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Abstract
In this paper, we present the Cello disk scheduling framework for meeting the diverse service requirements of applications.

Cello employs a two-level disk scheduling architecture, consisting of a class-independent scheduler and a set of class-specific
schedulers. The two levels of the framework allocate disk bandwidth at two time-scales: the class-independent scheduler
governs the coarse-grain allocation of bandwidth to application classes, while the class-specific schedulers control the fine-grain
interleaving of requests. The two levels of the architecture separate application-independent mechanisms from application-
specific scheduling policies, and thereby facilitate the co-existence of multiple class-specific schedulers. We demonstrate that
Cello is suitable for next generation operating systems since: (i) it aligns the service provided with the application requirements,
(ii) it protects application classes from one another, (iii) it is work-conserving and can adapt to changes in work-load, (iv) it
minimizes the seek time and rotational latency overhead incurred during access, and (v) it is computationally efficient.
Keywords: disk scheduling, multimedia workloads, predictable resource allocation, soft real-time and best-effort work-

load scheduling

1 Introduction

Since the invention of movable head disks, several algorithms have been developed to improve I/O performance through intel-
ligent scheduling of disk accesses. These algorithms can be broadly divided into two classes:

1. Disk scheduling algorithms optimized to service best-effort requests: The simplest of these algorithms is First Come First
Served (FCFS), that schedules requests in the order of their arrival. Since the access schedule thus derived is independent
of the relative positions of the requested data on disk, FCFS scheduling can incur significant seek time and rotational
latency overhead. This limitation has been addressed by several disk scheduling algorithms, such as Shortest Seek Time
First (SSTF), SCAN, LOOK, V(R), etc., that schedule requests to minimize seek time [9, 10, 11, 12, 14, 25, 27, 28]; and
Shortest Total/Access Time First (STF/SATF), Aged Shortest Access Time First (ASATF), etc., that schedule requests to
minimize the total seek time and rotational latency overhead [15, 22].

2. Disk scheduling algorithms optimized to service requests with real-time deadlines: The simplest of these algorithms
is Earliest Deadline First (EDF) [18]. EDF schedules requests in the order of their deadlines but ignores the relative
positions of requested data on disk in deriving the access schedule. Hence, it can incur significant seek time and rotational
latency overhead. This limitation has been addressed by several disk scheduling algorithms, including Priority SCAN
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(PSCAN), Earliest Deadline SCAN, Feasible Deadline SCAN (FD-SCAN), SCAN-EDF, Shortest Seek Earliest Deadline
by Order/Value (SSEDO, SSEDV), etc., [1, 7, 8, 21]. These algorithms start from an EDF schedule and reorder requests
so as to reduce the seek and rotational latency overhead without violating request deadlines.

Unlike the systems for which these scheduling algorithms were designed, today’s general-purposefile and operating systems
simultaneously support applications with diverse performance requirements [3, 19]. For instance, a typical file server today
services requests from interactive best-effort applications (e.g., word processors); real-time applications (e.g., video and audio
players); and file transfer applications (e.g., http servers). Interactive applications require the file server to minimize the average
response time of requests. Real-time video playback applications require the file server to retrieve successive video frames prior
to their playback instants (i.e., deadlines). Finally, file transfer applications require the server to provide high throughput across
several requests, but are less concerned about the response times of individual requests.
With the many-fold increase in CPU processing power, network bandwidth, and disk capacity, it is inevitable that general

purpose computing environments of the future will support applications of even greater complexity and diversity. We can
anticipate that next generation file systems will support applications that process massive amounts of data for visualization and
support real-time interactivity. For instance, a repository of satellite imagery might be accessed and processed by programs
for feature extraction and real-time visualization; an application for interactive navigation through virtual environments will
issue requests for the storage and retrieval of heterogeneous information objects (e.g., imagery, 3-D models, video, etc.) from
distributed file servers under real-time constraints. Since most conventional disk scheduling algorithms are optimized for a
single performance criterion, they are ineffective at simultaneously supporting applications with such diverse requirements.
Most of the techniques developed to-date for addressing this problem employ simple adaptations of conventional disk

scheduling algorithms. To illustrate, consider a mix of real-time and best-effort applications. A real-time disk scheduling
algorithm can be adapted to service these applications by modeling the requests generated by best-effort applications as a
periodic task with deadlines [17]. This modeling, however, is non-trivial and introduces artificial constraints that reduce the
effectiveness of the system. Another common approach for servicing the mix of real-time and best-effort applications is to em-
ploy a scheduler that assigns priorities to application classes and services disk requests in the priority order. Unfortunately, such
schedulers may violate service requirements of lower priority requests and induce starvation [2]. Moreover, simply enhancing
a conventional scheduler by allocating time-slices to service requests from different application classes may incur substantial
seek and rotational latency overhead (for short time-slices) or yield unacceptable response times (for long time-slices) (see
Figure 1).
Finally, adapting processor and network packet scheduling techniques that support a diverse mix of application classes (for

instance, see [4, 13, 20]) to service disk requests is difficult. This is because a disk is a fundamentally different resource as
compared to processors and network switches. Whereas the throughput of a processor or a network switch is unaffected by
the relative order in which requests are serviced, in case of disk, this ordering governs the seek and rotational latency overhead
incurred and has a critical impact on disk throughput. Since fair scheduling algorithms designed for processors and network
switches service requests based solely on the fairness criterion and ignore disk seek and rotational latency overheads, they are
unsuitable for servicing disk requests.
In this paper, we present the Cello disk scheduling framework for simultaneously supporting applications with diverse

requirements. Cello employs a two-level disk scheduling architecture, consisting of a class-independent scheduler and a set of
class-specific schedulers. The two levels of the framework allocate disk bandwidth at two time-scales: the class-independent
scheduler governs the coarse-grain bandwidth allocation to application classes, while the class-specific schedulers control the
fine-grain interleaving of requests from the application classes to align the service provided with the application requirements.
The two levels of the architecture separate application-independent mechanisms from application-specific scheduling policies,
and thereby facilitate the co-existence of multiple class-specific schedulers.
We demonstrate that Cello is suitable for next generation operating systems since: (i) it aligns the service provided with the

application needs, (ii) it protects application classes from one another, (iii) it is work-conserving and can adapt to changes in
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(a) Seek and rotational latency overhead for a 8KB request 
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(b) Response time for a 8KB request 

Figure 1: Effect of time-slicing on throughput and response times. A scheduler that allocates time-slices to applications in a
round-robin manner can incur substantial seek time and rotational latency overhead while switching from one application class
to the next. Increasing the duration of time-slices, and thereby servicing multiple requests from each application class within
each slice, reduces the fraction of disk bandwidth wasted in switching between application classes. However, this increases the
response time for requests.

work-load, (iv) it minimizes the seek time and rotational latency overhead incurred during access, and (v) it is computationally
efficient.
The rest of the paper is organized as follows: The requirements for a disk scheduling algorithm for next generation operating

systems are derived in Section 2. Section 3 describes and analyzes the Cello disk scheduling framework. Section 4 describes
the details of our prototype implementation. Section 5 presents the results of our experiments. Finally, Section 6 summarizes
our results.

