers \; are interpreted as link prices. The objective function D(p) of the

dual problem is the maximized Lagrangian.
D(p)_max,iﬂx)\ ZB (A?) +Z)\lcl

where

B;(X*) = maz,, (Us(zs) — z:A%) (8)
A = Z A

Exploiting the separability of the first term in the Lagrangian, we can allow each user to
perform an independent maximization of its own benefit B;(A®), where A\® is the sum of all
the link prices seen by user s 3. The dual problem is a minimization of the dual objective
function with respect to the link prices.

min D(\) (9)

A>0

The network computes the link prices A\* that solve (9). By duality theory, the rate vector
that results from each user’s maximization, (z5(A*), s € S), contains the optimal rates in the
original problem (1). The link prices summarize all of the congestion information relevant to

each user, allowing them to perform a local maximization without coordinating with other

3In the unicast case, A\* would be the price of the path between source and receiver.



users. Solving the original optimization problem in this way requires that users have some
way to learn about the prices of the network resources they use.

The authors proceed to develop a distributed algorithm to solve the dual problem by
gradient projection. Each link individually adjusts its price in the opposite direction of the
gradient of D(p). From the first derivative condition of (8), the rate that maximizes the

user’s benefit for a fixed A® is given by
2, (X*) = U (V)

In the synchronous rate control algorithm, links and users adjust their prices and rates

according to the following update rules:

N(t+1) = () + (' (1) — )] (10)
(t+1) = [U7 () (11)
where v is a step-size parameter, [z]}* = max(m,, min(M;, z)), and m, and M, are the

minimum and maximum rates required by user s.

In an asynchronous version of this algorithm, communication between users and links is
not coordinated and some of the adjustments may be performed on the basis of outdated
prices or rates. The authors are able to establish convergence for both synchronous and
asynchronous versions provided the step-size v is sufficiently small.*

As one would expect from Kelly’s work [13], the fairness criteria satisfied by the resulting
allocation depends on the utility functions of the users. Proportional fairness results if all
of the users’ utility functions are logarithmic, Us(z,) = logzs, Vs € S. More generally, if all
users have the same well-behaved utility function and minimum and maximum rates m, and

M; the following properties hold [17]:

e If two users s; and s; share the same path, their equilibrium rates z; and z, will be

the same.

e If the path of s; is a subset of the path of s;, then z > zj, because sl sees a total

path price that is less than or equal to that of s2.

4Choosing the best value for v remains an open problem.



e If the equilibrium price seen by s; is less than that seen by s;, then zj > z§,. This
property is a generalization of the previous one since it holds even for sessions whose

paths do not intersect.

These properties would seem to imply that the mechanism discriminates against long path
lengths®. However, by an appropriate choice of utility function and weighting parameters it

is always possible to obtain a proportionally fair or max-min fair equilibrium rate vector.

3.2 Generalization to Multicast

The problem formulation (1) and (9) is equally applicable to unicast and multicast. Recall
that in the multicast case, the set of session links are those in that session’s multicast tree.
In a generalization of problem (1-2), we allow each session to use a different rate on each
link. The rate of session s on link [ is denoted x4 and x; = (x4, [ € L(s)) is a vector of rates
for the session. The session utility function is now a function of this vector. In single-rate
multicast, the rate z, is the same on all links, but the generalized formulation allows us to
define a variety of session utility functions. The network optimization problem is

max Z Us(xs) (12)

wZ(Xs,SGS)
subject to

rg=1xs VYIEL(s) (13)

The Lagrangian of the single-rate optimization problem (12) is identical to (7) and admits
the same separation into per-session optimization problems as the unicast formulation. 6
Solving the single rate problem (12) is a straightforward extension of the solution presented

in Subsection 3.1. As before, the objective function of the dual problem is the maximized

Sor large multicast trees
6The multi-rate optimization problem is more difficult than the single-rate problem because its Lagrangian

does not contain an expression that is separable by session.
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Lagrangian, which admits separation into a maximization subproblem for each session similar

to (8).

B,(X\*) = maxUs(xg) — zsA° (15)
o= YN
leL(s)

In the multicast case, \* is interpreted as the sum of link prices for the entire tree. © The
essential difference between the session maximization problems (15) and (8) is the definition
of the session utility function. In (15), the session utility function maps a vector of rates to
a scalar utility value. More than one mapping can be defined and we will consider several
alternatives later in this paper. At present, we consider one possible mapping that yields a
basic control algorithm similar to Low and Lapsley’s.

Consider the following session utility function, for which the session utility is defined as

the sum of receivers’ utilities in the multicast tree:

Us(xs) - Z Usl(xs)
)

leL(s

u(z) ifl € R(s)
Usl(xs) -
0 otherwise
where R(s) is the set of links in s that terminate at receivers and u : Ry — R is a util-

ity function from a scalar to a scalar. We assume that all receivers have identical utility

functions, Ug(xs) = u(zs), Vs € S. If Ry = |R(s)|, the first derivative condition for (15) is

Z u'(zs) = N

lER(s)
Rou/(zs) = N
AS
! —
u (xs) - Rs

(V) = 07 (%) (16)

"This difference complicates the development of a protocol based on the optimization formulation, since

each individual receiver sees only the prices summed along its path from the source. Furthermore, one must

take care not to count the price of a shared link more than once, therby overestimating the session price.
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Ignoring, for the moment, the problems of determining A® in a multicast tree, we rewrite

Low and Lapsley’s synchronous update rules:

AN(t+1) = () + (' (t) — )] (17)
z(t+1) = [U7(N/R,) (18)

The only difference between these update rules and Low and Lapsley’s basic algorithm (10)-
(11) is that the multicast session price is divided by the number of receivers. The effect of
this price reduction is that the session can send at a higher rate than the basic algorithm
(10)-(11) would allow. Since the price reduction depends on the size of the session, so does
the increase in session rate. It is not clear whether an update rule like (18) leads to a
rate allocation that one would consider fair, since it appears that larger sessions get faster
rates. Since the update rules (17)-(18) were derived using a particular definition of session
utility function, perhaps an alternate definition would lead to a more fair allocation. In
the following sections we analyze the affect of this definition on the fairness properties of
the resulting congestion control mechansim. It will turn out that a class of session utility
functions that includes (17)-(18), while not absolutely fair to unicast sessions, does not starve
them in the presence of larger sessions. Moreover, we will see that utility functions in this

class makes sense in a way that other functions do not.

4 Multicast Utility Functions

In Section 3, we generalized the unicast optimization problem formulation to accommodate
single rate multicast sessions. We were able to re-derive Low and Lapsley’s update rules
with only minor modifications. However, there is a subtle problem with this model that
makes it difficult to apply to single-rate multicast. The problem concerns the definition of
utility for an individual multicast session. A single scalar utility value is used to characterize
the benefit of a higher rate to the session. For a unicast session, it makes little difference
whether we consider this benefit to belong to the sender or receiver. For the purpose of
unicast congestion control, we can treat the sender’s and receiver’s objectives as being one

and the same. A multicast session, in contrast, has multiple receivers whose individual
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objectives are generally not the same. A receiver connected by a high-bandwidth path from
the source might benefit from a high session rate that would result in loss to other receivers
with more constrained bandwidth.

