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Abstract
This paper is a preliminary account of current
work on a visual system that learns to aid in
robotic grasping and manipulation tasks. Lo-
calized features are learned of the visual scene
that correlate reliably with the orientation of a
dextrous robotic hand during haptically guided
grasps. On the basis of these features, hand con-
figurations are recommended for future gasping
operations. The learning process is instance-
based, on-line and incremental, and the interac-
tion between visual and haptic systems is loosely
anthropomorphic. It is conjectured that critical
spatial information can be learned on the basis
of features of visual appearance, without explicit
geometric representations or planning.

1. Introduction
When a human reaches for an object, the hand is ori-
ented and shaped appropriately in anticipation of the grasp.
This anticipatory preconfiguration takes place before con-
tact with the object is made, and is informed by visual cues.
For example, when reaching for a vertically oriented rod,
during the reach phase the hand forms a vertical opening of
a width relating to the perceived diameter of the rod. Once
contact is made, haptic feedback dominates the grasping
activity, while visual information generally plays a subor-
dinate role.

It is not conclusively known what visual information is ex-
tracted and how it is used to inform the reaching process.
In most conventional robotic approaches, geometric infor-
mation is extracted from the scene using cameras, followed
by a path/task planning procedure in the modeled environ-
ment. More recently, task metrics are computed directly
in image space, extracting only the required information
without explicit 3-D reconstruction (Jägersand & Nelson,
1995), or in a global appearance space without local feature
extraction (Nayar et al., 1994). However, these approaches
are not generally practical if the number of degrees-of-
freedom is large and the task is complex.

It appears that the inherent problems of multiple degrees

of freedom and high task complexity can only be over-
come through task decomposition and learning. Specifi-
cally, manual grasping seems effortless to humans because
we have substantial experience grasping objects. We do
not need to plan each grasping process in detail. Rather,
a few critical pieces of visual information prime the hand-
arm system for an efficient execution. Haptic information
along with a wealth of world knowledge permits efficient
manipulation with minimal planning or metric data.

This paper describes current research on learning grasping
cues purely from aspects of appearance, without any ex-
plicit scene reconstruction or geometric reasoning, which
increases the efficiency of a haptically-guided grasping
process . The idea is to learn localized features in image
space that robustly predict relevant grasping parameters re-
sulting in a successful grasp. Learning is on-line and incre-
mental; there is no distinction between learning and perfor-
mance phases.

2. Scenario
We have a functioning closed-loop haptically-guided
grasping system that is able to execute grasps. Using a con-
ventional visual servoing procedure, the hand is lowered
down to the object, and the fingers probe the object surface
in a systematic way until a stable grasp is formed using two
or three fingers, without using any visual or geometric prior
information about the object (Coelho & Grupen, 1997;
Coelho & Grupen, 2000). This system is implemented on
a General Electric P-50 industrial robot arm equipped with
a Salisbury dextrous hand (Fig. 1). Because many tactile
probes must be executed very carefully to avoid disturb-
ing the object, a single grasp can take many minutes, es-
pecially if the initial finger positions are far away from a
stable grasp.

This work adds eyes to the grasping system that watch the
execution of many grasps. The goal is to learn oriented
appearance-based features in image space that robustly cor-
relate with the orientation of the hand during a successful
grasp. Then, these features can be used to recommend hand
orientations before tactile contact is made, ideally bringing
the fingers close to an optimal grasping configuration. The
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Figure 1. Our haptic grasping system.

orientation of the hand during a given grasp configuration,
, is defined as illustrated in Fig. 2.

midpoint
between fingers

thumb

Figure 2. Definition of the hand orientation for two- and three-
fingered grasps.

(a) (b) (c) (d)

Figure 3. Some objects are better grasped with two fingers (a),
some with three (b), and for some this choice is unimportant (c,
d).

The robot may encounter a variety of objects that differ in
their shapes. Each type of object may require a dedicated
feature to recommend a hand orientation. Object identities
are not known to the system; the need for dedicated features
must be discovered by grasping experience. Moreover, a
recommendation is made regarding the number of fingers
to use for a grasp (two or three; see Fig. 3).