2 Requirements for a Disk Scheduling Algorithm

To determine a suitable disk scheduling algorithm, consider the requirements imposed by applications likely to be simultane-
ously supported by general purpose file and operating systems of the future:

Real-time applications: These applications require the operating system to provide performance guarantees. Depending
on the strictness of the requirements, these applications can be classified as either hard real-time or soft real-time appli-
cations. Whereas hard real-time applications require deterministic guarantees for the response time of each disk request,
soft real-time applications require statistical guarantees. Request generation in these applications can either be periodic
or aperiodic, and the applications may consume data immediately following its availability or at predefined instants. For
example, video playback is a periodic, soft real-time application, in which the accessed video frames are consumed at
predefined instants (determined by the video playback rate and the consumption instants of previous frames). In contrast,
applications that support interactive navigation through virtual environments yield real-time requests with low average
response time requirements.

EDF and fixed priority schedulers are suitable for hard real-time applications [18], while scheduling algorithms such
as FD-SCAN and SSEDV/SSEDO are are suitable for soft real-time applications [1, 8]. Just-in-time schedulers (which
schedule requests just prior to their deadlines) are desirable for real-time applications that initiate data consumption at
deadlines (e.g., video playback). Finally, algorithms that schedule requests at the earliest possible instants prior to their
deadlines, and thereby minimize the response time while meeting the real-time requirements, are suitable for interactive
real-time applications.

Best-effort applications: These applications do not need performance guarantees. They can be further classified as either
interactive or throughput-intensive. Interactive applications require low average response times. Throughput-intensive
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applications require the file system to sustain high throughput across multiple requests, but are less concerned about the
response times of individual requests. For instance, word processors are interactive best-effort applications, while file
transfer is a throughput-intensive best-effort application.

Conventional disk scheduling algorithms such as SCAN, SSTF, SATF, etc. are suitable for these applications.

From the above requirements, we conclude that different policies are suitable for scheduling disk requests from different
application classes. Hence, to align the service provided with the application needs, a disk scheduling framework should
employ different policies for different application classes. Furthermore, such a framework should protect application classes
from one another. For example, bursty arrival of best-effort requests should not violate deadlines of real-time requests; and the
arrival of a burst of real-time requests should not starve best-effort requests.
These requirements can be met by partitioning disk bandwidth among the application classes, and then employing an

application-specific policy to schedule requests within each partition [5, 6, 26]. However, the granularity of partitioning should
be chosen such that (1) the seek time and rotational latency overhead incurred while servicing requests is minimized, and (2)
the service provided is aligned to the application requirements. Finally, to efficiently utilize disk bandwidth, the framework
must be work-conserving (i.e., it should utilize the idle disk bandwidth available to one application class to schedule pending
requests from another class); and should adapt to changes in the work-load.
In summary, a disk scheduling algorithm suitable for next generation operating systems: (i) should align the service it

provides with the application needs, (ii) should protect application classes from one another, (iii) should be work-conserving
and should adapt to changes in work-load, (iv) should minimize the seek time and rotational latency overhead incurred during
access, and finally (v) should be computationally efficient. In what follows, we present a disk scheduling framework that meets
these requirements.

3 The Cello Disk Scheduling Framework

3.1 Architectural Principles

Cello achieves the above objectives by allocating disk bandwidth to application classes at two time-scales. At the coarse time-
scale, it determines the number of requests from each application class to be serviced, and at the fine time-scale, it determines
the order in which these requests are serviced. Whereas the former enables Cello to protect application classes from one another
as well as to adapt the disk bandwidth allocation to changing workloads, the latter enables it to align the service provided to the
application requirements while minimizing the seek time and rotational latency overhead.
These two tasks naturallymap to a two-level disk scheduling architecture, consisting of a class-independent and a set of class-

specific schedulers. The class-independent scheduler governs the coarse-grain bandwidth allocation to application classes,
while the class-specific schedulers control the fine-grain interleaving of requests from the application classes. Moreover,
they separate application-independent mechanisms from application-specific scheduling policies, and thereby facilitate the co-
existence of multiple class-specific schedulers. The concepts of allocating disk bandwidth at two time-scales and separating
application-independent mechanisms from application-specific policies are the key contributions of the Cello disk scheduling
framework.
To service application classes, Cello maintains queues— pending queues, one per application class and a

scheduled queue (see Figure 2). Moreover, Cello employs a class-independent scheduler and class-specific schedulers
to manage these queues. Newly arriving requests are placed in the class-specific pending queues, and are

eventually moved to the scheduled queue. Requests are dispatched from the scheduled queue for service by the disk. Concep-
tually, the class-independent scheduler determines when and how many requests are moved from each pending queue to the
scheduled queue. The class-specific schedulers, on the other hand, determine where to insert these requests in the scheduled
queue. To achieve these objectives, the class-independent scheduler defines an interval (namely, the coarse time-scale) and
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Figure 2: The architecture of the Cello disk scheduling framework

assigns a weight ( ) to each application class. Using these parameters, it then determines the number of requests to
be moved from the pending queues to the scheduled queue such that the disk bandwidth allocated to classes is in proportion to
their weights. Moreover, it exports the state of the scheduled queue to class-specific schedulers to enable them to determine an
appropriate insert position for each pending request.
In what follows, we describe the design of the class-independent scheduler and some examples of class-specific schedulers.

3.2 The Class-independent Scheduler

The class-independent scheduler performs two functions. First, it determines when and how many requests from each applica-
tion class should be inserted in the scheduled queue. Second, it exports an interface that enables the class-specific schedulers
to determine where to insert requests in the scheduled queue.