One approach towards defining multicast session utility ignores this heterogeneity among
receivers and defines its session utility function only with respect to the sender.® An alterna-
tive approach would be to define session utility as a function of the utilities of the receivers
in the session. We informally refer to these two approaches as sender-oriented and receiver-
oriented, respectively. It is not immediately clear which approach is most appropriate for
multicast congestion control. Later in this section we will formalize these definitions and
argue in favor of a receiver-oriented approach. Before doing so, however, we will digress
briefly to provide some background about the use of utility functions in economics and the

theory of social choice.

4.1 Digression: Utility Functions and Social Welfare

The use of concave increasing utility functions to represent session utility has a natural
and intuitive interpretation. Utility is is a monotonically increasing function of its input
when individuals prefer having as much of the input as possible. The concavity of the utility
function captures the idea of diminishing marginal utility®. Both concavity and monotonicity
are appropriate assumptions in the case of bandwidth for elastic traffic [27], where the input
to the utility function is the session rate. °

Utility can be difficult to quantify precisely; there is no clear unit of utility and no
agreed upon scale. Comparing the utility of two individuals can be tricky, particularly
when they do not share the same utility function. Because of the difficulty in performing

interpersonal comparisons of utility, economists customarily think of utility as an ordinal

magnitude, meaning that the absolute magnitude of utility is meaningless, but that the

8We are assuming that multicast sessions have a single source.
9The term 'marginal utility’ is used in economics to refer to the first derivative of the utility function.
10Tn this section, utility will be assumed to be a function of session rate; we do so for the sake of concreteness

and continuity with the rest of the paper. It should be understood, however, that the discussion presented

here applies to any utility function.
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relative magnitudes of utilities at various rates for an individual session define preferences
among rates and the relative differences in magnitude indicate the strength of the preferences
[28]. A consequence of considering only ordinal magnitudes is that utility functions are
unique only up to a linear transformation. That is, the utility maximizing behavior of an
individual with utility function u(z) is indistinguishable from one whose utility function
is a linear transformation of w(xz). This restriction makes intuitive sense because a linear
transformation simply represents a change in scale and a translation of the zero point of the
utility function.

The notion of an aggregate utility function is a compelling extension of the concept of
individual utility. Aggregate utility is defined by a social welfare function (SWF) that maps
the vector of all session utilities to a scalar utility value representing the social desirability
of the corresponding vector of rates. Since the SWF is not one-to-one, it induces a partial
ordering over allocations of rates, known as the social preference relation (SPR). As with
individual utility functions, we are primarily interested in this preference relation rather than
the absolute magnitude of the SWF.

There are many ways to define the SWF, each carrying with it some subjective judgment
about how individual preferences should be combined to determine a social preference. It
is possible, however, to list some properties that seem reasonable for any definition of SWF

[29].
e Complete: The SWF should be defined for all vectors of inputs.
e Transitive: The induced SPR should be a transitive relation.

e Pareto Efficient: Given a SWF U(z) and two feasible vectors z and &’ which differ
only in one element i such that u;(z;) > u;(z}), it must be the case that U(z) > U(z').
In other words, if it is possible to increase one individual’s utility without reducing any

other’s, doing so should improve the aggregate utility.

e Independent of Irrelevant Alternatives (ITA): Let u and v be two vectors of

individual utility functions and U and V the corresponding aggregate utility functions

14



defined by a SWF. If z and y are two vectors of rates such that, for each individual ¢,

(wi(zi) > ui(y:) and vi(z;) > vi(ys))

then

This property is somewhat subtle; notice that it is possible for two individuals to dis-
agree in their preferences under u. However, if each individual’s preference is unaffected
by a change from u to v, then any such disagreements will persist. The IIA property
demands that the social preference also be unaffected under these circumstances. In
other words, the socially preferred allocation is invariant under a change in individual

utility functions that leaves individuals’ preferences unaffected.

e Non-dictatorial: A SWF U is said to be non-dictatorial if there exists no individual

¢ with utility function w; such that

ui(z;) > ui(y;) < U(z) > U(y) Va,y

Perhaps the most important result of social choice theory is Arrow’s Impossibility Theo-
rem, which states that no SWF can simultaneously satisfy all of the properties listed above
[30]. In optimization-based congestion control, we adopt the sum of individual utilities as
the SWF. It is easy to demonstrate that this SWF violates the ITA property. Consider three
sessions sharing a simple network as shown in Fig. 1. We maximize the sum of utilities to
get the vector of optimal rates, that is, the socially most preferred allocation. This vector
depends on the functional form of session utility. One can show that the following conditions

hold for the optimal vector of rates:

u' (o) = 2u'(z) (19)
Ty = To (20)
r =1-—1x (21)
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R

Figure 1: Three sessions with rates (zg, 1, x2) in a simple two link network with unit link
capacities. Each link is shared by two sessions.

Let z* and z° be the vectors of optimal rates when u(z) = log(z) and u(z) = —1/z,

respectively. Solving equations (19-21) for both cases, we get

z* = (1/3,2/3,2/3)
2 = (V2-1,2—-+2,2-2)

Now, each session’s individual preference between z* and z° is based on its own rate.
Since utility functions are all increasing, the following inequalities hold regardless of the
functional form of u(z):

u(zg) < u(zg)

u(z}) > u(x))

u(zy) > u(xs)
In other words, under any valid utility function, session 0 always prefers the MPD allocation
to the proportionally fair allocation, and sessions 1 and 2 always prefer the proportionally
fair allocation. However, the soctal preference changes depending on our choice of utility
function. Indeed, it is precisely this violation of IIA that allows us to associate optimal rates
under different functional forms of utility with different formal definitions of fairness.

Although the ITA property is neither required nor (in light of the Impossibility Theorem)
worth pursuing for the congestion control application, a related but weaker property is still

worthy of consideration.

e Invariance Under Linear Transformation (ILT): Let u be a vector of utility
functions and v be a transformed vector such that v;(z) = au;(z) + 5. Let U(u(z))

be a SWF, where u(z) = (u;(x;)) is the vector of session utilities for rate vector z. We

16



say that a SWF is invariant under a linear transformation if, for any two rate vectors

x and y,

U(u(z)) = U(u(y)) = Ulv(z)) = U(v(y))

for any values of a, 8. In words, the SWF induces the same preference relation for u

and v.

The ILT property builds on the assertion that individual utility functions are unique up to
a linear transformation, saying that aggregate preferences, too, are invariant under such a
transformation. We will see shortly that under some definitions of multicast session utility

the ILT property is satisfied, while under others it is not.

4.2 Sender- and Receiver-Oriented Utility Functions

We now formally define sender- and receiver-oriented concepts of session utility. Consider
a single-rate multicast session s with rate x and receiver set R with size R. In the sender-
oriented approach, session utility function is a single concave increasing function of the

session rate u,(x).

Usnd - Us(.’E) (22)

In the receiver-oriented approach, each receiver i € R has a utility function w;(z), which is

concave and increasing. The session utility function is the sum of receiver utilities.

Upew = Zuz(x) (23)

i€ER
We can convert these definitions into an alternate form by making two assumptions.