3. Features
Our earlier work on discrimination learning was based on
visual features composed of local appearance descriptors
defined by various Gaussian-derivative kernels (Piater &
Grupen, 1999; Piater & Grupen, 2000). Here, similar fea-
tures are used to predict a continuous orientation parameter

(as opposed to a categorical class designation). A feature is
either a primitive or a compound feature. A primitive fea-
ture is defined by a vector of locally computed Gaussian-
derivative filter responses. There are two variants that differ
in the number of filters employed: An edgel is encoded as
a 2-vector containing the filter responses to the two first-
derivative basis filters. It represents the magnitude and ori-
entation of a localized spatial intensity gradient. A texel is
represented as an 18-vector consisting of the responses to
the basis filters of the first three derivatives at two scales.
This represents a local texture signature. Like edgels, tex-
els have an associated orientation that is defined by the
first derivatives.

reference point

Figure 4. A geometric compound feature of order 3, composed of
three primitives. The feature is defined by the angles and the
distances , and the orientation of this specific instance is denoted
by . Each primitive is either an edgel or a texel.

Primitive features cannot generally be expected to correlate
robustly with object orientation because they are likely to
respond strongly to irrelevant parts of a scene. Compound
features consisting of several primitives can potentially be
much more specific to relevant object parts. Here, a com-
pound is defined as illustrated in Fig. 4.

Each feature is present at a pixel location to a degree
, which is the normalized inner product of the

vector of applicable filter responses at with the pattern
vector defining :

The normalized inner product is pleasing in that it returns
the cosine of the angle between the vectors in question,
such that for edgels .
A feature is present in an image to the degree

. For more detail on these features, see our
earlier work (Piater & Grupen, 1999).

4. Using Features to Recommend Grasp
Parameters

As the camera observes the objects and associated hand ori-
entations, features are sampled from images taken by an
overhead camera. Assuming that these features respond to
the object itself, their image-plane orientation should
be related to the robotic hand orientation by a con-
stant additive offset . A given feature, measured during
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many grasping tasks, hence generates data points that lie on
straight lines in the toroidal space spanned by the hand and
feature orientations (Fig. 5). Here, . There
may be more than one straight line because a given visual
feature may respond to more than one specific object loca-
tion (e.g., due to object symmetries), or to several distinct
objects that differ in shape. Given , one can then in-
fer appropriate hand orientations as a function of observed
feature orientations:

(1)

The remaining problem is to find the offsets . This is an
instance of a -Means problem in one-dimensional circu-
lar (angular) space, with unknown.

4.1 Fitting a Parametric Orientation Model

Assume the are drawn independently from a mixture of
von Mises distributions. The circular von Mises distribu-
tion can be regarded as corresponding to the linear Gaus-
sian distribution, and has the probability density function
(Fisher, 1993)

(2)

where , , and

is the modified Bessel function of order zero. The mean di-
rection of the distribution is given by , and is a concen-
tration parameter with corresponding to a circular
uniform distribution, and to a point distribution.
The mixture distribution (see Fig. 5) is defined by its den-
sity function

(3)

with mixture proportions , .

For all plausible numbers of clusters , a -
dimensional non-linear optimization problem is solved to
find the , and . The objective function to be maxi-
mized is the log-likelihood of the observed data given a
parameterization consisting of the , and :

(4)

The most probable model can then be found using Bayes’
Rule:
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Figure 5. Top: Data points induced by a given feature on various
images of an object form straight lines on a torus (two in this
case). Bottom: A mixture of two von Mises distributions was fit
to these data. The probability density at an angle is visualized by
the distance of the line from the unit circle.

In the case of uniform prior probabilities over all possi-
ble model parameterizations , the model maximiz-
ing is simply the one that maximizes
(Eqn. 4).

The appropriate number of clusters is determined ac-
cording to the Integrated Completed Likelihood criterion
(Biernacki et al., to appear), an adaptation to clustering
problems of the more well-known Bayesian Information
Criterion (Schwarz, 1978).

While the system learns and performs, all features are eval-
uated on all images. The response strengths of all features,
their orientations, the actual hand orientations (the
training signal), and the prediction errors
produced by each feature are stored in an instance list. To
compute the mixture model for each feature, this feature’s
data points (such as those shown in Fig. 5) are taken from
this instance list.

If different types of objects are encountered, dedicated fea-
tures may have to be learned. Without a supervisor pro-
viding object identities, the data collections (Fig. 5) will
be cluttered up with inappropriate feature responses, and
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any reliable patterns will be obscured. The key to learning
dedicated features is to ignore data points corresponding to
weak feature responses. This permits features to emerge
that respond strongly only to specific, highly characteris-
tic object parts, but that respond weakly in any image that
does not contain such an object. These weak responses will
be ignored, and reliable models of can be fitted to the
strong responses.

