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Abstract

Network performance evaluation through traditional packet-level simulation is becoming
increasingly difficult as today’s networks grow in scale along many dimensions. As a con-
sequence, fluid simulation has been proposed to cope with the size and complexity of such
systems. This study focuses on analyzing and comparing the relative efficiencies of fluid
simulation and packet-level simulation for several network scenarios. We use the “simulation
event” rate to measure the computational effort of the simulators and show that this measure
is both adequate and accurate. For some scenarios, we derive analytical results for the simu-
lation event rate and identify the major factors that contribute to the simulation event rate.
Among these factors, the “ripple effect” is very important since it can significantly increase
the fluid simulation event rate. For a tandem queueing system, we identify the boundary
condition to establish regions where one simulation paradigm is more efficient than the other.
Flow aggregation is considered as a technique to reduce the impact of the “ripple effect” in
fluid simulation. We also show that WFQ scheduling discipline can limit the “ripple effect”,
making fluid simulation particularly well suited for WFQ models. Our results show that
tradeoffs between parameters of a network model determines the most efficient simulation
approach.

1 Introduction

Traditionally, packet-level simulation has been widely used for performance evaluation of com-
puter networks. However, this technique does not scale well as the size and complexity of net-
works increases. The fast growth of data communication networks over the past decade makes
this approach computationally expensive, if not infeasible, for truly large scale models. Conse-
quently, efficient simulation techniques for such networking models have become an important
issue.

Many methods have been proposed to speed up network simulation. These methodologies
can be categorized into three different and orthogonal types (Figure 1): computational power;
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simulation technology; and simulation model. In the direction of computational power, simula-
tions can be sped up by using faster and more powerful machines. In the simulation technology
direction, new enhanced algorithms for implementing the simulation can further speedup sim-
ulation. Algorithms such as the calendar queue algorithm and splay tree algorithm have been
proposed in order to improve the efficiency of event list manipulation. Another technique in
this direction that has received much attention in the literature, is the RESTART mechanism
that explores rare event simulation [16]. A third approach is to use models with a higher level
of abstraction, simplifying the simulation and improving its efficiency. The tradeoff in this case,
is the accuracy of the desired measures of interest obtained by the more abstract model. For
example, the packet-train simulation technique models a cluster of closely-spaced packets as a
single “packet-train” [1].
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Figure 1: Different ways to speed up simulation

Another modeling technique making simplified assumptions about the real system is the fluid
model, which was first proposed by Anick et al. in [2] to model data network traffic. In the
fluid simulation paradigm, network traffic is modeled in terms of a continuous fluid flow, rather
than discrete packet instances. A cluster of closely-spaced packets may be modeled as a single
fluid chunk with a constant fluid rate, with small time-scale variations in the packet stream
being abstracted out of the model. A fluid simulator keeps track of the fluid rate changes at
traffic sources and network queues. An equivalent packet-level simulator would keep track of all
individual packets in the network. In fluid simulation, the higher level of abstraction suggests
that less processing might be needed to simulate network traffic. Intuitively, this is not surprising
as a large number of packets can be represented by a single fluid chunk. For simple network
components, where traffic flows do not compete for resources, the fluid simulator outperforms
the packet-level simulator. An example would be a link that connects two nodes and never
experiences queueing; this component only introduces a constant propagation delay.

However, for other components where different traffic flows meet and contend for limited
resources, it does not easily follow that fluid simulation always outperforms packet-level simu-
lation. The management of the limited resource can significantly increase the total processing
required by the fluid simulator. In previous work [10], we found that the fluid simulation can
sometimes be less efficient than packet-level simulation due to this reason.

In this paper, we investigate several common networking scenarios and compare the amount
of computational effort required by fluid simulation and packet-level simulation. As a measure
of computational effort, we use the notion of event rate and show that this is both adequate and
accurate. We derive analytical results to characterize the event rate for some of the scenarios
studied. We identify the major factors that contribute to the event rate of both fluid and packet-
level simulation approaches and establish the tradeoffs between the different factors. The flow
aggregation is considered as a technique to reduce the fluid simulation event rate. We also show



that WFQ scheduling discipline can reduce the impact of the “ripple effect” in fluid simulation.
We designed and implemented a fluid simulator and a packet-level simulator in order to explore
their functionalities and validate analytical results.

One drawback of a fluid model is that the accuracy of the interest measures is compromised
due to the abstraction. In this study we will not address the accuracy issues of the fluid simulator,
but rather focus on the relative efficiencies of fluid and packet-level simulation. Nicol et al. [11]
claim that despite the high level of abstraction of fluid models, the error of estimated measures
obtained with fluid simulation is very small compared to the results of packet-level simulation.
Another important issue that will not be addressed in this paper is how performance measures
can be obtained via fluid simulation. However, we note that in [11, 13, 14], the authors show
how performance measures such as end-to-end delay and loss characterization can be computed
in fluid simulations.

The rest of the paper is structured as follows. Section 2 gives a brief review of fluid models
and previous work. In Section 3 feed-forward network models are presented and analyzed.
Section 4 investigates the performance of feedback network models. In Section 5 we show that
flow aggregation can significantly reduce the fluid simulation event rate. Preliminary results
concerning WFQ are provided in Section 6. Finally, concluding remarks and discussions are
presented in Section 7.