First, we assume that all receivers have identical utility functions.
ui(z) =ur(s) VieR

Second, in the limit of a single receiver, both sender- and receiver-oriented utility functions

should reduce to the same standard unicast utility function up to a linear transformation.
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These assumptions allow us to express both types of session utility functions as the product
of a base utility function u(-) and a scaling function f(-). The base utility function, wu(-)
depends only on the session rate and is concave and increasing. It can be thought of as the
utility function of a session with a single receiver. The scaling function f(-) depends on the
number of receivers in the session. It must be monotonic in its argument, although it need
not be strictly increasing.

For a sender-oriented definition of session utility, f(R) = , where & is a constant.
Usna(z, R) = ku(x) (24)
For a receiver-oriented definition, f(R) = k R, where & is a constant.
Ureo(z, R) = k Ru(z) (25)

It is possible entertain definitions of session utility different from those we present here. We
choose these because they are commonplace and mathematically tractable. One obtains
equation (24) by treating all sessions equivalently, regardless of the number of receivers.
Equation (25) reflects the idea that multicast session utility is itself a social welfare function,
representing the aggregate utility of the receiver set. Under our assumptions, this equation
is equivalent to the sum of receiver utilities—a simple and commonly used social welfare

function

4.3 The Session-Splitting Problem

In Section 4.2, we identified two alternative definitions of multicast session utility based on
sender- or receiver orientation. Now we consider these two definitions in more detail and
determine which makes sense in the context of congestion control. We begin by attempting
to capture the effect of flexible group membership using an optimization-based approach.
Golestani and Sabnani [31] observe that if receivers in a session can be dropped and reassigned
to a different session in response to congestion, it is often desirable to split a multicast group
into subgroups with different rates. One can think of this form of congestion control as an
approximation of multi-rate multicast that does not violate the constraint of having a single

rate per session.
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The presence of additional sessions in the network after splitting may increase contention
on existing bottlenecks or even create new bottlenecks. Thus not all ways of splitting a
session lead to an overall improvement in received rates. Ideally, one would like to find a
way to split the session that offers higher rate to some receivers without reducing the rates
of any others. A less ideal, but perhaps still tolerable split might reduce some receivers’
rates but improve the utilization of the network and allow many more receivers to receive
at a higher rate. In economic terms, we would like to find a way of splitting a session that
maximizes utility. In this section, we consider the use of sender- and receiver-oriented social
welfare functions to determine whether splitting a session will improve aggregate utility. We
will show that the only way to obtain a “reasonable” solution to this optimization problem
is by using a receiver oriented definition of utility.

We seek a definition of aggregate utility that captures our intuitions about when splitting
the multicast session is a good idea and when it is not. More precisely, we want to know if it
is reasonable to use sender- or receiver-oriented social welfare function to determine whether
splitting a session will improve aggregate utility. The choice of sender- or receiver-oriented
utility as well as the form of the base utility function may affect aggregate utility. However,
for a fixed choice of these factors, we expect the SWF to be well-defined for all possible
ways of splitting the session. Finally, the desirability of splitting should be insensitive to
a linear transformation of the base utility function. If this were not the case, an arbitrary
rescaling of utility could determine whether splitting a session is preferred over not splitting.
We will observe that the desirability of splitting maintains this invariance in the case of a
receiver-oriented SWF but not in the case of a sender-oriented one.

We begin by formalizing the session splitting problem in terms of utility maximization. In
the session-splitting problem, we have a network (N, L) with link capacities C' = (¢, I € L).
A set of receivers R C N could be served by one or more multicast sessions with source
s € N — R. We assume that the number and rates of all other sessions in the network are
fixed. Capacities in C thus represent the available capacity for multicast sessions serving
receiver set R. Each session’s rate is limited by its most constrained receiver, that is, by
the receiver with the lowest link capacity along the path between it and the source. If this

bottleneck link is not shared by all of the receivers, then it may be possible to split the
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session into two or more sessions yielding a higher rate to some receivers.

Splitting the session is equivalent to partitioning the receiver set into disjoint subsets
P={P, P, ..., Py}. We will use P to denote the set of all possible partitions of R. Each
partition in P represents one possible way to divide the receiver set into sessions. Each
element of a partition represents a subset of R to be served by a different session. Rates
may vary among sessions, but all receivers within a session must receive at a single rate.
Computing the rates for each session is, itself, a non-trivial problem since some links will
be shared by more than one session. There are many possible mechanisms for determining
session rates. One example is the greedy algorithm suggested by Rubenstein, Kurose and
Towsley [32] to achieve max-min fairness among the sessions.

For our purposes, it is sufficient to assume that we have some deterministic mechanism

to perform this rate assignment, which we model as a rate allocation function
X(P,i)
X:PxZ"—=R

Given a partition P and an index 4, the rate allocation function returns the rate of the session
serving P;.

The session-splitting problem requires us to find a partition that maximizes the aggregate
utility of the network. Recall that the optimization-based approach defines aggregate utility
as the (possibly weighted) sum of all session utilities. Given a network (NN, L), capacities C,
receiver set R C N, sender s, rate allocation function X (-, -), base utility function u(-), and

scaling function f(-), the optimal splitting is a partition that solves

max U(P; f,u, X)

where
|P|

UP; f,u, X) =) (IR u(X(P,i)
i=1
is the aggregate utility function. We can choose the scaling function from equations (24)
and (25) to solve this problem for sender- and receiver-oriented definitions of session utility.
The aggregate utility function defines a partial ordering over P. In economic terms,

this ordering is the social preference relation over all possible partitions of the receiver set.
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As explained in Section 4.1, it is customary to regard utility functions as unique up to a
linear transformation. A reasonable restriction, therefore, is only to allow social preference
relations that remain invariant under a linear transformation of the base utility function, as

captured by the following axiom, similar to the ILT property in Section 4.1:

Axiom 1 Let f(-) be a fized scaling function and X (-,-) be a fized rate allocation function.

For any base utility fuction u(-), let v(-) be another base utility function such that

v(z) =au(z)+ 6
where o and B are constants. Then for all P,Q € P,

U(P; fu, X) > UQ; f,u, X)
= U(P;fv,X) > U(Q;f,v,X)

Theorem 1 Let fq(R) = k and f,eo(R) = Kk R be sender- and receiver-oriented scaling
functions. For any base utility function u and rate allocation function X(-,-), the aggregate
utility function U(+; frew, u, X ) satisfies Axiom 1, while U(-; fsna,u, X) does not. Further-

more, Aziom 1 can only be satisfied using the scaling function f(R) = fe(R).

Proof: For convenience in the following discussion we denote U(P; f,u, X) as U(P) and
U(P; f,v,X) as V(P). Let ¥ and 2@ be vectors of allocated rates for all sessions in partitions
P and Q), respectively. Since the axiom must hold for any choice of P and @, let us choose
them so that |P| # |@Q|. Under a sender-oriented definition, we have the following aggregate
utilities
P
P)=k Z u(xf
i=1
Q|
UQ) =k Z u(z?
7=1
Without loss of generality, assume that U(P) > U(Q). Transforming u(x), we obtain new

values for aggregate utility.
—nZau )+ B8] =k (aU(P)+ 3P|
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V(Q) =k [au(@?) + 8] =k (aUP)+51Q)

It is clear that we can always chose a value for § such that V(P) < V(Q). Thus, the
social preference relation is not invariant under any linear transformation of the base utility
function. An immediate consequence is that if one accepts that Axiom 1 is indeed an
appropriate requirement for any “reasonable” definition of aggregate utility, then our sender-
oriented utility definition is not “reasonable”.