3.2.1 Allocating Disk Bandwidth to Application Classes

Consider a file server servicing application classes. Let ( ) be the weights assigned to the application classes, and let
the duration of an interval be . The class-independent scheduler allocates disk bandwidth to application classes using one
of two methods: (i) proportionate time-allocation, in which the fraction of an interval for which the disk services requests from
an application class is proportional to its weight; and (ii) proportionate byte-allocation, in which the amount of data accessed
within an interval for an application class is proportional to its weight. Note that since each request may incur a different seek
and rotational latency overhead and may access different amounts of data, the above two methods yield different allocations.
In what follows, we describe the techniques for achieving proportional time- and byte-allocation; we will discuss their relative
merits in Section 5.

Proportionate time-allocation

In the proportionate time-allocation method, for each interval, the class-independent scheduler maintains the disk idle time
, and the total service time — which includes seek time, rotational latency, and transfer time — expended for
scheduling requests from class . At the beginning of each interval, and are initialized to 0. Whereas ’s are updated
when a request is inserted in the scheduled queue, is updated every time the disk is idle. At all times, ensures that the
following inequality holds:

(1)
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To allocate disk service time to application classes in proportion to their weights, operates as follows: For each class , if

(2)

then invokes the class-specific scheduler for class (namely, ). If the pending queue for class is not empty, then returns
with a request , and the desired location for inserting in the scheduled queue 1. The location is specified by a
pair, where and are two successive requests in the scheduled queue.
On receiving this, first computes: (i) , the total seek time, rotational latency and transfer time incurred in servicing request
if it is inserted after request ; and (ii) , the time to service request after servicing request . then verifies that:

1. The insertion of in the scheduled queue does not increase the total service time expended for class beyond its propor-
tionate share. That is,

(3)

2. The cumulative service time expended for all classes does not exceed the available interval duration. Since the insertion
of in the scheduled queue changes the service time of , but does not affect the service time of any other requests,
this condition is formulated as:

(4)

where is the service time for prior to the insertion of .

If (3) and (4) are satisfied, then inserts in the scheduled queue between and , and updates as:

(5)

Moreover, if request belongs to class , updates as:

(6)

Specifically, if (i.e., if insertion of reduces the service time for request ), then (6) credits the utilization
of class ; and if , then is incremented appropriately. This symmetric model of update makes independent
of the order in which requests are inserted in the scheduled queue, and dependent solely on the order in which requests are
serviced by the disk.
Once the request is inserted, re-evaluates (2) for class and repeats the above procedure. switches from one class to

another either when the pending queue for the class is empty or when the request selected by the class can’t be inserted into the
scheduled queue (i.e., either (3) or (4) are violated). In the former case, class becomes a member of , the set of application
classes that have not fully used their service time allocation; otherwise, class becomes a member of , the set of classes whose
requests can’t be inserted into the scheduled queue due to insufficient unused allocation.
To effectively utilize disk bandwidth, reassigns unused service time from classes in to service pending requests from

classes in . Specifically, if the scheduled queue is empty and if none of the of the classes in have a pending request, then
schedules requests from classes in one at a time.2 Thus, the class-independent scheduler is work-conserving in nature—it

ensures that the disk will never idle so long as there are pending requests. Such reassignment of unused service time involves
two steps:

1The techniques for selecting a request and determining the desired location for inserting it in the scheduled queue are discussed in Sections 3.2.2 and 3.3.
2This enables to schedule a request from any of the classes in immediately upon its arrival.
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1. Determination of the set of classes eligible for utilizing the unused service time ( ): can allocate the unused
service time to classes in either in proportion to their weights or in priority order. In the former case, all the classes in
with non-empty pending queues are eligible, while in the latter case, highest priority classes with non-empty pending

queues are eligible. Hybrid policies—in which classes at the same priority level receive service time in proportion to
their weights—are also possible.

2. Selection of a request for insertion into the scheduled queue: Having determined the set of eligible classes , must
then pick a request from for insertion in the scheduled queue. This selection is governed by two requirements:

(a) Proportionate distribution of unused service time among the eligible classes: For each eligible class ,
maintains , which measures the unused service time of classes in expended to schedule requests of class
within the current reallocation interval. At the beginning of each such reallocation interval, ’s are initialized to
0; and is updated when a class request is scheduled to utilize unused bandwidth allocation of classes in . To
ensure proportionate distribution of unused service time among the eligible classes, selects a request of class
only if

(7)

where and denote the current time and the completion time of the current interval. If none of the classes in
meet this requirement, then ’s are re-initialized to 0; and the process is repeated.3

(b) Minimizing the seek time and rotational latency overhead incurred in servicing selected requests: To meet this
requirement, invokes the class specific scheduler of every class in that satisfies (7) for a request, and selects a
request that is closest to the current disk head position for insertion into the scheduled queue.

To ensure that (1) will be satisfied after the insertion, verifies that

(8)

where is the service time of the request selected for insertion. If (8) is satisfied, inserts the selected request into the scheduled
queue, and updates as:

(9)

Moreover, to ensure that the allocation available to classes in is reduced appropriately (see (2)), the service time incurred
by the inserted request is charged to the idle time . That is, the idle time is updated as

(10)

Proportionate Byte-allocation

In the proportionate byte-allocationmethod, for each interval, the class-independent scheduler , maintains , the disk idle time;
and , the total service time expended for scheduling requests from class . Additionally, maintains ,
which denotes the total number of bytes accessed during an interval for class . Just as in the proportionate time-allocation
method, ensures (1) holds at all times.
To ensure that the amount of data accessed within an interval for an application class is proportional to its weights, the byte-

allocation method, unlike the proportionate time-allocation method, charges the same (namely, the average) seek and rotational
3A consequence of reinitializing ’s to 0 is that it can result in unfair allocation of unused bandwidth. This is because the amount of unused bandwidth

allocated to each class is “forgotten” every time ’s are reset to 0. Thus, Cello trades better disk utilization for potential unfairness in allocation of unused
disk bandwidth.
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latency overhead per byte incurred within an interval to all request classes, regardless of the actual latency overhead incurred by
individual requests. Specifically, given the values of and , defines , the average service time per byte incurred within
an interval, and , the amount of time already expended for servicing requests of class as:

(11)

and then allocates disk bandwidth to classes as follows: For each class , if

(12)

then invokes to obtain a request and the desired location for its insertion (specified by a pair). Just as in the
time-allocation method, determines , , and , and then computes the new value of as:

(13)

where denotes the amount of data (in bytes) accessed by . It then verifies the following two conditions:

1. The insertion of in the scheduled queue does not increase beyond its proportionate share. That is,

(14)

2. The cumulative service time expended for all classes does not exceed the available interval duration. That is,

(15)

Observe that substituting (13) into (15) yields (4). If (14) and (15) are satisfied, then inserts in the scheduled queue between
and , updates ’s using (5) and (6), and updates as:

(16)

Once the request is inserted, re-evaluates (12) for class and repeats the above procedure. To utilize the unused byte allocation
of a class to service pending requests from other classes, employs a technique similar to the one used in the proportionate
time-allocation method.