2 Background and previous work

In this section we describe the networking model components that will be used as building blocks
to create the scenarios investigated throughout this paper. The two basic building blocks are the
source model and the multiplexer model. More complex network models are constructed using
these two components. In the following we consider the dynamics of the two basic components
for fluid and packet models.

Markovian on-off source models are often used in network research to capture the bursty
nature of the network traffic. Both packet and fluid versions of these source models are widely
encountered in the literature. The source transits between an on and off state, remaining in each
state for an exponentially distributed amount of time. Throughout this paper, the transition
rate from on state to off state and vice versa will be denoted by A and pu, respectively. When in
the on state, a packet source transmits packets according to a Poisson process with rate «, while
a fluid source sends out fluid at a constant rate. No packet or fluid is sent during the off period.
Without loss of generality, assume that packets have a fixed size z. In order for a fluid source
to be considered equivalent to a packet source, we would minimally require that both have the
same average data rate. Given this condition, the fluid peak rate should be set to be h = .
Figure 2 illustrates the behavior of the on-off fluid packet and fluid sources.
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Figure 2: The on-off fluid source and packet source

The second basic component of network models is the multiplexer. An important charac-



teristic of a multiplexer is its scheduling discipline. In this paper, two scheduling disciplines are
considered: FIFO and WFQ. The dynamic of FIFO scheduling is described here and WFQ is
presented in Section 6.

For a given scheduling policy, the dynamics of the multiplexer depends on the underlying
traffic model (fluid or packet). In the FIFO packet model, packets are placed into and served
from a queue according to the order of their arrival. Figure 3 depicts a FIFO queue being fed by
three different sources. Note that the departure process of the packets is similar to the arrival
pattern. The only difference is the spacing between packets.
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Figure 3: Dynamics of a FIFO packet multiplexer

In the FIFO fluid model, the dynamics of the multiplexer are more subtle [10]. First, note
that fluid from two different sources are distinct and do not mix, just as packets transmitted by
two sources can be differentiated at the queue. Figure 4 depicts the dynamics of a FIFO fluid
multiplexer being fed by three independent and identical sources. For this example, assume that
the arrival rate of one source is equal to the service rate of the multiplexer. At time T0 the
second source enters the on state and immediately starts to receive service at full capacity. At
time T'1, source 1 turns on and both flows must now share the service rate equally. At time
T2, source 3 starts transmitting and eventually, at time T'2) all of them will share the service
rate equally. Note that the arrival of flow 3 at time T2 causes flow 1 and flow 2 to change their
departure rates at 72'. In general, the arrival of a new flow can cause a departure rate change
in many other flows. Note that the output process of a given source can contain many more
rate changes than the arrival process. For a larger network model, these rate changes will be
propagated downstream causing even more rate changes in the departure process of other flows.
This propagation and amplification of rate changes has been observed before and is known as
the ripple effect [9, 10]. We will shortly see that the ripple effect has a profound impact on the
efficiency of fluid simulation.

However, not every flow rate change affects the output rates of all the other flows currently
being serviced. If the sum of the rates of all arriving flows is smaller than the service rate of the
queue, then a flow rate change does not affect other flows currently being serviced. In this case,
we say that a flow rate change does not “interfere” with other flows in the queue. An arrival
flow rate change causing other flow rate changes in the departure of the queue is called “flow
interference”.
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Figure 4: Dynamics of a FIFO fluid multiplexer

To better understand how different flows are stored and served in a multiplexer, we introduce
the concept of fluid chunk. A fluid chunk is a contiguous well-defined amount of fluid stored in
the queue. Figure 5 illustrates three chunks of fluid formed by two different flows. Note that
within a chunk the ratio of the arrival rate among different flows remains constant. Chunks are



determined and placed in the queue in the order that they arrive. A chunk is served once it
reaches the head of the queue. All the flows in the chunk are served simultaneously, with service
rates proportional to the flow arrival rates within the chunk. Figure 5 depicts three fluid chunks
that are formed by the rate changes of two flows. In the first chunk the arrival rate of flow 1
was greater than that of flow 2. In the second chunk the arrival rates are equal, and in the last
chunk flow 2 goes off.

Another intrinsic characteristic of fluid simulation is flow merging, and consequently, the
flow merging probability. Flow merging can be best understood with a single source single
queue model. It occurs when the queue is back-logged and the source transits from the off to
the on state. In this case, the output rate of the flow will not change at the end of the current
chunk, and the two consecutive fluid chunks will merge in the queue. The probability that such
a scenario occurs during simulation is denoted as the merging probability, i.e., the probability
that a rate change on an input flow does not introduce a new chunk.
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Figure 5: Different fluid chunks in a FIFO queue

In order to compare the relative efficiencies of fluid simulation and packet-level simulation,
we must establish a common measure of computational effort. In a simulation, basic events such
as packet arrival/departure or fluid rate change, are fundamental units of work and (as we shall
see) are directly related to the computational effort involved in a simulation. Therefore, we use
the simulation event rate as a measure of computational effort. The event rate of a simulator is

defined as:

e = lim NG (1)
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where N(t) is the total number of events processed by the simulator by simulation time ¢.