Deciding whether a given point is “strong” in this sense
involves a threshold. Such thresholds , specific to each
feature, can be determined optimally in the Bayesian sense
that the number of poor recommendations made by the re-
sulting model is minimized. To do this for a given fea-
ture , the strengths of experienced responses and the
associated prediction errors are analyzed in order to
find a threshold such that most predictions for cases
with are correct. To formalize this intuitive no-
tion, we introduce a threshold , meaning that a predic-
tion with is correct, and false otherwise. We can
then define the optimal threshold as a value that maxi-
mizes the Kolmogorov-Smirnoff distance1 between
the two conditional distributions of under the two con-
ditions that the associated predictions are correct and false,
respectively (Fig. 6).
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Figure 6. Kolmogorov-Smirnoff distance between re-
sponse strength probabilities given correct and false predictions.

4.2 Operation

The system operates by recommending hand orientations
and observing the outcomes of grasping procedures. Be-
fore a grasp, the responses of all features are measured in
an overhead image of the object on a table. The system then
considers all features with . From these, the fea-
ture with highest prediction potential is chosen. This

1The Kolmogorov-Smirnoff distance between two distribu-
tions of a variable is the maximum difference between the two
cumulative distributions, which occurs at some threshold value
of that variable. Given a quantity that was drawn from one of the
two distributions, and one has to guess the correct distribution on
the basis of this quantity, then guessing on the basis of maxi-
mizes the probability of guessing correctly.

is the feature that maximizes the expected correct predic-
tion rate, based on all experience recorded in the instance
list. If the mixture model corresponding to this feature has
more than one mode that is supported by at least three
data points, the mode with maximal is selected. A hand
orientation is computed according to Eqn. 1, using the
corresponding to the selected model .

The robot subsequently executes the grasp, starting with
the recommended hand orientation. If the hand orienta-
tion turns out not to be appropriate, i.e. it needs to be cor-
rected by more than , then all are recomputed,
and all mixture models are re-estimated based on the cases
recorded in the instance list of previous experiences. A new
prediction is made based on the new models. If this new
prediction is still wrong, then two new features are gen-
erated: One primitive feature is randomly sampled from
the image, and one compound feature is generated by ran-
domly expanding an existing feature by adding a new point
as illustrated in Fig. 4.

Many of the randomly sampled features will perform
poorly, e.g. because they respond to parts of the scene un-
related to the object to be grasped. Such features will de-
velop a poor KSD, as there is no systematic association
between their response strengths and their prediction accu-
racies. Due to their low KSD, such features will cease to be
used at all. Unused features are discarded periodically. On
the other hand, if a feature performs well, its KSD will be
increased, and it will be more likely employed. Moreover,
since only super-threshold features are consulted, features
can be learned that selectively respond to different object
shapes requiring different offsets .

This search for good predictive models is an instance of the
Expectation-Maximization (EM) algorithm. The paramet-
ric model to be optimized is the collection of all feature-
specific models that are used by the angular recommenda-
tion process. The hidden parameters of the model deter-
mine which recorded data points should participate in the
feature-specific models. At the Expectation step, these hid-
den parameters are estimated by computing the such
that the probability of making the right choice for each data
point is maximized, given the current model. At the Maxi-
mization step, the probability of the model given the partic-
ipating data points is maximized by optimizing the model
parameters according to Eqn. 4. As the system operates,
these two steps alternate.

This instance of the EM algorithm is non-standard as the
Expectation step is not executed using all available current
data. Instead, the instance list of past experience is con-
sulted for previous prediction results, which were gener-
ated by models derived from all data available at that time.
Taking the correct expectation using the most recent model
would involve revisiting all previously seen images at each
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execution of the Expectation step, which is clearly imprac-
tical. Nevertheless, the convergence properties of the EM
algorithm are unaffected. As data accumulate, the accuracy
of recent expectations can only increase, and the influence
of possibly inaccurate data from early history diminishes.

4.3 Predicting the Quality of a Grasp

The quality of a grasp is defined by the minimum friction
coefficient required to execute the grasp using a given
finger configuration. The lower (closer to zero) a value of

, the better the grasp. It is not possible to separate good
from poor grasp configurations based on a generic thresh-
old on because the best achievable grasp depends on the
object properties and the number of fingers. For example,
the best achievable grasp of a triangular prism using two
fingers is far worse than if three fingers are used. Cubes
are best grasped with two fingers because of their parallel
opposing surfaces.