3.2.2 Exporting the State of Scheduled Queue

Best-effort applications are elastic, and can tolerate variations in the response times of individual requests. Real-time appli-
cations are more rigid and impose deadline requirements with each request. Consequently, a class-specific scheduler must
determine a position for inserting a request that does not inadvertently violate the deadlines of the requests already in the
scheduled queue.
To assist a class-specific scheduler in determining the insertion position, the class-independent scheduler must export the

state of the scheduled queue along with the constraints imposed by real-time requests. Cello defines these constraints in terms
of slack.

Definition 1 Given the set of requests in the scheduled queue, the slack of a request is defined to be the difference between
the latest time by which the disk must begin servicing the request and the earliest time at which the disk may begin servicing
the request.
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The latest time by which the disk must begin servicing a request is governed either by (i) the deadline (if any) associated
with the request, (ii) the latest time by which the disk must begin servicing the next request in the queue, or (iii) the completion
time of the current interval. Let the scheduled queue contain requests. Let denote the service time incurred for the
request in the scheduled queue, and let denote its deadline. Also, let denote the completion time of the current interval.
Then the latest time by which the disk must begin servicing the request is given by:

(17)

Note that if the request is a best-effort request, then .
The earliest time at which the disk may begin servicing a request depends on the service time of all the requests preceding

it in the queue. Specifically, if denotes the current time, then the earliest time at which the disk may begin servicing the
request ( ) in the queue is given by:

(18)

Given and , the slack of the request is defined as:

(19)

Thus, defines the duration for which the request can be delayed without violating the deadlines of any of the requests in
the scheduled queue.
The class-independent scheduler must recompute slack values after insertion of each request. Since this involves recomput-

ing and for each request in the scheduled queue, a naive slack computation algorithm has complexity. However, the
following relationships between the slack values of consecutive requests in the scheduled queue can be utilized to significantly
reduce the overhead of slack computation.

Lemma 1 The slack of a best-effort request is equal to the slack of the request following it in the scheduled queue.

Proof: If position in the scheduled queue contains a best-effort request (i.e., ), using (17), (18), and (19) we get:

(20)

Hence, .
The following two corollaries are a consequence of Lemma 1.

Corollary 1 Consecutive best-effort requests in the scheduled queue have identical slack values.

Corollary 2 The slack of a best-effort request is equal to that of the first real-time request following it in the scheduled queue.

Lemma 2 If consecutive real-time requests in the scheduled queue have the same deadline, then they have identical slack
values.

Proof: Let two real-time requests at positions and in the scheduled queue have identical deadlines (i.e., ).
Then using (17) and (18), we get:

(21)

Since (from (17)), the lemma follows.
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loop forever
At the beginning of each interval, set , all s , and s to 0
if a class in has a non-empty pending queue or a new interval begins

:= choose a class from with a non-empty pending queue
:= invoke the class specific scheduler for a request and its insert position in the scheduled queue

:= service time of request if inserted after request
:= current service time of request
:= new service time of request if is inserted

if and then

Request the class specific scheduler to delete from its pending queue and insert it into the scheduled queue after request
Set and
Update slack values

fi
else if the pending queues of all classes in are empty and the scheduled queue is empty * reallocate unused bandwidth *
Reset s to 0, if this is the start of a reallocation period
Determine the set of eligible classes
Invoke the class-specific scheduler of each class in that satisfies for a request

if none of the classes in satisfy the above condition, then reset to 0, and repeat the above step
:= choose a request closest to the current disk head in the scan direction
:= service time of request

if
Request the class specific scheduler to delete from its queue and insert it into the scheduled queue
Update
Update idle time as

fi
else * all queues are empty *
Sleep until a request arrives or a new round starts
Increment idle time by the time for which disk was idle

fi
end loop

Figure 3: The class independent scheduling algorithm

Lemma 3 Slack values increase monotonically in the scheduled queue.

Proof: Using (17) and (18), we get:

(22)

Since from the definition of , . Hence, , and the lemma follows.
It follows from the above lemmas and corollaries that a sequence of best-effort requests followed by a sequence of real-time

requests with the same deadline have identical values of slack. Hence, can maintain a single value of slack for each such
sequence rather than maintaining it for individual request. This significantly reduces the overhead of slack computation. As we
illustrate in the next section, by exporting the values of along with the state of the scheduled queue, the class-independent
scheduler enables the class-specific schedulers to determine the position for inserting a new request into the scheduled queue.
The complete algorithm implemented by the class-independent scheduler in Cello is described in Figure 3. The figure

describes the proportionate time-allocation method, the algorithm for proportionate byte-allocation can be described similarly.
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3.3 The Class-specific Schedulers

Class-specific schedulers perform two functions. First, they order the requests in their pending queues in accordance with the
application requirements. Second, when invoked by the class-independent scheduler, they determine the position for inserting
the selected request into the scheduled queue and return it with the pair to . In what follows, we describe the
functionality of class-specific schedulers for the interactive best-effort, throughput-intensive best-effort, and a class of real-time
applications.

3.3.1 Interactive Best-effort Applications

A scheduler for the class of interactive best-effort applications should minimize the response times observed by requests. It can
achieve this objective as follows:

1. Select a request from the pending queue in the FIFO order.

2. Insert the selected request into the scheduled queue using the classic slack stealing technique [17]. Specifically, the
scheduler inserts the request ahead of the request at position in the scheduled queue only if the increase in service
time yielded by inserting the request is smaller than . This provides low average response time to best-effort requests
without violating deadlines of real-time requests. To minimize the seek time and rotational latency overhead, sequences
of best-effort requests are maintained in SCAN/SATF order.

As per the slack stealing criterion, if the request can be inserted at more than one locations in the scheduled queue, then
the scheduler can employ either a first-fit, a best-fit, or a hybrid policy for determining the insertion location. Whereas
the first-fit policy minimizes the response time of the request, potentially at the expense of overall disk throughput; the
best-fit policy maximizes disk throughput at the expense of a higher response time. A hybrid policy can balance these
tradeoffs by selecting the location for insertion that minimizes , ( ), where and ,
respectively, denote the response time and the service time for the request if it is inserted at location in the scheduled
queue. Note that with the hybrid policy reduces to first-fit, and with it reduces to best-fit.

