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Abstract

In this report we use a previously developed nonlinear dynamic model
of TCP to analyze and design Active Queue Management (AQM) Control
Systems using RED. First, we linearize the interconnection of TCP and
a bottlenecked queue and discuss its feedback properties in terms of net-
work parameters such as link capacity, load and round-trip time. Using this
model, we next design an AQM control system using the random early de-
tection (RED) scheme by relating its free parameters such as the low-pass
filter break point and loss probability profile to the network parameters. We
present guidelines for designing linearly stable systems subject to network
parameters like propogation delay and load level. Robustness to variations
in system loads is a prime objective. We present ns simulations to support

our analysis.
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1 Introduction

In [1] leading researches in the networking community have proposed implemen-
tation of RED in IP routers for Active Queue Management (AQM). It is believed
that RED will alleviate problems related to synchronization of flows and also pro-
vide some notion of quality of service by intelligent dropping. The analysis of
RED has generated several interesting papers. Tuning of RED parameters has
been an inexact science for sometime now, so much so that some researchers have
advocated against using RED because of this tuning difficulty [2], [3]. Numer-
ous RED variants [4], [5], [6] have also been proposed, perhaps motivated by the
difficulty in understanding the dynamics of RED completely.

In [7], the authors investigated the issue of recommendations of RED param-
eters, and gave thumb rules and guidelines for choosing them. In this report we
investigate similar issues, however from a more formal, control theoretic stand-
point. We use a previously developed model of TCP and RED dynamics [8] as a
starting point to perform our analysis. The inherently non-linear model presented
in that paper is converted to a linear system via the technique of linearization, and
we subsequently apply the well developed tools in classical linear feedback con-
trol theory. We are able to give guidelines on designing linearly stable systems
as well as provide metrics indicating stability and robustness of the linear system.
Our analysis also reveals tradeoffs in various parameter choices. We support our
analysis via non-linear simulations using ns.

The rest of the report is organized as follows. In Section 2 we develop the lin-
earized model for the AQM control system. Section 3 deals with with application
of the earlier developed model to an AQM system implementing RED. We present
design guidelines in this section. Next, in Section 4 we present simulation results
done using ns which verify our analysis and design recommendations. Finally,

we present our conclusions in Section 5.



2 Model

2.1 TCP model

In [8], a dynamic model of a TCP connection through a congested AQM router
was developed using fluid-flow analysis. Simulation results presented in the paper
demonstrated that the model captured the dynamics of TCP with a fair degree
of accuracy. We use a simplified version of that model, ignoring the timeout
mechanism. This model can be described by the coupled differential equations

aw@) 1 W ()W (t — R(t))
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(D
where:
R(t) = ? + T,

W = TCP window size (packets)

q = congested queue length (packets)

R = round-trip time

C' = queue capacity (packets/sec)
T, = propagation delay (secs)

N = load factor (number of TCP sessions)

p = probability of packet loss

We illustrate these differential equations through the block diagram in Figure 1.
This figure highlights TCP window-control, TCP load and queue dynamic.To gain
insight into both its behavior and feedback control we approximate these dynam-
ics by their small-signal linearization about an operating point. This allows us to
take advantage of well-developed techniques of linear systems analysis and con-
trol. Details of the technique can be found in any advanced text of control systems
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design, e.g. [9]. The basic idea is to write equations for small perturbations about
the operating point and then ignoring second order terms, thereby obtaining a lin-

ear model.

2.2 Linearization

Taking (W, q) as the system state and p as input, the equilibrium (W, qo, po),

defined by W = 0 and ¢ = 0, is given by

WZO = Wozp[)ZQ
RyC

Q=0 = Wy=— @)
where
RO — q—g + Tp.
Linearizing (1) about this equilibrium state (see Appendix) yields
. 2N RyC?
W) = ——==0W(t) — —=p(t —
. N 1
dq(t) = ——0W(t) — —=-dq(t 3
dlt) = W)~ da(l) ©

where

W= W =W,
0¢ = q—qo
op = p—Dpo

represent perturbations in W, ¢ and p from their equilibrium values. The eigenval-

ues of the linearized TCP and queue dynamics 3 are respectively

ON or =2} and 1
- nd ——.
r2c " w,r R

Since all the network parameters are positive quantities, these negative eigenval-

ues indicate that the equilibrium state of the non-linear dynamics is locally asymp-
totically stable. That is, for p = py, all responses starting “close” to (W, qo) will
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asymptotically converge to (W, qo). An interpretation of the TCP’s time constant
Wy Ry /2 comes from expressing the linearization of the W equation above as:

SV (1) = — oW (1) — 20 500t — Ro)
2N?2
where A is the packet loss rate as discussed in [8]. Therefore, the time constant
is ALO In the steady state (I = 0), the decrease in window size sWoAo must

. . . . 1 2 .
balance the increase in TCP window size #. Consequently, Ao = Worg- Finally,
it is interesting to note that the linearization of the queue dynamic is not a pure
integrator, as one may expect, but a first-order lag with time constant R. This can
be explained by noting that the queue input is a function of the queue length by

virtue of the % factor in Figure 1.