In a packet-level simulation, events include source transitions, packet generation and packet
departures from queues. For fluid simulation, events include source transitions and flow rate
changes at sources and queues. We note that different events usually require different amounts of
computational work, and these differences may change from one simulator to another. However,
since the event rate includes all the events within the simulator and each event represents a
basic computational effort, we expect the event rate to be an adequate measure of the overall
computational effort of the simulator. We will indeed see that the execution time of a simulation
is proportional to the corresponding event rate.

In order to compare the actual efficiency between fluid simulation and packet simulation,
and validate analytical results obtained, two simulation frameworks were designed and imple-
mented. The framework developed consists of simple and independent network components
such as sources, links, routers and queues that form the building blocks for the network model.
These building blocks can be instantiated by specifying their specific parameters, and connected
together to form a much larger complex model. Each simulator framework corresponds to a
modeling technique, packet or fluid, and both have a very similar interface so that a model can
be executed in the packet or fluid simulator with minimum modification. Both simulators were
constructed using the SSF (Scalable Simulation Framework) framework, which itself allows the
construction of general purpose event-driven simulation [3]. Several APIs are publicly available
in different programming languages. In our work, we used the DaSSF implementation which



provides enhanced simulation features such as scalable parallel techniques [4]. Both packet and
fluid simulator frameworks developed as part of this study are publicly available !.

All simulation experiments conducted in this report were carried out using the simulation
frameworks mentioned above. The simulations were performed on a dual processor Pentium-II1
730MHz machine with 1Gb of physical memory running Red Hat Linux release 6.1 with kernel
version 2.2.14-mosix SMP.

In all experiments involving a comparison between fluid and packet-level simulation, the
sample path of the on and off periods of corresponding sources is the same. The purpose is
to highlight other types of events occurring in the simulation and establish a fair comparison
between the two simulators.

3 Feed-Forward FIFO Networks

In this section, we compare the simulation event rate between the fluid simulation and packet-
level simulation, in the context of feed-forward FIFO networks.

In order to investigate the impact of the ripple effect on the amount of computational effort
required to simulate a network model, we first present a system consisting of a single on-off
source and a single FIFO queue. This case does not exhibit a ripple effect since there is only
one flow going through the queue. In our previous work [10], an analytical approximation for
the event rate of a single FIFO queue was presented. The analysis in [10] contains a parameter
to represent the merging probability, which was not solved. Using the technique presented in
[2], we can obtain an exact analytical expression for the event rate of this model. The precise
expression for the fluid simulation event rate is now given by:
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The derivation of this formula can be found in [6] and the result can be interpreted as follows.
The first term in (2) is the event rate generated by the source transitions. Every time the source
changes it state, a new event is counted, representing the flow rate change of that source. The
second term is the queue departure event rate. This term accounts for the flow rate changes
generated by the queue and the effect of chunk merging.

Compared with the exact packet-level simulation event rate et = 2 /(A +p) + 2uy/ (A + p)
[10], with ef from equation (2), we note that the fluid simulation outperforms packet-level
simulation if v > A/p(A+p—Ah/c). This analysis was validated by simulation results. Therefore,
for a single source, single queue case, a fluid simulation will require less computing than a
corresponding packet-level simulation whenever the above condition for v holds. We will see
shortly however, that this advantage is mitigated by the ripple effect in the case of multiple
queues.

Now we consider a larger and more complicated feed-forward network. The tandem queueing
network was chosen as a concrete example to represent a feed-forward network because of its
simple and regular topology. This permits tractable analytical models of simulation efficiency
to be constructed and also allows easy parameterization of the model. At the same time, a more

!The simulator can be obtained at http://gaia.cs.umass.edu/fluidsim
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Figure 6: A tandem queueing network

complicated feed-forward queueing network can be decomposed into many tandem queues with
different parameters. We will see that by understanding the simple tandem queueing system,
considerable insight can be gained into more complicated feed-forward networks.

The tandem queueing network model considered in this section is depicted in Figure 6. In
this particular model, there are N input flows at each queue, with flow 0 starting as an on-off
source at node 0, and traversing through all the nodes. The other (N — 1) flows, which are
all identical and independent on-off sources, leave the system after passing through one node.
Although, this system has many parameters that can be tuned, two of them - the number of
sources entering each node and the number of nodes in the system - are the most important,
since they have direct influence on the ripple effect. Thus, both will be explored and discussed
in the following.

We first consider the number of nodes in the tandem queue. The model investigated has 15
sources (14 new entering each node) per node with a constant load of 0.8 and A = u = 1. Figure
7 presents the results obtained from the simulators. We observe that the fluid simulation event
rate increases quadratically with the number of nodes in the system. This quadratic behavior
is caused by the ripple effect, which propagates further as the number of nodes increases. The
packet-level simulation results in Figure 7 are for v = 3, and, not surprisingly, presents a linear
increase. However, the fluid simulation can still be more efficient when the number of nodes is
small or when v, the packet rate, is large. Note that the fluid simulation does not depend on -,
enabling it to outperform its counterpart when + is large. Other models with different number
of sources entering each node also exhibit the same behavior.