3.3.2 Throughput-intensive Best-effort Applications

Throughput-intensive applications (e.g., ftp) require the disk scheduler to sustain high throughput, but they are less concerned
about the response times of individual access requests. A scheduler can meet this requirement as follows:

1. Select a request from the pending queue in FIFO order.

2. Insert the selected request towards the tail of the scheduled queue, and order the sequence of requests from throughput-
intensive best-effort applications in SCAN/SATF order. Inserting requests at the tail of the queue enables Cello to
minimize response times or deadline violations for other classes without affecting the throughput of applications in this
class.

3.3.3 Soft Real-time Applications

Video playback is a periodic, soft real-time application, in which the accessed video frames are consumed at predefined instants
(determined by the video playback rate and the consumption instants of previous frames). Just-in-time schedulers — that
service requests just prior to their deadlines — are desirable for this class of applications. Most of the known real-time disk
scheduling algorithms can be adapted to derive a suite of just-in-time schedulers with different properties. For instance, the
earliest deadline first (EDF) algorithm can be adapted to disk requests, yielding the SCAN-EDF algorithm [21]. A scheduler
based on SCAN-EDF inserts requests into the scheduled queue in EDF order; requests with identical deadlines are inserted in
SCAN order so as to reduce disk seek overheads.
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3.4 Complexity Analysis

For a file server servicing application classes, the computational complexity of the operations performed by the Cello frame-
work are as follows:

Determining the position for inserting a request into the scheduled queue: The complexity of this operation depends
on the insertion policy (e.g., first-fit, best-fit, etc.) employed by the class-specific scheduler. In the worst case, if the
scheduled queue contains requests, then this operation takes time.

Computing Slack Values: The class-independent scheduler must recompute slack values after insertion of each request.
Since this involves recomputing and for each request in the scheduled queue, a naive slack computation algorithm has

complexity. However, as demonstrated in Section 3.2.2, a sequence of best-effort requests followed by a sequence
of real-time requests with the same deadline have identical values of slack. Hence, can maintain a single value of slack
for each such sequence rather than maintaining it for individual request. This significantly reduces the overhead of slack
computation.

Reassigning idle bandwidth: To minimize the seek time and rotational latency overhead incurred while reassigning
unused disk bandwidth, selects for insertion into the scheduled queue a request, from a class in , that is closest to
the current disk head position. Since the number of request classes is usually small and since, at any time, only one
request from each of the pending queues is considered for insertion into the scheduled queue, a linear search through all
eligible classes may suffice. If the number of request classes is large, then the algorithm can maintain a binary search
tree to efficiently choose the next request to be scheduled. Since the tree contains no greater than elements, searches,
insertions and deletions are operations, while initial construction of the tree is an operation.

Insertions and deletions from the scheduled queue: Once the position for inserting a request is determined, bymaintaining
the scheduled queue as a doubly linked list, insertion into the scheduled queue becomes an operation. Also, since
requests are always deleted from the head of a queue, deletions are operations.

3.5 Discussion

In this section, we describe various design considerations and tradeoffs of our two-level disk scheduling architecture.

Two-level versus Monolithic Schedulers

By employing a two-level scheduling architecture, Cello separates class-independent mechanisms from class-specific schedul-
ing policies, and thereby facilitates the co-existence of multiple class-specific schedulers. Isolation between the two levels of
the scheduler as well as between individual class-specific schedulers simplifies the development of new application-specific
scheduling policies. A drawback though of the resulting modularity and information hiding is that it can result in sub-optimal
schedules as compared to a monolithic scheduler that utilizes complete knowledge of request requirements from all application
classes.

Invocation Order of Class-specific Schedulers

Example 1 Consider a file server servicing requests from a real-time and a best-effort class. Let us assume that the real-time
class has two pending requests and ; and the best-effort class has a pending request . Let the time required to service each
requests be 10ms. Let the current time be 0, and the deadline for both and be 20ms. Consider the case that the class-
independent scheduler first invokes the scheduler for real-time class (say ) and then the scheduler for the best-effort class
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(say ). Since and are inserted first, there is no slack for inserting before or . Hence, the resulting schedule is ;
which meets all the deadlines.
If, instead, had invoked before , then will be the first request inserted into the scheduled queue. Since the deadline

of can be met even if it serviced after , will insert after in the scheduled queue. Unfortunately, this results in the slack
of to be equal to 0. Hence, can’t be inserted ahead of , resulting in the schedule . However, this schedule violates the
deadline requirements of .

This example demonstrates that the order for invoking the class-specific schedulers impacts the feasibility of the resulting
schedule. To minimize the possibility of generating infeasible schedules, should invoke class-specific schedulers in the order
defined by the strictness of their requirements. For instance, by inserting requests from the real-time class prior to requests
from the best-effort class, the scheduler can minimize the possibility of best-effort requests violating the deadlines of real-time
requests. Such a policy, however, is only a heuristic.
In general, deriving a schedule that best meets the requirements of application classes while incurring the smallest seek and

rotational latency overhead requires complete knowledge about the constraints (e.g., deadlines) and disk location to be accessed
for all the requests in the pending queues. Since the layered architecture of Cello restricts to accessing only the requests at
the head of the pending queues, the resulting schedule may be sub-optimal. However, as we show in Section 5, the reduction in
disk throughput due to such a sub-optimal schedule is small in practice.

Aggressive versus Lazy Insertion

Once an application class is selected, the class-specific scheduler can employ an aggressive policy that inserts as many requests
as possible into the scheduled queue. In such a policy, the number of requests of a class inserted into the scheduled queue will
be constrained by the bandwidth allocation for the class and the number of requests in its pending queue. As the following
example illustrates, such an aggressive policy may violate the requirements of requests.

Example 2 Consider a scenario where a large number of real-time requests with late deadlines (i.e., ones that expire in future
intervals) arrive before a request with an early deadline (i.e., one that expires in the current interval). The aggressive insertion
policy may spend the entire bandwidth allocation to schedule requests with late deadlines. This may prevent the request with
early deadline from being inserted into the scheduled queue in the current interval, violating its deadline.

Alternately, the class-specific scheduler can employ a lazy policy that delays the insertions of requests with late deadlines
as long as possible to reduce the possibility of denying service to requests with early deadlines. Implementing such a policy
requires the class-independent scheduler to know when to invoke a particular class-specific scheduler such that pending request
deadlines are met; and the class-specific scheduler to know when any further delay of insertion will cause its unused allocation
to be assigned to other classes. Design of such lazy class-specific schedulers is the subject of future research.