2.3 The AQM Control Problem

Using the linearized TCP model (3) an AQM control system can be modeled as in
the block diagram of Figure 2 '. In this diagram P,., denotes the transfer function

IThis linearized control system assumes an infinite queue-length and allows queue length to
take on negative values. While our subsequent analysis and design are based on this linear model,

they are verified in nonlinear simulations which include these nonlinear constraints.
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Figure 1: Block-diagram of a TCP connection.



from loss probability dp to window size 6W and Py, relates W to queue length
q. The term e~* is the Laplace transform of the time-delay in the delayed loss
probability dp(t — R) . In control-system language, we refer to the AQM Control
Law block as the “controller” or “compensator” and the rest of the (uncompen-
sated) system as the “plant”. The goal of the compensator design is to provide a
“stable” closed-loop system. However, there are concerns beyond stability which
impact control design. Firstly, the system must have an acceptable transient re-
sponse. Secondly, the compensator design should be robust to variations in model
parameters and modeling errors. Hence, the goal of control engineers is to design
systems with a margin of safety. These margins are called stability margins. There
are two classical metrics to measure this relative stability. The first of those is the
gain margin, which is the factor by which the open loop gain of a stable system
must be changed to make the system unstable. If we look at Figure 1, the gain
margin is roughly the uncertainty in the load level /V that the design can tolerate.
The second of those measures is the phase margin. The definition of the phase
margin is a little bit more complex, but in the context of AQM we can interpret
the phase margin as the amount of uncertainty in the round trip delay a design can
sustain without becoming unstable. Stability margins of a system can be readily
deduced from Bode plots. A Bode plot is the frequency response plot of the open-
loop system. The magnitude and phase response of the system are plotted on a
double log scale. The gain margin of a system is equal to the magnitude response
of the system at the point where the phase response is —180°. The phase margin
¢m 1s defined as w,,, — 180 where wy,, is the phase response at the frequency
where the magnitude response is unity (or O dB). The two quantities are shown in
Figure 3. Intuitively, if we don’t have positive margins, then the feedback control
system starts behaving like a positive feedback system, i.e. one where the error

gets amplified in the loop, leading to divergent and unstable behavior.
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Figure 2: Block diagram illustrating AQM control.

2.3.1 Plant Dynamics

From Figure 2, the plant transfer function, P(s) = Py, (s) Pyucue(s) , can be ex-
pressed in terms of network parameters yielding:

RoC?

_ 2NZ .

Ptcp(s) T s 2N
RZC

N

Pqueue(s) — S _}:OL' (4)
Ro

We refer to the two poles 2N/(R3C') and 1/ Ry as piep and pyyeqe respectively.

Example 1: Suppose ¢o = 175 packets, T, = 0.2 secs and C' = 3750 packets/sec.
Then, for a load of N = 60 TCP sessions, we have W, = 15 packets; pg = 0.008;

482 243

; Pqueue - ;
s+ 0.53 s+ 4.1
117,126

(s +0.53)(s +4.1)
For a load of N = 120 TCP sessions, we have W, = 7.7; py = 0.034;

120 . 486
s+ 1.057 I g4 4.1

58,320
P120 = PC P, ueue = : '
(s) ep (5) Pyueue () (5 +1.05)(s +4.1)

Ptcz)(s) =

P(s) = Pip(s)Prucue(s) =

Notice that the P% dynamic has larger time constants (5, 77) Vs (155, 77) and

larger DC gain?, P%(0) and P*2°(0), (53,901 vs. 13,547). Expressing this plant

2the DC gain of a system is simply it’s transfer function evaluated at s = 0, i.e., at 0 (DC)

frequency
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Figure 3: Stability margins on the Bode plot

gain in terms of network parameters shows its dependency on the TCP load factor
N explicitly:

(RC)°
(2N)?
The Bode plots for P%(s) and P'*°(s) are shown in Figure 4. One of the goals of
the controller should be to introduce positive stability margins in the Bode plots.

DC plant gain = Ptcp(O)Pqueue(O) = @)

Remarks 1:

1. Roughly speaking, an increase in the DC plant gain (5) can affect AQM

control in two competing ways. First, such an increase reduces the sensi-



tivity of queue length on network parameters such as load N. Secondly,
increasing plant gain can decrease stability margins; i.e., render closed-loop
response more oscillatory. From (5) we see that increasing capacity C' and
decreasing TCP load N both lead to larger DC plant gain. The variation in
this gain as a function of network parameters should be a main concern in

the design of AQM control schemes.