3500
Model with 15 sources
3000 [ Fluid simulaton ——
Packet simulation - - - 7=3

2500

2000

ion event rate

1500

Simulati

1000

500

0 — I n n n n
0 5 10 15 20 25 30 35 40
Number of Nodes

Figure 7: Simulation event rate of a tandem system

In previous work, we derived analytical results for the tandem queueing system in order to
compare the efficiency between packet-level and fluid simulation [10]. That analysis focused
on studying the behavior of the tandem queue under different number of nodes in the system
under simplifying assumptions. The analytical results predict the quadratic growth of the fluid
simulation event rate, which is corroborated by the simulation results presented here.

The second important parameter is the number of flows entering each node in the tandem
system. This parameter affects the amount of interaction among different flows which gives rise
to the ripple effect. The scenario we consider here has 20 nodes with a constant load of 0.8 and



A = u = 1. The service rate of the queues is scaled to maintain a constant load for different
number of sources. The packet-level simulation results are shown for v = 3. Figure 8 presents
the simulation results obtained for this model. Note that the fluid simulation event rate increases
sub-linearly with the number of flows, while the packet-level simulation increases linearly. Again,
the fluid simulation event rate does not depend on ~y, and will eventually outperform the packet-
level simulation. Note that the results obtained in this case are opposite to the ones obtained
when varying the number of nodes. Here, the fluid simulation will eventually outperform the
packet-level simulation due to its sub-linear increase. A possible explanation for the sub-linear
increase in the event rate of the fluid simulation lies in the behavior of the ripple effect. Since
the service rate is increased to maintain the load constant, the number of flows that can be
serviced by the queue without interfering with each other increases. This can reduce the ripple
effect, since less interference among flows will occur.
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Figure 8: Simulation event rate of a tandem system

The tradeoff between these different parameters leads to the conclusion that the parameter
space can be partitioned into regions such that, in each region, either fluid or packet-level
simulation is always superior. A simple analysis will allow us to get a rough (approximate)
idea of these regions. Even though the location of these boundaries may not be precise due to
approximations in the analysis, it is important to note that such regions do exist.

Let R/(K) and RP(K) denote the fluid and packet simulation event rates for a K node
tandem queueing system. The events associated with the simulation of the sources are not
considered, since these are identical for both paradigms. Based on the propositions in [10], the
fluid event rate is given by:

2
RI(K) = ﬁ [NK + (N = Do

where the term «q is the probability that source 0 is in the on state.

(K — I)K]

5 3)

The packet-level simulation event rate is determined by the number of packets sent by each
source and the number of nodes each packet traverses. This leads to:

2y
RP(K)=NK - - 4
(K) Nt (4)

To investigate the relative efficiency of both simulation paradigms and determine a boundary
condition, let Rf(K) = RP(K). Solving for N leads to:
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Figure 9: Boundary condition for efficiency and regions between fluid and packet simulation

If this equation is satisfied, then the fluid and packet simulation event rates are equally
efficient. Figure 9 shows the N-y boundary condition curves with different number of nodes K
in the system. For a given value of K, the tradeoff curve carries the following interpretation: if
the point (Ng, 7o) lies to the right of the curve, fluid simulation is more efficient than its packet
counterpart; otherwise, packet simulation is more efficient. We observe that increasing K shifts
the tradeoff curve to the right, increasing the space in which packet simulation is more efficient
(has a smaller event rate). The asymptotic line can be obtained from (5) and is given by:
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The fluid simulation is always more efficient if 7/, the number of packets transmitted per
on period, is greater than (ago/2K — ago/2 + 1), regardless of the size of the tandem queueing
system. This is expected since the event rate of fluid simulation does not depend on -y, while the
packet-level event rate is proportional to . This result confirms the existence of boundaries of
regions where one simulation paradigm (fluid or packet-level) is always more efficient than the
other. Boundaries and regions based on other parameters such as N-K, were also be established
and can be found in [6].

For more complicated feed-forward queueing networks, where different flows can traverse
more nodes and interact with more flows, we conjecture that the ripple effect will be even more
pronounced. However, the event rate should still be finite because a flow rate change traverses
only a finite number of nodes in the network before it leaves the system. Thus the number
of extra events caused by ripple effect is finite. Even these more complicated networks are
expected to have well-defined regions in which either the fluid or the packet-level simulation is
more efficient.

4 Feedback queueing networks

In the previous section our analytical and simulation results for a tandem queueing network
demonstrated that the event rate for a fluid simulation is finite for any stable feed-forward
queueing networks. In this section we consider a network that has a cycle. We saw earlier
that with fluid simulation a flow rate change can cause a change in the output rate of other
flows, thus affecting other flows at downstream nodes. This “ripple effect” could be particularly
worrisome in a cyclic network. A flow rate change can modify the rate of several other flows and



all these rate changes can traverse the nodes in a cycle and spawn more rate changes, resulting
in a cascade of flow rate changes. In such a scenario, the event rate of the simulation could grow
without bound.
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Figure 10: A feedback queueing model

In this section we investigate the simulation event rate of a feedback queueing system using
the cyclic queueing model, depicted in Figure 10. We consider the effect of different parameters
on the simulation event rate. The relationship between the event rate and the corresponding
execution time is also presented to support our use of the simulation event rate as the measure
of computational effort in a simulation.