Determining Weights for Application Classes

Although Cello requires weights to be assigned to application classes, it does not specify how these weights are to be deter-
mined. Weights could be assigned statically at system start-up time (based on the expected workload in each class). Weights
could also be determined dynamically using a service manager that monitors the workload from each application class, and
then adapts the disk bandwidth allocations (namely, the values of ) accordingly [16]. Such a service manager
could also employ admission control algorithms to determine whether the current bandwidth allocation to a real-time class is
sufficient to provide performance guarantees to a newly started application. The development of such bandwidth adaptation
and admission control algorithms, however, is the subject of future research and beyond the scope of this paper.
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Determining the Interval Length

The interval length places a limit on the maximum number of requests that can be inserted in to the scheduled queue per interval.
Use of a large interval enables Cello to batch a large number of requests, and thereby optimize disk seek and rotational latency
overheads. In contrast, use of a small interval reduces the maximum number of requests that a class specific scheduler would
have to examine to determine the insert position of a request. This reduces the overhead of making scheduling decisions in
Cello. The interval length must be chosen to balance these tradeoffs.
Regardless of the interval length, a further optimization is to start the next interval when the scheduled queue becomes empty

and no more pending requests can be inserted into the scheduled queue in the current interval. This scenario occurs when the
total unused bandwidth in the interval is smaller than that required to service a request; starting the next interval immediately
prevents this fractional bandwidth from being wasted.

Discrete versus Moving Intervals

For efficiency reasons, Cello provides rate-based guarantees over the granularity of a discrete interval. An alternate approach
is to provide rate-based guarantees over a moving window; doing so allows these guarantees to hold for any time interval

. Although intuitively appealing, such an approach limits the number of requests belonging to any one class that can be
batched together in the scheduled queue (especially for rate-based guarantees to hold over very fine-grain time intervals). This
limitation increases seek and rotational overheads (since such overheads can no longer be optimized over a batch of requests in
the scheduled queue) as well as the complexity of the scheduler (due to the increased overhead of determining which request to
insert into the scheduled queue).

4 Prototype Implementation

We have implemented the Cello disk scheduling framework as part of the Symphony multimedia file system [23, 24] on the
Solaris 2.5 platform. Our implementation supports three application classes—interactive best-effort, throughput-intensive best-
effort, and soft real-time. The interface exported by the Cello implementation allows applications to specify a class when
opening/creating a file; this class is used to determine the appropriate pending queue for subsequent read and write requests.
The interface also allows system administrators to assign or modify weights assigned to various application classes. Our
implementation of Cello is multi-threaded; the class-independent as well as class-specific schedulers are implemented using
threads. Due to the presence of multiple threads, Cello employs read-write locks to maintain the consistency of the scheduled
and pending queues—a thread must first obtain a read or write lock on a queue before modifying it. For each newly arriving
request, a class-specific scheduler thread inserts it into the appropriate pending queue. The class-independent scheduler thread
then moves these requests to the scheduled queue, from where they are dispatched for service by the disk driver thread.

5 Experimental Evaluation

In this section we experimentally demonstrate the efficacy of Cello, first through simulations and then using our prototype im-
plementation. We first compare the performance of Cello to that of conventional and real-time disk scheduling algorithms. We
use a simulator, rather than the prototype implementation, for our performance comparison, since real-world implementations of
many of these algorithms (especially real-time scheduling algorithms) do not exist and implementing a suite of scheduling algo-
rithms would have involved substantial effort. We then use the prototype implementation to quantify the scheduling overheads
of Cello (these overheads cannot be measured through simulations and are best measured using an actual implementation).
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Table 1: Experimental Parameters

Disk capacity 2 GBytes
Bytes per sector 512 KB
Sector per track 99
Tracks per cylinder 21
Cylinders per disk 2627
Minimum seek time 1.7 ms
Maximum seek time 22.5 ms
Maximum rotational latency 11.1 ms
Average seek time 11.0
Average Transfer rate 4.6 MB/s

(a) Disk Parameters of Seagate-Elite3 disk

MPEG Encoding Length Bit rate
File Pattern (frames) Mb/s
Frasier 5960 1.49
Newscast 9000 2.33
Flintstones 9000 1.67
Olympics 9000 1.49

(b) Characteristics of MPEG-1 Traces

5.1 Simulation Methodology

We have built an event-based trace-driven disk simulator called DiskSim to evaluate the Cello framework. For our simulations,
we configure Cello with three applications classes—soft real-time, interactive best-effort, and throughput-intensive best-effort.
The scheduler for interactive best-effort class uses the first-fit policy to insert requests in the scheduled queue and maintains
a sequence of best-effort requests in SCAN order (see Section 3.3.1). The scheduler for the throughput-intensive best-effort
class inserts requests at the tail of the scheduled queue in SCAN order (see Section 3.3.2), while that for soft real-time requests
inserts requests using a just-in-time adaptation of SCAN-EDF (see Section 3.3.3). We simulate a Seagate Elite 3 disk that stores
text and video files, using block sizes of 8KB and 64KB, respectively. (see Table 1(a) for the characteristics of this disk)
Each text client in our simulations selects a random file and reads it sequentially from beginning to end. Clients access the

text files either using an interactive or a throughput-intensive best-effort application. In either case, the size of data accessed by
each application request is normally distributed with a mean of 32KB, while the inter-arrival times of requests are exponentially
distributed with a mean of 900ms. Each video client in our simulations emulates a video player and reads a randomly selected
MPEG-1 file at 30 frames/s. Each MPEG-1 file has an average bit rate of 1.5 Mbit/s (see Table 1(b) for the characteristics of
MPEG-1 traces used in our study) . All video clients are assumed to be serviced in the server-push mode. In the server-push
mode, the file server proceeds in terms of periodic rounds and accesses a fixed number of video frames during each round.
Requests for all the frames to be accessed in a round are issued at the beginning of each round, and all of these requests have
the end of the round as their deadline. These requests are serviced using the soft real-time class of Cello. Both the round
duration and the interval length are set to 1000ms in our simulations. The length of each simulation run was such that the
95% confidence intervals are within 5% of the reported values. Since the objective of our study is to evaluate disk scheduling
algorithms, we assume in our simulations that the system is limited only by the disk bandwidth (i.e., the CPU, memory, and
system bus never become bottlenecks).