It is possible to recommend the number of fingers to be
used in a grasp, based on the expected associated with
a feature. To do this, separate models are learned as de-
scribed above for each available number of fingers. The
actually experienced value of is stored in the instance
list along with each executed grasp. These values are
regarded as samples of a continuous random variable
with probability density function and expected value

Observe that each sample was generated by a specific
grasp with hand orientation . Therefore, the are gov-
erned by the same probability density function as the ,
i.e., . Then, a sample estimate of
for a given feature can be computed as

(5)

where the corresponding pairs of and are taken
from the instance list, using only instances corresponding
to super-threshold occurrences of . When recommending
grasp parameters, the system then derives an expected hand
orientations for each available number of fingers, and rec-
ommends that with the lowest associated value of .

5. Experiments
A series of pilot experiments was performed in simula-
tion, using data generated by the real grasping system and
by a detailed simulator, using photo-realistically rendered
and noise-degraded images. Three object types were used
(Fig. 7). Lacking the ability to perform large numbers of
grasps on the real robot, the recommended grasps were

Figure 7. Example views of objects used to test the system.

simulated by comparing the recommended hand orienta-
tion with the previously executed hand orientation asso-
ciated with the training image, modulo the known rota-
tional symmetry properties of the object. Since cylinders
have infinite-fold rotational symmetry, no features were
ever learned for cylinders. All results reported below were
computed in two-fold cross-validation.
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Figure 8. Quantitative results of hand orientation prediction.

Our pilot studies indicate that the system learns to make
useful recommendations (Figure 8). If the training set con-
tains a single object class and little noise in the training sig-
nal (the actual hand orientation during the grasp), the
training set is typically learned during a single iteration.
Performance on an independent test set is almost always
excellent, with prediction error magnitudes on the order of
the variation in the training signal.

If the training set contains outliers, i.e. hand orientations
that produced a poor grasp, then the training set is harder
to learn because the system expends a lot of effort trying
to learn these outliers. However, performance degrades
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Figure 9. Utility of the learned visual context to the haptic system when grasping rectangular and triangular prisms (see text).

gracefully because features are selected by Kolmogorov-
Smirnoff distance, which prefers generic features that work
well for the majority of useful training examples. On a
noisy test set, most poor recommendations occur on out-
liers. Notably, two-fingered grasps of the triangular object
are inherently unstable and unpredictable. Here, prediction
errors produced by the trained system depend on the er-
ror threshold that divides “good” from “poor” predictions
during training. Choosing a low threshold generally pro-
duces more accurate predictions on a test set, as long as
this threshold is larger than the variation contained in the
majority of the training data.

Figure 9 demonstrates the utility of the learned visual con-
text to the haptic grasping system when grasping rectan-
gular and triangular prisms. The two columns on the left
show the performance of the two- and three-fingered “na-
tive” controllers without a visual component. The right-
most column shows the performance achieved if the visual
system determines the initial hand orientation, and which
of the two native controllers to employ.

The bottom row illustrates that neither two- nor three-
fingered native controllers alone are sufficient to execute
high-quality grasps reliably. The two-fingered native con-
troller works well on rectangular but poorly on triangular
prisms; for the three-fingered controller the opposite is true.
If the recommendation of the visual system is followed, the
achieved grasp quality is consistently high – almost all of
the values cluster around the lower end of the range.

Moreover, the proportion of extremely fast single-probe
grasps increases drastically, and very long trials (more than
about 20 probes) are practically eliminated (cf. the two-
fingered native controller on the left).

6. Discussion
This paper describes a system for learning to recommend
hand orientations and finger configurations to a haptically-
guided grasping system. Localized appearance-based fea-
tures of the visual scene are are learned that correlate re-
liably with observed hand orientations. In this way, visual
guidance takes place without prior knowledge, explicit seg-
mentation or geometric reconstruction of the scene. The
interaction between haptic and visual system is a plausible
model of human grasping behavior. Learning is on-line and
incremental; there is no distinction between learning and
execution phases. Pilot results were presented that demon-
strate the operation of the system. More rigorous evaluation
is currently underway.

In the future, this method will be extended to learning spa-
tial knowledge in more degrees of freedom. Learned spa-
tial knowledge about objects and environments is critical to
the efficient sensorimotor activity of humans. It is known
that much of the spatial information extracted by the human
visual system is more qualitative than geometric. Future
research will further explore the promise of feature-based
learning of spatial information in more elaborate scenarios.
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