4.1 A feedback queueing model

The scenario illustrated in Figure 10 contains four identical FIFO queues with infinite storage
capacity that are connected together to form a cycle. A single on-off source is injected into
each of the queues. The routing of the flows is predefined so that each flow traverses exactly
three queues before departing the system. In this setting, three different flows pass through each
queue. The four traffic sources are identical, with equal on and off periods and the peak rates
are set to 1. The stability condition of this system requires the service rate to be greater than
1.5, which is the average aggregate input rate at each of the queues. In order to evaluate this
system under different loads, the service rate will be varied. We will see that another important
parameter is the link propagation delay, which will also be varied, taking values of 0.001, 0.01,
0.1 and 1 time units. The simulation event rate and execution time were collected for service
rates ranging from 1.6 to 3.1, which corresponds to system loads of 0.9375 to 0.5.

4.2 Results of fluid simulation

The fluid simulation event rate of the feedback queueing model is plotted in Figure 11, as a
function of service rate. The four staircase curves correspond to four different link propagation
delays. In the same figure, the event rates of the packet-level simulation of the same model are
plotted, with different packet transmission rates (7).
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Figure 11: Simulation event rate for the feedback queueing model

We first note that Figure 11 shows that the fluid simulation event rate of the simulation
converges (is finite) for all different service rates and link delays. This can be explained informally
by considering the dynamics of the FIFO queue. Note that an input flow rate change does not
cause new rate changes among output flows at a queue if the queue is empty and, at the same
time, the aggregate arrival rate into the queue is smaller than the queue’s service rate. So even
for a closed-loop queueing system, a flow rate change can only cause a finite number of new rate
changes at “downstream” queues, if the probability that a queue is empty and the aggregated
arrival rate is smaller than the service rate is greater than zero. If this condition holds, then a
flow rate change will eventually arrive at a queue in which this rate change will pass through
without causing rate changes in other flows.

This convergence condition is directly related to the service rate of the queues, which inter-
estingly has two opposite effects on the simulation event rate. First, as the service rate increases,
the average queueing delay decreases, making the fluid rate changes propagate faster through
the closed loop. This effect tends to increase the event rate, since more fluid rate changes occur
within a fixed time interval. On the other hand, a larger service rate implies that the queue is
more likely to be empty and at the same time, the aggregate arrival rate is smaller than the
service rate, resulting in a larger probability that a rate change will not cause a ripple effect.
This effect tends to reduce the simulation event rate. It is the tradeoff between these two factors
that determines the simulation event rate. From Figure 11, we see that in this model, when the
service rate is below 2, the first factor dominates, and the event rate increases as the service
rate increases. For service rates greater than 2, the second factor becomes more salient, leading
to the flattening of the event rates.

Another important factor affecting the event rate in the closed loop system is the link prop-
agation delay between adjacent queues. The smaller the link delay, the less time it takes for a
rate change to propagate around the network. Smaller link delays will result in more flow rate
changes in a unit of time, causing the overall simulation event rate to increase. Therefore, for a
given service rate, the event rate increases as the link delay decreases.

Another interesting observation can also be noted in Figure 11. Each event curve exhibits
two discontinuities at service rates of 2 and 3, where event rate drops dramatically. These
discontinuities can be explained as follows. When a flow rate change arrives at a queue, if the
queue has a backlog, the rate change will cause new rate changes in all the other flows with a
non-zero flow rate. When the queue is empty, this only happens when the aggregated arrival
rate is larger than the service rate. Therefore, the probability that a rate change causes a ripple
effect is the sum of the probability that either the queue is not empty or the queue is empty but
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the aggregated arrival rate is now larger than service rate.

To explain the simulation event rate drop when the service rate is two, we consider two
service rates, one slightly less than two, the other slightly greater. We denote these two service
rates as (2 —€) and (2 + €), where € < 1. The probability that a queue is empty can be taken
to be the same for these two cases. Now we consider the probability that aggregated arrival
rate is greater than service rate. For the case when the service rate is (2 — €), the aggregated
arrival rate is larger than the service rate when two or more sources are simultaneously on. In
our model this probability is 11/16. For the case when the service rate is(2 + ¢€), the aggregated
arrival rate is larger than the service rate only when at least three sources are simultaneously
on; the probability of this event is 5/16. The probability that a rate change causes a ripple
effect is much smaller when the service rate reaches two from the left and this probability jump
causes a major drop in event rate, which leads to the discontinuity. The discontinuity at service
rate three can be explained via similar arguments.
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Figure 12: A similar model with no feedback loop

To examine how a feedback system magnifies the fluid simulation event rate, we next analyze
simulation event rates in the model illustrated in Figure 12, which does not contain a closed
loop but otherwise is quite similar to the model in Figure 10. The number of queues remains the
same but a link in the original model was removed in order to break up the loop. To preserve
the degree of interaction at each queue, two extra sources were added to the first queue so that
the number of flows passing through each queue remains the same. The purpose of this model
is not to represent a feedback system but rather try to capture the impact that a closed loop
has on the fluid simulation event rate. The simulation event rate for both models is presented
in Figure 13. The link propagation delay in both models is 0.001, although this parameter has
no impact on the feed forward model. It can be observed that the event rate for the closed loop
model is considerably higher than for the open loop model. This is due to the fact that a rate
change may traverse the closed loop many times, causing new rate changes in other flows. This
result indicates that the events generated by looping around account for a large fraction of the
overall number of events in the simulation.
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Figure 13: Simulation event rates

For a cyclic queueing network, one would expect that more interaction among flows causes
more ripple effects, resulting in a higher event rate. To show how different interaction levels
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Figure 14: Simulation Event rate for a 6-node cyclic queue

affect the fluid simulation event rate, we extended the cyclic queueing model in Figure 10 to
contain six nodes. In the simulation, we varied the number of queues a flow traverses, decreased
the service rate to scale the load, and obtained the results shown in Figure 14. As expected,
the event rates increases as the interaction level increases, i.e., a flow traverses more hops. The
event rates also exhibit discontinuities and behaviors as a function of load similar to that for
the four node model.