5.2 Aligning the Service to Application Needs

To demonstrate that a scheduling algorithm that aligns the service provided to application needs performs better than one that
uses a single policy to schedule requests from different application classes, we compared the response times yielded by Cello
to those obtained using SCAN. For this experiment, we configured Cello with two request classes—interactive best-effort and
soft real-time—and assigned the same weight to both classes (i.e., ). We varied the video load and the text load
and measured the disk utilization, the response time of text requests, and the percentage of deadline violations yielded by Cello
and SCAN for each combination of these parameters.
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Figure 4: Disk utilizations for different video and text loads

Figure 4 plots the disk utilization (i.e., percentage of the time the disk was busy) for different combinations of text and video
workloads. Since the utilization is a function of the total workload, different combinations of text and video loads can yield the
same utilization. In the rest of this section, we present results for specific combinations of text and video loads. Figure 4 can
then be used to determine the utilization for a particular workload combination, thereby correlating metrics such as response
time to disk utilization.
Figure 5(a) plots the response time of text requests for different video loads. The figure shows that the response time of text

requests significantly increases with increase in video load when SCAN scheduling is used, whereas it is largely independent of
the video load when Cello is used. Since SCAN does not distinguish between text and video requests while making scheduling
decisions, increasing the video load increases the number of requests in the SCAN schedule, causing response time of text
requests to increase. Cello, on the other hand, exploits slack values to schedule text requests ahead of video requests whenever
possible. Consequently, it provides low average response time to text requests even at heavy video loads. For instance, with
six text and six video clients (i.e., a disk utilization of 60%), the response time provided by Cello is a factor of 2.5 smaller than
SCAN. For Cello, the small increase in response time at heavy loads is due to the decreasing availability of slack with increase
in video load. Figure 5(b) plots the response time of text requests for different text loads and a fixed video load. The figure
shows that, the response time provided by Cello is significantly lower than SCAN over a wide range of text workloads.
Figure 6(a) plots the percentage of video request deadlines that are violated for different text loads. For SCAN, increasing

the text load increases the probability of deadline violations for video requests. For Cello, since the scheduler for the interactive
best-effort class determines the position for inserting a request into the scheduled queue such that none of the deadlines are
violated, increasing the text load has no effect on the probability of deadline violations.
Since throughput rather than response time is more important to throughput-intensive requests, Cello services these requests

at the end of each interval in a single SCAN. This enables Cello to schedule interactive best-effort requests ahead of throughput-
intensive requests, and thereby provide better response time to these requests. To demonstrate this behavior, we configured
Cello with all three request classes and assigned them equal weights. We then measured the response time of interactive and
throughput-intensive requests for a fixed video load. As expected, Cello provided lower response times to interactive requests
as compared to throughput-intensive requests (see 6(b)).
The above experiment show that a scheduling algorithm designed for best-effort requests is unsuitable for servicing classes

with different requirements. To show that this is true for real-time disk scheduling algorithms as well, we repeated the above
experiment for the earliest deadline SCAN (D-SCAN) [1] and SCAN-EDF [21] algorithms. The D-SCAN algorithm determines
the scan direction based on the request with the earliest deadline, and services all requests along the way while scanning to this
request. These requests are either best-effort requests or real-time requests with later deadlines. In the absence of any real-time
requests, the scan direction is determined as in SCAN.4 Note that, D-SCAN uses request deadlines only to determine the scan

4The algorithm as proposed considers only real-time requests. We trivially extended it to service best-effort requests as well.
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Figure 5: Response times of interactive best-effort requests in Cello and SCAN
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Figure 6: Performance of real-time and throughput-intensive best-effort classes.

direction and does not distinguish between real-time and best-effort requests while servicing them in SCAN order. Hence, the
presence of text requests in the schedule can interfere with video requests and vice-versa. This causes D-SCAN to yield worse
performance than Cello (see Figure 7). The SCAN-EDF algorithm services requests in EDF order; requests with identical
deadlines are serviced in SCAN order. Interactive best-effort requests are assumed to have infinite deadlines. Since interactive
requests are always serviced at a lower priority as compared to real-time requests (due to their infinite deadlines), these requests
have worse response times as compared to Cello; the performance for real-time requests, however, is comparable to Cello (see
Figure 7).
Together, Figures 5, and 6 and demonstrate that existing disk scheduling algorithms are inadequate for servicing application

classes with differing requirements; Cello addresses this limitation by: (1) isolating request application from each other, and
(2) aligning the service provided to the needs of applications.

5.3 Effect of Proportionate Allocation in Cello

Cello allocates the time spent in servicing requests among classes in proportion to their weights. To demonstrate this property,
we configured Cello with all three request classes and assigned them equal weights (i.e., ). We then
measured the time spent in servicing requests of each class. The video and text loads used for our experiments were such that
the pending queues never became empty, and hence, each class used up its entire allocation in each interval. As shown in Figure
8(a), Cello allocated the time spent in servicing requests within each interval equally among the three request classes.
To demonstrate that Cello allocates disk bandwidth unused by a class to classes with pending requests, we configured Cello

with the real-time and the interactive best-effort classes and and assigned equal weights to these classes. We conducted an
experiment in which no video requests arrived from intervals 200 through 400. Consequently, the interactive best-effort class
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Figure 8: Partitioning disk bandwidth between request classes

received the entire disk bandwidth in these intervals. In all other intervals, however, Cello allocated the time spent in servicing
each requests equally among the two classes. Figure 8(b) demonstrates this behavior. Observe that, the actual allocation
received by the best-effort class is slightly larger than that of the real-time class. Since the block sizes used for video and text
files was 64KB and 8KB, respectively, the average service time of a video request is larger than that of a text request. Towards
the end of each interval, any residual allocation that is unutilized by the real-time class (since it is insufficient to service any
more video requests) is reassigned to the best-effort class. Since the service time of text requests is smaller than video requests,
the reassigned allocation is often sufficient to service a text request, resulting in a larger allocation to the best-effort class.
Finally, Figure 8(c) shows that fraction of the time spent by SCAN in servicing requests belonging to the two classes within

each 1000ms interval. Since SCAN does not distinguish between text and video requests, the time spent is servicing requests
of the two classes fluctuates across intervals. Such fluctuations increase the variation in the response time of text requests and
the probability of deadline violations for video requests.