Under a receiver-oriented definition,

P|

P)=r Y |P|u(z!)

Q|
UQ) =+ Y 1Qs|uls})
j=1
Transforming u(z), we obtain

P

—HZ|P|C¥U )+ B8] =k (aU(P)+ B R)

Q|
)=k Z|Q, au(z?)+ 6] =k (aU(Q)+ BR)

In this case, V(P) is, itself, a linear transformation of U(P), which preserves the social
preference relation regardless of the choice of o and S. It is straightforward to extend of
this reasoning to show that any scaling function other than the receiver-oriented function
fails to satisfy Axiom 1. ! We must therefore either conclude that our receiver-oriented
definition of utility is the only “reasonable” definition of session utility or reject Axiom 1 as

a requirement for reasonability.

O

1Tn the general case of scaling function f(R), we obtain a condition for satisfying Axiom 1 that

le‘ f(p) = Z‘Q‘ f(@;). This condition along with the constraint that the sum of session sizes is constant

for any partition leads to the conclusion that f(R) must be a multiple of its argument.
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5 Consequences of Receiver-Oriented Utility Functions

In section 4.3 we argued that receiver oriented session utility functions are an appropriate
model for multicast session utility in the session splitting problem. In this section, we return
to the original congestion control problem and determine whether using receiver-oriented
utility functions leads to fair sharing of bandwidth between unicast and multicast sessions.

We rewrite the network optimization problem (1-2) as

R, s) 26

Jax 2 K Reula (26)

subject to Z s < ¢, VIEL (27)
seS(l)

The Kuhn-Tucker conditions for optimality are

kR =) X\ (28)

leL(s)
Mt —c)=0, (' —¢) <0 (29)

where the )\; are Lagrange multipliers or link prices and z! = 2565(1) x5 is the aggregate rate
seen at link I. As before, we also write \* = ZleL(s) A; as the total session price seen by
session S.

From the first Kuhn-Tucker condition (28), we observe that the use of receiver-oriented
utility functions creates a bias in favor of sessions with large numbers of receivers. To see

this, note that

(30)

The optimal rate for session s, z% is given by

1—1 A?
; 31
=t () @)

Equation (30) states that, at optimality, the a session’s marginal utility should be propor-

8
I

tional to its price divided by the number of receivers. We refer to this ratio A\*/R; as the

effective session price. The optimal rate can therefore be obtained by taking the inverse of
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the marginal utility function as shown in equation (31). Since U; is concave, u’ is a strictly
decreasing function of x and its inverse is also a decreasing function. For a fixed session
price, a session with a larger number of receivers has a lower effective session price and thus
receives a higher rate. We refer to this effect as “tyranny of the majority” (ToM).

ToM is a source of unfairness against unicast flows since multicast flows with the same
total session price will receive a higher rate. However, the fact that multicast sessions tend
to use more links than unicast sessions, particularly as the number of receivers becomes
large, means that the session price A° for a multicast flow is likely to be higher than that
of a unicast session. To understand the fairness properties of rate allocations under receiver
oriented utility functions we must determine whether the growth in price associated with
the scaling of a multicast tree is sufficient to limit the effect of ToM as more receivers are

added.'?

6 Effect of Multiple Points of Congestion

In the previous section, we saw that ToM and the scaling of multicast trees have opposite
effects. As we will see shortly, these effects are not equal in strength. The effect of ToM
is likely to be the stronger of the two, allowing sessions with more receivers to receive a
greater share of bandwidth. Whether we choose to accept this form of controlled unfairness
or introduce a correction, we require a more precise understanding of the interaction of the
two effects.

We begin our exploration with a simple example using a modified complete binary tree
topology such as the one shown in Fig. 2. The tree is modified to include a single link from
the session source to what would ordinarily be the root. This single link resides at depth 0
of the tree, with depth increasing as we move down the tree. The number of links at depth

d of this tree is 2¢. Consider such a multicast tree of maximum depth D with 2P receivers,

12If one holds that improving the rate of many receivers at the expense of a few is reasonable, giving a
larger share of bandwidth to larger groups may not seem unfair. We take the position that a bounded bias
in favor of large groups is a defensible form of “controlled unfairness” but that there must be a mechanism

to prevent starvation of unicast flows.
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; -> _—
unicast multicast

Figure 2: A modified binary multicast tree of depth 3 with a sharing depth of 3.

one at each leaf node. The total capacity available on each link is ¢. The tree is shared by
2P 1-hop unicast sessions, distributed evenly across all the links at a particular depth, d.
We will refer to d as the sharing depth. Thus, if d = D, then each link at the bottom of
the tree will be shared with one additional session. In general, for a given choice of d, each
link at the sharing depth will be shared with 2P~9 additional sessions. Since each link of
the tree has identical capacity, each link at depth d will be a bottleneck and contribute a
non-zero price to the total tree price.!* By varying d, we can control the number of points
of congestion in the tree.

For such a regular topology, the basic optimization problem (12) can be solved directly.
Table 1 shows the optimal rates for the multicast and unicast sessions in a binary tree of
maximum depth 3, using a receiver oriented utility function with x = 1 and a logarithmic
base utility function. For comparison, the max-min fair rates are also shown. * Figure 3
show the convergence of Low and Lapsley’s synchronous algorithm to the optimal rates.

As we vary the sharing depth d, the total price, hence the optimal rate, of the multicast
session remains constant, while the prices and rates of the unicast sessions vary. In other
words, on any congested link, the multicast session receives a fixed fraction—one half—of
available bandwidth with the remaining capacity shared evenly among all unicast sessions

sharing that link. At smaller d, more unicast sessions share each congested link, each receiv-

13Gince link prices are associated with Lagrange multipliers in the solution of the basic optimization
problem, an equivalent interpretation is that each bottleneck link will have an active capacity constraint,

hence a non-zero multiplier.
14In this example, the max-min fair rates for multicast and unicast sessions are equal.
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Optimal Rate
Sharing Depth | Multicast | Unicast | Max-Min Rate
0 c/2 c/16 c/9
1 c/2 c/8 c/5
2 c/2 c/4 c/3
3 c/2 c/2 c/2

Table 1: Optimal and max-min fair rates for a binary tree of depth 3 with 8 1-hop unicast
sessions sharing links at various depths. Note that the max-min fair rates are the same for
both types of sessions in this example.

ing a smaller portion of a fixed available capacity. This result may seem somewhat surprising
in view of earlier remarks about multiple points of congestion leading to higher session prices.
The explanation for this effect is that we conserve the total number of shared sessions in
this example. Thus the level of congestion on each bottleneck (i.e. the number of sessions
sharing it) increases as the number of congested links decreases, resulting in a higher price
per congested link. Despite this unrealistic feature of the model, it is instructive to consider
the invariance of multicast session rate in greater detail.