4.3 Results of packet-level simulation

A closed loop does not introduce any special consideration into a packet-level simulation model.
A packet is simply generated at a source, traverses through three queues, and leaves the system
without introducing any extra events to other packet flows. When the system is stable, the
simulation event rate is independent of the service rate and link propagation delay. The packet-
level simulation event rate for the model in Figure 10 is thus fully determined by the packet rate
of the source and the number of nodes a flow traverses and is given by:

el = (es + eqNp) Ny, (6)

where e, represents the event rate of a single source; e, is the event rate of the queue and any
other components between adjacent queues (i.e., link, router) per flow; Np is the number of
hops traversed by each flow; and NV, is the total number of nodes in the system. The simulation
event rate at a node is the sum of the event rate of the sources and the event rate of components
between adjacent nodes (es + e,Np,). The event rate of the model is just the sum of event rates
of the N,, nodes.

This formula was verified with simulation results (not presented here), and was used to plot
the event rates for v = 1,5, 10 in Figure 11. This yields a comparison between the two simulation
techniques. Notice that the fluid simulation is more efficient if the packet transmission rate of
the source, 7, is greater than 10. Note that for a on-off packet voice model, the typical on
period averages between 0.4 and 1.2 seconds [15]. Study [8] suggests that a voice packet should
be transmitted every 20 ms, which has been widely adopted by many voice applications tools,
such as vat [7]. Using these parameters, a typical value for the packet rate (y) is 30. For models
having these parameters, the fluid simulation is likely to be more efficient.
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Figure 15: Measured simulation execution time vs service rate
4.4 CPU time versus event rate

In order to evaluate the appropriateness of our using the simulation event rate as a measure
of computation effort, the execution times of the simulations were collected. In Figure 15, the
simulation execution time corresponding to the event rate curves are presented. Comparing
Figure 11, which plots event rate as a function of service rate, with Figure 15, which plots
execution time as a function of service rate, we see that both exhibit the same behaviors. This
suggests that the basic event rate defined in Equation 1 is a good measure of a simulation’s
computational cost and can be used to establish a comparison.

5 Flow Aggregation in Fluid Simulation

The analysis of the tandem queue model in Section 3 shows that the interaction between different
flows can cause a ripple effect in a queueing network, greatly increasing the computational effort
needed by fluid simulation when the network is large. A standard method for combatting this
is to isolate the flow of interest and aggregate the remaining flows into a single flow. In this
section we study the effect of flow aggregation on the simulation event rate for both packet-level
and fluid simulation and discuss the implications.

Aggregated

Arriva J—i Aggregated
Departure
Figure 16: Example of flow aggregation

In packet-level simulation, flow aggregation does not reduce the number of events simulated,
since the simulator must still keep track of each individual packets being generated by the source.
It does not matter if the packet belongs to the aggregated background traffic flow or to the flow
of interest. In fluid simulation, however, a flow rate change can cause many rate changes in other
flows - changes that occur at the same simulation time. If the flows are aggregated together,
only one rate change will occur, representing the overall effect of the individual rate changes on
the aggregate flow. Figure 16 illustrates the savings of flow aggregation. In this example, three
flows (a1, a2, a3) are fed into a FIFO queue. After the interaction among the flows at the queue,
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the corresponding departure processes is given by dy, ds, d3, respectively. The aggregated arrival
process and departure process are plotted below the individual flows. In the figure we observe
that the number of rate changes in the aggregated arrival process is equal to the sum of the rate
changes of all the individual arriving flows. Hence, no savings are obtained in the arrival process
with source aggregation. However, the total number of rate changes in the departure process of
the individual flows is 11, while, the aggregated departure process exhibits only 3 rate changes.
There are two important factors that lead to the large event rate reduction. One is that a rate
change in the aggregated flow may represent many simultaneous rate changes in the individual
flows, which are counted as only a single event in the aggregate flow. The other factor is that
after aggregation, all the individual flows become a single flow. Therefore, the probability of
merging between fluid chunks increases.

To measure the improvements obtained with flow aggregation, we present an analysis of a
model with a single queue being fed with multiple identical on-off sources. Since the sources
make the same contribution to the overall simulation event rate in both the aggregated and
non-aggregated scenarios, the following analysis only considers the event rate of the departure
processes. The difference between the two cases would be solely due to the flow aggregation.

Consider a FIFO queue fed by N independent and identical Markovian on-off sources, the
probability that a single source is in the on state is & = pu/(A + p) and the event rate of each
source is 2Ap/(A + p). Ignoring the merging of fluid chunks and other subtleties intrinsic to
fluid simulation [10], the event rate of the departure process without flow aggregation, denoted
by ef, can be approximated by:

el = g:(”\—'u—l—”\—'u(N—l)a)

S\A+p o Atp
2 p

= —(1- N)N 7
(- atan) ™)

The first term inside the summation is the event rate generated by the transitions of a source.
The second term accounts for the rate changes in this flow caused by interference of other flows.