5.4 Proportionate Time-allocation versus Proportionate Byte-allocation

In proportionate time-allocation, the class independent scheduler allocates the time spent in servicing requests among appli-
cation classes in proportion to their weights. Since different requests incur different seek and rotational latency overheads,
the number of bytes retrieved for classes and within an interval may not be in the ratio , even though the time spent in
retrieving this data is. The problem is further exacerbated if requests can have different sizes, since the transfer time of requests
also differ in addition to the latency overhead. To demonstrate this, we configured Cello with the interactive best-effort and
real-time classes, assigned them equal weights, and measured the time allocated and the number of bytes retrieved for each class
within an interval. The time-allocation strategy ensures that both the interactive best-effort and real-time classes receive equal
durations within each interval. However, the number of bytes retrieved differs significantly for the two classes (see Figures 9(a)
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Figure 9: Comparison of time-allocation and byte-allocation strategies

and (b)). In contrast, the byte-allocation strategy ensures that each class receives equal byte-allocation within each interval, but
spends significantly different durations in retrieving this data. (see Figures 9(c) and (d)).
Both time-allocation and byte-allocation methods have their advantages and disadvantages. The byte-allocation method

provides a direct correlation between the weights assigned to classes and the amount of data retrieved in an interval, making
the task of assigning weights simple. However, since each request is charged the same overhead per byte, requests for large
blocks incur a larger seek and rotational latency overhead than smaller blocks. In reality, the latency overhead depends on
the relative positions of requests and is independent of the request size. The time allocation strategy does not suffer from this
limitation, since each class is charged the exact service times of its requests. However, in the presence of multiple block sizes,
this strategy does not provide any correlation between the amount of time allocated to a class and the amount of data retrieved.
The time allocation strategy is more suitable for file servers that employ admission control algorithms, since these algorithms
typically use time as their unit for disk bandwidth reservation. In contrast, the byte-allocation strategy is more suitable for
environments in which the file server employs different block sizes for different files.

5.5 Effect of reassigning idle bandwidth

Cello allocates bandwidth unused by a class to service pending requests of other classes. To demonstrate the benefits of
reassigning idle bandwidth, we simulated two scenarios. In the first scenario, we assigned equal weights ( ) to the
interactive best-effort and soft real-time classes; and in the second scenario, we reduced the allocation of the best-effort class
to 20% ( ). For both scenarios, we measured the response time of text requests. Figures 10(a) and (b) show the
response time of text requests for two different background video loads. Although the allocation of the best-effort class is only
20% of the total allocation in the second scenario, at light video loads, Cello reassigns bandwidth unused by the real-time class
to the best-effort class, thereby providing response times comparable to the first scenario. As the background load increases,
the unused allocation of the real-time class decreases, causing the response time of text requests to increase. Finally, Figure
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Figure 10: Effect of reassigning idle bandwidth on the response time
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Figure 11: Overhead of Cello

10(c) shows the response time of text requests when static partitioning of disk bandwidth is employed. The figure shows that
the response times of requests are larger by two orders of magnitudes as compared to Cello. This demonstrates that simple
partitioning schemes are ineffective at efficiently utilizing disk bandwidth.

5.6 Overheads of Cello

Cello considers the requirements of requests as well as their relative positions on disk while making scheduling decisions. This
causes some requests to be serviced out of scan order, increasing the seek and rotational latency overhead incurred by Cello.
Figure 11 compares the time for which the disk was busy within an interval for a particular workload when Cello and SCAN
are used. Although the total time to service a given set of requests is larger if Cello is used, the increase in service time is very
small ( 2%). Thus, the loss in disk throughput in Cello is negligible.
Our experiments thus far have employed trace-driven simulations to demonstrate the efficacy of Cello in servicing multiple

application classes. Next we quantify the scheduling overheads imposed by Cello using our prototype implementation. The
testbed for our experiments consisted of a 233MHz Intel Pentium II machine running Solaris 2.5, equipped with 128MB RAM
and a 4.2GB EIDE disk. The workload for the experiments was generated using a multi-threaded application that repeatedly
issued read requests to disk. We varied the disk utilization and measured the overheads of making scheduling decisions in Cello
and SCAN. Table 2 compares the overheads of determining the insert position and the total time for inserting a request into the
scheduled queue for the two algorithms. The complexity of determining the insert position is in SCAN (since binary
search can be used to determine the insert position), while that for Cello is , where is the number of requests in the
scheduled queue. Hence, Cello incurs higher overhead than SCAN. However, the average overhead of inserting a request is
small and results in a CPU load of less than 1% for requests rates of up to 50 requests/s. This demonstrates that sophisticated
scheduling algorithms such as Cello are feasible in practice. The worst case values reported in Table 2 occurred when we ran
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SCAN Cello
Average Worst- Average Worst-

case case
Det. insert posn. 9 s 0.5 ms 65 s 4.6 ms
Total insert time 129 s 7.4 ms 180 s 12 ms

Table 2: Implementation Overheads

the disk at 90% utilization, resulting in queue lengths of up to 150 requests. At such high utilization levels, locking overheads
(i.e., the time to acquire a lock on a queue) dominate the total time to make a scheduling decision, resulting in a large overhead
for both algorithms.

6 Concluding Remarks

In this paper, we articulated the disk scheduling requirements imposed by applications likely to be supported by general purpose
file and operating systems of the future. We then presented the Cello disk scheduling framework for meeting these requirements.
Cello assigns weights to the application classes. It services requests from application classes by proceeding in terms of intervals
and, during each interval, allocates disk bandwidth to application classes in proportion to their weights. Cello distributes the
unused bandwidth allocation of an application class to schedule pending requests from another class. It interleaves requests
from application classes such that the service provided is aligned with the application needs (e.g., video requests are serviced
just prior to their deadlines, interactive best-effort requests are scheduled such that their response times are minimized, etc.).
Finally, since a schedule that aligns the service with the application requirements may be different from one that minimizes
disk latency overheads, Cello derives a schedule that balances these tradeoffs.
Cello efficiently performs these functions by employing a two-level disk scheduling architecture, consisting of a class-

independent scheduler and a set of class-specific schedulers. The two levels of the framework allocate disk bandwidth to appli-
cation classes at two time-scales: the class-independent scheduler governs the coarse-grain bandwidth allocation to application
classes; while the class-specific schedulers control the fine-grain interleaving of requests from the application classes to align
the service provided with the application requirements. The two levels of the architecture separate application-independent
mechanisms from application-specific scheduling policies, and thereby facilitate the co-existence of multiple class-specific
schedulers.
Our experiments demonstrate that:

Existing disk scheduling algorithms are inadequate for servicing application classes with diverse requirements.

Cello is suitable for servicing application classes with diverse requirements since: (i) it aligns the service provided with
the application requirements, (ii) it protects application classes from one another, (iii) it is work-conserving and can adapt
to changes in work-load, (iv) it minimizes the seek time and rotational latency overhead incurred during access, and (v)
it is computationally efficient.
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