Let us generalize our model by considering a complete tree of degree k and depth D,
modified as before to include a single link at depth 0. Each link of the tree has capacity
c. We retain the receiver-oriented definition of session utility, but allow an arbitrary base
utility function u(z). The tree has a receiver at each leaf—k? receivers in total—and shares
links with kP unicast sessions—kP~? on each of k¢ links at level d. Let x = (z,) be the
vector of session rates, where xy and x1,...,zy are the rates of the multicast and unicast
sessions, respectively, and N = kP. Shadow prices are represented by a vector of multipliers
A= (A1,...,AL), where L = 29,

For a particular choice of sharing depth, we can now form the Lagrangian for the basic

optimization problem (1).

R L
La(x,A) = kP u(zo) + Y ulmi) — > Ajgi(x) (32)
i=1 j=1
where g; are the capacity constraints for the shared links.
L(j,k,d,D)—1
9i(x) = m+ Y, m—c<0 (33)
I=L(j—1,k,d,D)
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Figure 3: Convergence of Low and Lapsley’s synchronous algorithm to optimal rates for the
binary tree shown in Fig. 2 for sharing depths of 0, 1, 2, and 3. In each case, the algorithm
is run for 500 iterations with a stepsize parameter v = 0.03 and capacity ¢ = 1.

L(j k,d, D) = jEP™¢

We use the symmetry of the tree topology to reduce the problem to three variables: the

multicast session rate z,,, the unicast session rate x;, and the shadow price of a congested
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link \. We rewrite the link capacity constraint
9i(x) = g(x) = 2 + kP 4z; — C (34)

The first-derivative conditions are

0% . p dy

. k2 u' () — kA =0 (35)
0% B

o, u(z;)) —A=0 (36)
0Ly D4 B

> Tm+ k" “2;—c=0, (37)

where we have further exploited symmetry of the capacity constraints to set A\; = A.

Solving these equations for the logarithmic base utility function u(z) = log(z) gives

2kD7d
—_° =
2 kD—d c

Tm — T;

57 (38)

This result is a generalized version of Table 1. We observe the following facts:
e At the system optimum, the multicast session receives rate z,, = ¢/2. This result is

independent of the tree depth D, the sharing depth d, and, perhaps most surprising,
the tree degree k.

e The invariance of the optimal multicast rate is a direct result of the choice of a log-
arithmic base utility function. As we will see, this property does not hold for other

utility functions.

e The remaining capacity on the shared links is split evenly among the sharing unicast
sessions. Since the number of sharing sessions is k”~¢, the optimal unicast rate depends

on D, d and k.

e The total price seen by the multicast session is

NEd = E,
c
which is independent of the sharing depth. Under a receiver-oriented definition of
session utility, this price is divided by the number of receivers to obtain the effective
session price. Thus, effective session price is independent of d, D and k under a

logarithmic utility function.
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Since the invariance we have observed appears to derive from a special choice of utility
function, it is interesting to explore the behavior as we modify the functional form. We can

combine the first-derivative conditions to derive the following optimality condition:

1 cC— Ty
W(om) = 5 u< o ) , (39)

Equation (39) relates the marginal utility function «'(z) to the function v'*(z) = av/(a (c—

z)) obtained when we flip «’ about the line z = ¢ and scale both the argument and the re-
sult by the same factor a. Any point at which these two functions intersect satisfies the
optimality condition. Note that u'(z) is the derivative of a concave and strictly increasing
utility function, and therefore must be strictly decreasing. Thus, v'(x) and u'*(z) intersect in
exactly one point, establishing the uniqueness of the solution. Observe also that the scaling
factor a is of the form 1/k”~9 < 1. Scaling the argument of u'(c — ) compresses the function
along the horizontal axis and moves the point of intersection to the left, while scaling its
result compresses the function along the vertical axis and moves the point of intersection to
the right.

Figure 4 shows how the points of intersection vary as a function of @ in a binary tree for
three choices of base utility function: u(z) = log(z), u(z) = —1/z and u(xz) = —(— log(z))*.
The first two functions are the now familiar logarithmic and MPD utility functions. The
third one is shown by Kelly to yield max-min fairness in the limit as a — oo [13]."® In all
three graphs, the single decreasing functions is u'(x), the first derivative of the base utility
function, and the family of increasing functions are u'*(z) for decreasing a (increasing D —d).
The points where u/*(z) intersects u/(z) give the optimal rates for the multicast session as a
fraction of available capacity.

As established above, the intersection point is invariant and equal to ¢/2 for logarithmic
utility. The intersection point is also fixed at ¢/2 when a = 1 for all three functions,
corresponding to a sharing depth equal to the maximum tree depth. In both the MPD
and max-min fair utility functions, however, the intersection point moves to the left as a
decreases, converging to the max-min fair rate. That is, as the sharing depth moves closer

to the top of the tree, the number of bottleneck links decreases while the price on each

15Tn our experiments, we take o to a reasonably high power. (a0 = 250)

29



w(x)=didx log(x)
U*(x), D-d=0 - - - |
U*(x), D-d=1 - = - |
U*(x), D-d=2 ——— |
U(x), D-d=3 ——
U¥(x), D-d=4 -+ /

—

c17 c/9 c/5 c/3 cf2

U'(x) = didx 1% i i
u*(x), D-d=0 - - -
u*(x), Dg=1 =~
U*(x), D-d=2 ——=
*(x), D-d=3 ——
U (x), D-d=4 o

c17 c/9 c/5 c/3 cl2

U(x) = d/dx -(- 10g(x))"250
(), D-d=0 - - -
w*(x), Dd=t - = -
(), D-d=2 ———
U (x), D-d=
WH(x), D-d=4 -

c17 c/9 c/5 c/3 cl2

Figure 4: Figure showing the effect on the optimal allocation for a binary multicast tree
as we vary the sharing depth. These graphs show three different marginal utility functions,
u/(z) along with their transformations u'*(x) for various choices of D — d with the y-axis
shown in log scale. The x-coordinate of the points of intersection give the optimal session
rates as a fraction of available capacity. Max-min fair allocations for different values of D —d
are indicated along the x-axis. The figure shows that the logarithmic utility function (top)
gives the multicast session half the available bandwidth regardless of the number of sharing
unicast sessions, whereas the max-min fair utility function (bottom) splits bandwidth evenly
among all sessions on the shared link regardless of the number of receivers. The MPD utility
function (center) represents a compromise between these two extremes.

congested link increases and the multicast session receives a smaller fraction of the available

bandwidth.
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6.1 An Alternate Utility Function for Max-Min Fairness

Under the definition of max-min fairness for single-rate multicast [32], the multicast session
must share bandwidth equally with all sessions on its most congested link. Thus, in the
max-min fair allocation, z,, = ¢/(kP~? + 1). In the case of Kelly’s max-min fair utility
function, we see that the optimal rates indeed coincide with the max-min fair allocations,
indicated by the tick-marks along the x-axis in Fig. 4. We have observed that the points
of intersection converge to these values as we transform the logarithmic utility function into
max-min fair utility function by increasing the exponent a. Demonstrating this convergence
formally is somewhat difficult.