Suppose next that one is interested in the N-th flow and treats all the other flows as a single
aggregated background traffic flow. In this case, each rate change of the N-th flow may cause
one rate change in the aggregated flow, and each rate change in the aggregated flow may cause
one rate change in the N-th flow. Let o/ denote the probability that at least one source in the
aggregated traffic in on; we have o/ = 1 — (1 — )V 1. Again, ignoring the merging of flow
chunks and the events due to the special chunk effect, the approximation for event rate e{; is:

2) 2)
el = [_,u Rl (N — l)a] +
Adp A+p
2 2 ,]
SN —1 8
[A+u( )+ e (8)

The term in the first bracket is the event rate of the IN-th flow. The second term is the event
rate of the aggregate flow, which represents the other N — 1 flows.

The above analysis indicates that in the worst case, the event rate increases quadratically
with the number of sources feeding the queue if the identity of each flow is preserved. With flow
aggregation, the event rate becomes to increase linearly with the number of flows.
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Simulation results presented in Figure 17 show exactly how flow aggregation can considerably
reduce the simulation event rate. In this simulation, the sources are all identical, with A = p = 1,
and peak rate equal to 1. The service rate of the queue of the infinite capacity FIFO queue
is 5. The two curves in the figure show how the simulation event rate varies as the number of
identical sources increases from 2 to 19. Note that the load increases with the number of sources
and the system becomes unstable with 20 sources.

We observe that in Figure 17 the event rate without flow aggregation increases quadratically
with the total number of sources, as predicted by the analysis. The event rate with flow aggre-
gation increases linearly at the beginning and eventually decreases after the number of sources
reaches 12. The reason for this behavior is that as the number of flows aggregated together
increases, the merging probability becomes larger and can further reduce the event rate. For
real network models, the number of flows going through a queue is usually large enough that the
flow aggregation can greatly reduce the event rate and the execution time of the fluid simulator.

— — - aggregated source
Lo non aggregated source
packet simulation 7 = 20

60 [

Queue Departure Event Rate

IS
S

N
S

8 10 2 14 16 18 20
Number of identical sources

Figure 17: Event rate of flow aggregation and no aggregation

The event rate of the packet-level simulation for the above scenario is just the aggregated
packet transmission rate of the sources:

W
P = .~ N 9
i (9)
where v is the packet transmission rate when the source is in the on period. Note that the first
term represents the fraction of time the source is on.

While the ripple effect can induce a large number of extra events in fluid simulation, which
can be prohibitive for large scale network, the flow aggregation technique provides an instrument
to reduce the effect of interaction among flows, hence reducing the overall event rate. Also note
that the event rate of fluid simulation with flow aggregation exhibits the same asymptotic linear
behavior as packet-level simulation. If the packet rate () is large, then the fluid simulation can
outperform the packet-level simulation for tandem network models, which would not be true
without the flow aggregation. An example of this potential is illustrated in Figure 17, where
the aggregated fluid simulation outperforms the packet-level simulation with v = 20, and the
simulation without flow aggregation performs the worst.

16



6 Weighted Fair Queueing in Fluid simulation

All the scenarios studied thus far have involved FIFO queues. The dynamics of FIFO queues
directly cause the ripple effect, which can significantly increase the event rate of fluid simulation
for a large network model. Weighted fair queueing (WFQ) [5] provides a certain degree of sepa-
ration between flows from different sources, and we will see that this separation will significantly
decrease the impact of the ripple effect in WFQ queues. A comparison between the fluid and
packet-level simulation event rates of WFQ queueing network models is presented.

A fluid WFQ server is work conserving and operates at a fixed rate ¢. The server will thus be
busy if there is fluid stored in any of its subqueues. A WFQ node consists of a set of K classes
or subqueues, each having the FIFO policy and being fed by one or more different flows. The
service rate is distributed among the classes according to a set of positive partition parameters
{¢1, b2, -, dx}. The details of the dynamics of a WFQ node can be found in [12].

In a WFQ node, if the service rates distributed to each subqueue is kept constant, a flow
only interacts with those flows that merge into the same class, instead of all the flows arriving at
the node. In this case, interference among flows that belong to different classes is eliminated by
the isolation mechanism provided by the WFQ scheduling discipline. Less interference among
flows in WFQ node reduces the ripple effect, and hence, the simulation event rate.

However, due to the work conserving policy of WFQ, the service rate allocated to each class
can change. These changes occur when some subqueues require less service rate than their
partitions while other subqueues can use more service rate than their partitions. The service
rate of a class depends on the size of the corresponding FIFO subqueue, the fluid arrival rate,
as well as the queue length of other classes. The dynamics of WFQ are illustrated in Figure 18.
The weight for each queue is 0.5 and the service rate is c¢. Initially flow 1 grabs the entire service
rate c. At time ¢; flow 2 turns on, and the two queues begin to share the service rate equally,
resulting in a departure rate change for both flows at that moment. When flow 1 turns off at ¢o
and its queue empties at a later time t3, the service rate for flow 2 jumps to ¢, resulting in a fluid
departure rate change in flow 2. This dynamic allocation of the service rate is called the “service
rate redistribution process”. Therefore, a service rate change of a class can cause rate changes
not only on all flows in its class, but also on flows currently being serviced in other classes. In
contrast to the effect of flow isolation, the service rate redistribution process actually causes
extra events which contributes to the fluid simulation event rate. However, for a moderately
loaded WFQ node, we expect the impact of the service rate redistribution process not to be
significant.