We can establish a similar result for a family of utility functions that includes both
the logarithmic and MPD utility functions and also yields max-min fairness as a limiting
case. Consider the family of utility functions u(z) with first derivatives u'(z) = 1/2***. Such
functions include u(z) = log(z), u(z) = —x~*/a. Members of this family are mathematically

tractable since the functions u'(z) are homogeneous, satisfying
u'(tz) =t " u(x) (40)

where 7 = a + 1. We can simplify the optimality condition of (39).

< Tm ):aﬂ—r)/r (41)

C— Ty

As a further simplification, we can express the multicast rate as a fraction, p, of available

capacity, x,, = pc. Solving for p, we get

= ! 42
S #2)
In the limit of large o, p converges to the max-min fair allocation.
. 1 a 1
lim e = T = (13)
Following Kelly’s example in [13], we can prove that u(z) = —z~*/a always gives max-

min fairness in the limit & — oo, by providing an absolute priority to smaller flows. For two

rates such that z, < z,,




Kelly proposed the utility function u(z) = —(—log(z))® to establish proportional fairness
and max-min a two extremes in a range of fairness definitions described by the collection of
utility functions obtained for o > 1. As a becomes larger, these utility functions provide an
increasing priority to smaller flows. Our result is a significant extension of Kelly’s observation
because it locates TCP-fairness (as defined by the MPD utility function) within this range

of possible fairness definitions.
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7 Bounded Unicast Fairness

In Section 6, we observed that a multicast session was able to obtain a higher rate than
unicast sessions sharing the same bottleneck links. We showed that this unfairness is bounded
in the presence of multiple points of congestion. However, this result exploited features of
an idealized multicast session topology. Adopting a somewhat more realistic model in this
section, we investigate whether the same type of bounded unfairness is possible in a more
general setting with receiver-oriented utility functions. We also consider whether there is any
multicast utility function that allows a strictly equal split of shared bottleneck bandwidth
between a multicast an unicast session.

Adopting the fairness objective proposed by Handley, Floyd and Whetten [4]—that the
algorithm be provably fair relative to TCP in the steady state, we define a generalized
notion of TCP fairness. We say that a multicast session utility function U(xz;r) = f(R) u(zx)
is strictly unicast-fair if the optimal rate for the multicast session is the same as would be
obtained by a unicast session with utility function u(z) along the most congested source-
to-receiver path in the multicast tree. This definition is equivalent to TCP-fairness in the
case where u(z) = —1/z, the MPD utility function. We will also consider a more relaxed
notion of fairness, proposed by Wang and Schwartz [33] allowing bounded unfairness between
multicast and unicast sessions.

We first show that neither sender nor receiver oriented multicast utility functions lead to
strict unicast-fair allocations and derive a result suggesting that strict fairness is difficult to
achieve under any definition of session utility. Consider the modified star network topology
shown in Figure 5. A single multicast session with source node s and receivers {1,..., R}
shares the network with R unicast sessions, one from s to each receiver. Link [y from the
source to the central node is shared by all sessions and has effectively infinite capacity. Each
link [; from the center to receiver i is shared by the multicast session and one unicast session.
Link [, is the bottleneck link, with capacity B¢, where 8 < 1 and c is the capacity of all
other links [;, ¢ > 1. Receiver 1 is the most congested receiver in the multicast session.

We give the unicast sessions the MPD utility function u(z) = —1/z. The multicast
function has utility function w(z; R) = f(R)u(z). Let x,, be the rate of the multicast
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1, | capacity = infinite

capacity = fc capacity = ¢

Figure 5: A multicast tree with a modified star topology. Receiver 1 is most congested.

session and z; be the rate of the unicast session to receiver i. A strictly tcp-fair allocation
would split the bandwidth on [; equally between z,, and z, z,, = z; = B¢/2. We can
substitute this rate into the optimality conditions of the optimization problem (26-27) to
determine the appropriate scaling function f(R) that will lead to the tcp-fair allocation,
obtaining

(R—1)p

f(R):1+m (44)

This result shows that tcp-fairness can be achieved in the optimization-based framework
by maximizing a weighted sum of utilities with weights given by a scaling function f(R).
However, the presence of 3, a topological parameter, in the scaling function suggests that
the correct scaling function depends on topological properties of the network.

Let us consider another example, shown in Figure 6. We again have a modified star
topology, but with equal capacities on all links /;,2 > 0. Link [y has finite capacity cy, which
is larger than the sum of all downstream link capacities. In addition to the R unicast sessions
from the previous example, there is a single unicast session with rate zy using only link [
between the source and the center. The purpose of this one-hop session is to consume any
bandwidth on ly not used by the other sessions, ensuring that [y is fully utilized and has a
non-zero price \g. By symmetry, all two-hop unicast sessions will have the same rate z;, and

all links in {l,...,lg} have the same price \;. We first write the conditions of optimality
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1, | capacity = cy > Rc

capacity = ¢

Figure 6: A multicast tree with a modified star topology. All receivers are equally congested.

for this problem for a tcp-like base utility function.

»  RX+ X

We define the independent price component for receiver i (denoted p) to be the fraction of
the path price from the source to a multicast receiver that is incurred on the link not shared
by any other receivers in the same session. This component is the fraction of the path cost
directly attributable to the presence of receiver i.

N Ai + Ao

p (48)

The requirement of unicast fairness places a condition on the ratio z;/z,,. Expressing
this ratio in terms of the independent price component p and the scaling function f(R), we

have.

o \/ Pt 7P 49)

For strict unicast fairness, x;/z,, = 1. We can easily see that neither a sender oriented
nor receiver oriented scaling functions will provide tcp-fairness over all session sizes R. For

example, a sender oriented scaling function f(R) = 1 will favor the unicast session as R
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becomes large, while a receiver oriented function f(R) = R will favor the multicast session.
By setting z;/z,, = 1 and solving for f(R), we see that the unicast fair scaling function

depends on a topological parameter, the independent price component.

f(R)=Rp+(1-p) (50)

We now consider a generalized version of the previous example with no explicitly defined
network topology. Consider a network containing a set of links £. The network is shared by
two sessions v and w, which have rates z, and z,,, respectively. Each session uses a subset
of links in the network and session w only uses a proper subset of links that are also used
by v. Formally, L(w) C L(v) C L. The sessions have R, and R, receivers with R, > R,,.
We assume that the path to the most constrained receiver in both v and w is the same and

is therefore entirely contained in L(w). The Lagrangian for the optimization problem is.
L(w;A) = [(Ro)u'(2n) + f(Ruw) u'(zw) +
Z AN(zy + 2y — ) +

leL(w)

> Ny —a) (51)

leL(v)—L(w)
From the Kuhn-Tucker conditions, we derive an optimality condition on the ratio of

marginal utilities.

f(Rw) A
u(z,) /v (z,) = — 52
(o) /v (2w) F(Ry) A (52)
(53)
where
=3 (54)
leL(v|w)
Consider the family of base utility functions satisfying v'(z) = —1/2%, « > 1, introduced in

Section 6.1. Recall that this family includes both the MPD and logarithmic utility functions.

i () %

In a strictly tcp-fair allocation, the ratio x,,/z, = 1. From equation (55), it is clear that the

The ratio of session rates is

actual value of this ratio depends on both the choice of scaling function and the ratio AV/AY.
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It is also apparent that the ratio z,/x, = 1 approaches 1 in the limit as & — co. Thus, the
exponent « offers one way to control unfairness for any choice of scaling function; increasing
it moves the resulting rate allocation closer to max-min fairness.

Strict unicast fairness could be achieved by exploiting a scaling law relating the total
price of a multicast session to its number of receivers. Chuang and Sirbu propose such a law

for static multicast costs [34, 35] with the form
A oc RE (56)

The authors empirically evaluate the scaling exponent £, finding its value to be constant
over a wide range of network topologies.!® This law assumes, however, that link costs in the
network are static. To be applicable for the purposes of congestion control, such a scaling
law would have to be established for dynamically changing prices that reflect link congestion.
If such a scaling law can be found, then strict unicast fairness would result from a multicast

session utility function

Us(z) o< R, ¥ u(z).

We leave the search for such a scaling law as direction for future research, but note here
that, as presented in Section 4.3 the sum of session utilities under such a multicast utility
function would not be invariant under a linear transformation of u(z).

In the absence of a scaling law, strict unicast fairness appears to be difficult to achieve
in the optimization-based framework without adjusting the scaling function in response to
topological parameters. It is worth considering a relaxed version of tcp fairness, such as
essential fairness proposed by Wang and Schwartz [33]. Essential fairness is evaluated on
the restricted topology shown in Figure 7. In this topology, a multicast session with R
receivers shares the network with a number of tcp sessions. There are m; > 0 unicast
sessions between the sender and each receiver i. In the terminology of Wang and Schwartz,

each path from the sender to a receiver is called a virtual link and denoted by L;. Each

16The surprising universality of this result was subsequently explained by Phillips, Shenker and Tangmu-
narunkit [35]. The power law observed by Chuang and Sirbu approximates a more complex scaling behavior
exhibited by graphs with exponential expansion, a property found in many real and artificially generated

networks.
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sha.z;cd link

Figure 7: A multicast tree with a modified star topology. All receivers are equally congested.

virtual link has a physical bottleneck link with available capacity w;. The soft bottleneck of
the multicast session, is defined as the link Ly, = argmin; p;/(m; + 1). An essentially fair

rate allocation satisfies the bounds
aTsy < Ty < by (57)

a<b<R (58)

where x,, is the rate of the multicast session and x4, is the rate of a unicast session along
Ly,

Setting up the optimization problem for this restricted topology and taking the Kuhn-
Tucker conditions yields an optimality condition relating z,, and zg.

Ay 1/a
o= (1R)32) 2 (59)

where Ay is the price of the soft bottleneck link and A™ is the total price seen by the multicast
session.

To get the lower bound of z,,, we observe that the lowest possible price for the multicast

session occurs when each virtual link has bandwidth equivalent to the soft bottleneck. In

this case, A\™ = R Ay,
R 1/a
o= (HE) o (60)
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To get the upper bound, we consider the link with the highest available capacity, L..
Analogous to the soft bottleneck, L. = arg max; p;/(m; + 1). Link L, is the lowest priced
link in the multicast session, with price A.. The upper bound of z,, is obtained when all

links other than the soft bottleneck contribute a price of ..

)\sb 1/a
Ty < (f(R) (R _ 1) )‘c + Asb) Lsb (61)

For fixed R, z,, increases as A, decreases. In the limit, we have

T < f(R)l/a T as A — 0 (62)

Putting these bounds together, we have

(@)W Tp < Tm < fF(R)V* 2 (63)

If multicast session utility is defined using the TCP-like MPD utility functions along with a

receiver oriented scaling function f(R) = k R, we have
KTy < Tm < K VRTg (64)

Since VR < R for R > 1, this result suggests that a receiver oriented utility function with
appropriately chosen k£ < 1 combined with a minimum potential delay base utility function
will lead to essentially fair sharing between multicast sessions and tcp-like unicast sessions
for all R.

It is also interesting to observe that for a logarithmic base utility function (u(z) = log(x))

and a = 1, the upper bound becomes
KTy < T < kK RTg (65)

In this case, the upper bound is less fair to unicast sessions than with ¢ = 2 and we must

choose k strictly less than 1 to satisfy the essential fairness property of (58).

8 Conclusion

This paper presented an optimization based scheme for multicast congestion control based

on utility maximization. Appealing to the underlying economic theory behind this approach
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to congestion control, we proposed the use of a receiver oriented definition of session util-
ity. By considering the incentive to split multicast sessions into smaller sessions, we showed
that only receiver oriented utility functions ensure that the optimal solution of the utility
maximization problem remains invariant under a linear transformation of the utility scale.
We identified two sources of unfairness that arise when maximizing the sum of receiver ori-
ented utility functions, one favoring unicast sessions and one favoring multicast. When these
two effects are combined, a net unfairness results that favors sessions with many receivers
over sessions with few, with unicast sessions faring worst of all. This unfairness is bounded,
however, and the tightness of the bound depends on the form of the base utility function.
When comparing multicast sessions against TCP, where T'CP sessions are modeled using the
Minimum Potential Delay utility function, we can limit the multicast session rate to no more
than v/R times the rate of a unicast session between the source and the worst-case receiver.
While we have found it difficult to achieve strict fairness between unicast and multicast
traffic, we argue that bounded unfairness is a reasonable goal, particularly as it provides an
incentive to use multicast by rewarding larger groups.

Much future work still needs to be done in this area. Although single-rate multicast with
a single source is an important class of multicast traffic, many multicast applications do
not fall into this category. An important problem, therefore, is extending the optimization-
based techniques to multi-rate multicast, where a single session may support receivers with
different rates and to multicast sessions with multiple sources. This problem is challenging
because the global optimization problem does not admit an easy decomposition into per-
session optimization problems in the multi-rate case.

We also still lack a practical protocol for single-rate multicast based on our approach.
While we have shown that existing distributed algorithms can be adapted to single-rate
multicast with only minor modifications, there are a number of technical issues that will have
to be addressed by any practical implementation. Our approach differs from many multicast
congestion control schemes in that its fairness properties are not dependent on accepting
feedback from a restricted set of receivers. However, other protocols restrict feedback not only
for fairness, but also to eliminate feedback implosion and redundancy. An optimization-based

protocol must find other mechanisms for dealing with these problems. Existing optimization-
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based mechanisms for unicast rely on packet-marking techniques to communicate link prices
to end hosts. The end-to-end nature of a unicast path allows the receiver to infer the total
session price from the fraction of marked packets arriving in a measurement interval. In a
multicast session each receiver sees only marks generated along one ene-to-end path through
the tree, which only account for a fraction of the session price. Feedback is thus required
from all receivers to determine the total session price. Redundancy arises when a marked
packet traverses a router and is copied on more than one downstream interface, effectively
multiplying the upstream path price and inflating the true cost of the tree. We believe that
both redundancy and feedback problems can be addressed using general purpose network
services for multicast transport [36] to provide feedback aggregation and a sophisticated

mark-forwarding mechanism.
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A An ECN-Based Protocol

In this section, we briefly describe a way to modify the Random Early Marking (REM)
protocol proposed by Athuraliya, Low and Lapsley to support the modified congestion control
algorithm we have described. REM implements Low and Lapsley’s algorithm by setting an
explicit congestion notification (ECN) bit in packet headers to mark packets passing through
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congested resources. An individual link marks packets with a probability m; that increases

exponentially the current link price.
mi(t) =1—¢ 70 (66)

Because of the exponential form of m;, the end-to-end marking probability for a a unicast

session, denoted m?®, is a function of the total session price.
mi(t) =1 — ¢ ter@P (67)
The session price is thus given by

p°(t) = —logy(1 — m’(t)) (68)

In the REM protocol, the receiver estimates mg as the fraction of marked packets in the
most recently received N packets. This estimate is periodically polled to compute a price
estimate, which is then used by the source to regulate its rate.