Figure 18: A two queue weighted fair queuing system

As mentioned above, the flow isolation and service rate redistribution process have opposite
impacts on the fluid simulation event rate. The event rate for a WFQ node will depend on how
the input flows are divided into different classes and how often the service rate is recomputed
and distributed among classes.

Figure 19 shows the simulation event rate of a WFQ node as a function of the number of
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Figure 19: Simulation event rate vs. the number of classes in a WFQ node

classes in the WFQ. In this simulation, 20 independent and identical on-off sources were used
as input, with A = y = 1. The peak rate while in the on state is v = 1. The sources are equally
allocated to the classes, so that each class is fed by the same number of sources. The partition
of the service rate is distributed equally among the different classes. The system load was varied
by changing the service rate, and loads of 0.5, 0.8. and 0.9 were investigated.

Note that when the number of classes is one, the WFQ node behaves exactly the same as a
single FIFO queue. This corresponds to the leftmost points in Figure 19. If we choose the load
of 0.9, the event rate of the fluid simulation decreases by a factor of 32% when a single class
FIFO is replaced by a 2-class WFQ node. The event rate further decreases as the number of
classes in the WFQ node increases, since increased isolation among different flows diminishes
the ripple effect. However, as the number of classes increases past 7, the event rate due to the
service rate redistribution starts to become significant, increasing the overall simulation event
rate. Note that for all loads, the event rate to simulate the WFQ node with any number of
classes, is always less than the event rate to simulate a single FIFO node with the same input
flows.

As expected, decreasing the load will lead to a higher probability that the fluid flowing from
the sources will pass through the node without queueing. Hence, less ripple effect is incurred
and the overall fluid simulation event rate is smaller. Note that for the load of 0.5, no queueing
takes place, since the service rate is equal to sum of the peak rate of all the sources. Therefore,
the number of classes has no impact on the fluid simulation event rate, as observed in Figure 19.
The event rate in this case is given solely by the behavior of the sources and can be computed
analytically. Thus, the fluid simulation of a WFQ node is likely to be more efficient, in terms of
event rate, than the fluid simulation of a FIFO node, specially at higher loads.

For packet-level simulation, the event rate of the WFQ node is given by the rate at which
packets arrive at the node, which is determined by the rate at which packets are generated by
the sources. The isolation between classes in WFQ does not reduce the packet-level simulation
event rate. Moreover, the packet-level simulation event rate in this model can be easily computed
using equation (9). The comparison between fluid simulation and packet-level simulation still
depends on the tradeoffs of the network and traffic rate parameters, especially v. In Figure
19 the packet-level event rate for v = 5,10 are presented to illustrate the tradeoffs. Note that
fluid simulation can outperform packet-level simulation for some parameter configurations. A
quantitative analysis of the WFQ fluid simulation event rate, to establish a better understanding
of the parameter space and tradeoffs, is still an ongoing research topic.
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7 Conclusions

In this paper, we evaluated the relative performance of fluid simulation over packet-level simula-
tion by analyzing several different networking scenarios. The simulation event rate was used as
the basic measure of comparison between the two simulation techniques. The results obtained
show that the simulation execution time is proportional to the simulation event rate, making
this measure both adequate and accurate.

An important issue is the impact of the ripple effect on the fluid simulation event rate. This
characteristic of fluid simulation is a major contributor to the simulation event rate, particularly,
in large and complex models. The ripple effect is intrinsic to fluid simulation and does not
appear in packet-level simulation. In this case, the event rate is fully determined by the rate at
which packets are generated and their routes inside the network model. Therefore, the relative
efficiency between the two simulation approaches depends critically on the impact of the ripple
effect and the rates at which packets are generated.

We have derived analytical results to characterize the simulation event rate for the tandem
queueing model. For all the scenarios investigated, we have provided simulation results and
discussed the trends of the event rates. We have shown the tradeoffs between parameters of the
models, which determines the most efficient simulation technique. In general, fluid simulation
outperforms packet-level simulation when the packet rate () is large. We have also considered
two methods that can reduce the impact of the ripple effect, namely, flow aggregation and WFQ
policy. A fluid simulator and a packet-level simulator was designed and implemented in order
to explore their functionalities and validate analytical results.

An alternative approach to improve the performance of fluid simulation is the time-driven
fluid simulation scheme [17]. In this approach, the continuous fluid flow is discretized into fixed
length of fluid chunks, where each chunk has a constant rate and represents many packets. This
discretization is done throughout the network being simulated. The simulation advances at the
granularity of the discretization, which can be adjusted to accommodate different resolution
requirements in modeling. Flow rate changes within a time step are averaged out, reducing
the number of rate changes resulting from the ripple effect. Also the uniform discretization
interval facilitates parallelism in the simulation. This scheme is undergoing both theoretical and
experimental investigation.
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