In the following discussion, we will assume the presence of the REM packet marking
discipline—that is, each link sets the ECN bit according to (66). To develop a REM-like
protocol for single-rate multicast, we must find a way to estimate the total tree price using
marks collected by receivers scattered throughout the tree. This problem is difficult for two
reasons. First, an individual receiver will only see marks generated on links lying along an
end-to-end path between it and the source. Thus no single receiver will be able to estimate
the marking probability for the entire tree and the total tree price must be determined by
collecting information from all of the receivers. As explained below, we advocate the use
of active services within the network to collect this information while avoiding a feedback
implosion at the source. A second difficulty is that marks generated on shared links can
be counted by more than one receiver since a marked packet arriving at a branching point
will be forwarded on more than one downstream link. This double counting must either be
prevented or accounted for in the price estimate calculation. We will consider two approaches,
one that requires the network to prevent double counting and one that does not.

Collecting feedback from the entire receiver set may not be an unreasonable burden for

the source in small groups, but becomes impractical as the number of receivers grows large.
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Figure 8: A multicast tree with five receivers and four internal nodes.
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Figure 9: Example of a feedback aggregation service. Internal nodes combine messages
arriving from downstream receivers into a single message sent towards the source.
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We propose to take advantage of general purpose network services for multicast transport
such as GMTS [36] to address this problem. The particular service we require is feedback
aggregation. A simple form of feedback aggregation works for a set of possible feedback
messages S and a binary aggregation operator ¢ with the constraint that S must be closed
and associative under . Consider a multicast group with n receivers. Each receiver ¢ has
a message w; € S to send to the source. Suppose that the source needs to compute a value
w € S such that

w=w Dw, ®...»w, (69)

Routers in the multicast tree provide the feedback aggregation service by computing the
“partial sums” of messages from downstream receivers and forwarding the result upstream
as shown in Fig. 9. For the aggregation to work, receivers must be able to send their messages
toward the source along the reverse multicast tree. This reverse route for feedback is typically
established using session path messages [37, 36] to inform each node in the tree of the address
of its nearest upstream neighbor. We will show how a general purpose aggregation service
can be used by a REM-like congestion control protocol.

While a feedback aggregation service allows the source to efficiently collect information
from the entire receiver set, a more fundamental problem concerns what should be computed
by the individual receivers and by the sender. One possibility is for receivers to send infor-
mation about the fraction of marked packets received and have the sender compute the total
marking probability and the total price for the tree. Let us assume that receivers estimate
the marking probability by measuring the fraction of marks seen in the N most recently re-
ceived packets. It is not sufficient for receivers to simply send the fraction of marked packets.
Let M; be the event that a packet is marked by link /; and let Pr(M/;) be the probability
of this event occurring. Similarly, let M" be the event that a packet is marked somewhere
on the path between the source and receiver r, occurring with probability Pr(M"). Since
a single marking bit is available per packet, the detection of a mark by receiver » must be

interpreted to mean that at least one link along the packet’s path marked the packet,

Pr(M")=Pr| ) M|, (70)

leL(s,r)
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where L(s,7) C L(s) is the set of links in the path from the source to receiver r in session s.
Consider the marking probabilities estimated by the two leftmost receivers in the tree

shown in Fig. 8. Receiver 1 estimates a marking probability of

Pr(M*') = Pr(M, U My U My U M), (71)
while receiver 2 estimate a marking probability of

Pr(M?) = Pr(M; U My U My U M) (72)

Suppose both receivers send their estimated probabilities to their immediate upstream router.

We would like this router to aggregate these values to yield an estimate of
Pr(M' U M?) = Pr(M") + Pr(M?) — Pr(M' N M?) (73)

Unfortunately, the router does not have enough information to perform this operation.
Specifically, the router has no way to estimate the cross term in equation (73), which repre-
sents the fraction of losses on links shared by both receivers.

Suppose now that instead of sending the fraction of marked packets, each receiver sends
a vector of IV bits representing the N most recently received packets, indicating a marked
packet by placing a 1 at the corresponding bit. Routers can easily aggregate these messages
by using a bitwise-OR as the aggregation operator. As a result of this aggregation taking
place at each level of the tree, the source receives a single vector with bits set for each packet
that was marked on route to at least one receiver. The total marking probability for the
entire tree can be estimated as the fraction of bits in this vector that are set.

While this approach can in principle use the feedback aggregation mechanism to allow
the source to efficiently estimate the tree price, it suffers from a drawback as the size of the
tree grows. For large trees, the total marking probability, that is, the probability that a
packet is marked on at least one link in the tree, is likely to be very close to one. Since the
marking probability in (67) approaches one asymptotically, it is very difficult to get a precise
estimate of the tree price for values close to one. For large trees, one would have to increase
the number of packets N over which the measurement is taken, leading to a less responsive

protocol and a larger size for feedback messages.
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Figure 10: Partitioning the tree of Fig. 8 into disjoint paths for the purposes of price
estimation. This partition is generated by a mark forwarding rule in which each internal
node forwards a mark on the leftmost downstream interface only.

An alternative approach requires the network to prevent the double-counting of marked
packets by ensuring that marks generated on a given link reach exactly one receiver. Concep-
tually, this approach divides the entire multicast tree into disjoint end-to-end paths, one for
each receiver. Each receiver then estimates the price along its assigned path. The total tree
price can be computed using feedback aggregation with binary addition as the aggregation
operator. Routers prevent double counting by resetting the ECN bit of a marked packet
for all but one of the forwarded copies. The router must use a deterministic rule, such as
always preserving the mark on the lowest indexed downstream interface to ensure that the
same receiver sees all marks generated on a particular link. Fig. 10 shows the resulting
partition for a simple mark-forwarding rule. Because marks are forwarded deterministically
along a single branch of the tree, marks generated on links that are shared by many receivers
will be assigned to exactly one of those receivers. Furthermore, the longest path assigned
to any receiver will be comparable in length to a unicast path, which means that marking
probability used to estimate the price along this path will not be close to 1.

The choice of a mark collection scheme thus poses a tradeoff. The bit-vector approach
assumes no additional capabilities inside the network other than the REM packet marking
discipline, but suffers from a loss of precision and responsiveness as the multicast tree scales
in size. We can address these limitations by having receivers estimate prices for disjoint paths
in the tree, however, we must introduce additional complexity in routers to ensure that marks

are delivered to the appropriate receiver. We leave a quantitative characterization of these
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tradeoffs as an area of future work.
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