2. From the block diagram in Figure 1, it seems counter-intuitive that the DC

plant gain is inversely proportional to the load N. From (4) we see that

the DC gain of the queue dynamic & is indeed proportional to N; this is

R
intuitive. However, the DC gain of the TCP dynamic 12%]%2

portional to N2. This can be seen from the W equation of (1) where the

is inversely pro-

loss probability p is weighted by 7?2 and where the equilibrium value of
the TCP window size is itself inversely proportional to N.

3. The (round-trip) time-delay e~*® (R ~ T,) places an upper limit on the
speed of responses achievable in AQM control. Closed-loop time constants
of AQM’s are limited to ~ 7},/2 seconds®

2.3.2 AQM Performance Objectives

One objective of an AQM control system is to improve throughput by regulating
fluctuations in queue length to avoid either buffer overflow (lost packets) or an
empty buffer (link underutilization). The other objective is to remove synchro-
nization amongst flows by “spreading out” losses. Ironically, an unstable AQM
system often leads to oscillations and strong synchronizations amongst flows.
We thus take as our performance objectives the regulation of both fransient and

steady-state queue length.

3The sinusoidal phase lag due to a time delay element e ~*7»

is wT'p. Feedback systems are
usually designed so that time delays do not contribute more than 90° of phase lag at control

bandwidth. This requires w < 57 and hence closed-loop time constants greater than %
P
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Figure 4: Bode plots of P(s) = Pip(s) Pyyeue(s) for TCP loads of N = 60 and N =
120.
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3 AQM with RED

Random early detection (RED) is an AQM feedback scheme introduced in [10]. In
this section we use the previously developed linearized model of AQM to suggest
rules for tuning a RED-based controller.

3.1 Description of RED

The RED active queue management control law computes loss probability p as a
function of measured queue length ¢ as depicted by the AQM control law in the
block diagram of Figure 2. Specifically, RED consists of a low-pass filter (LPF)
and nonlinear gain map as shown in Figure 5. The form of the LPF was derived
in [8]. The pole K is equal to log,(1 — «)/d, where « is the averaging weight
and ¢ is the sampling frequency. Normally RED updates it’s moving average
on every packet arrival, and hence ¢ is 1/C, where C' is the queue capacity in
packets/sec. At high load levels this sampling frequency exceeds C', whereas at
low load levels it falls below C'. On an average however, under the assumption
of a stable congested queue, the sampling frequency is C. Tuning RED amounts
to selection of the low-pass filter pole K, threshold ¢,,;,, level p,.q.. and gain
L,.q. A point to be noted here is that the role of a low-pass filter in AQM is
unclear. A low-pass filter provides both attenuation and phase lag at frequencies
past its corner frequency; w = K. At such frequencies, the introduction of a
phase lag reduces phase margins and worsens transient performance, and is often
the cause of oscillations seen in RED systems. The benefit of a low-pass filter
lies in its magnitude attenuation at these higher frequencies. This property gives it
an ability to attenuate the effects of high-frequency sensor noise on the measured
variable ¢q. For example, a low-pass filter in an AQM control law could be useful
in attenuating sensor noise n on the regulated output q. However, the range of
frequencies over which this occurs must be sufficiently removed from the control
loop’s bandwidth.

11
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Figure 5: RED as a cascade of low-pass filter and nonlinear gain element.
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Figure 6: Block diagram of a linearized AQM control system

3.2 Designing RED

An active queue-management (AQM) system can be modeled as the feedback
control system shown in Figure 6. Here P(s)e *F denotes the previously derived
small-signal linearization of TCP-queue dynamics (linearized about queue-length
Qo). P(5) 18 Pip(S) Pyucue(s) derived previously. dp and d¢ denote perturbations in
the loss probability and queue length respectively. In Figure 6 the transfer function
C'(s) denotes an AQM control strategy such as tail-drop or RED.

Tail-drop is an on-off control strategy. In terms of our set-up in Figure 6,
tail-drop amounts to the on-off action op € {0, 1}. It is known in control theory
that such an on-off mechanism* leads to oscillations (limit-cycles) that can exhibit
complex and chaotic behavior; e.g., see [11]. Such oscillations may be undesirable

in queue management, and RED was introduced to stabilize them.

“also referred to as relay control in the feedback literature.
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A transfer-function model for RED is:

C(s) = Croals) = —2red

TSR AT ©

where
Lred _ Pmaz : : K — loge(l - Oé),
MaL, — MMy, )
a > 0 is the queue averaging parameter and ¢ is the sample time; see [8]. In de-

signing Cl..q(s) to stabilize the AQM control system, variations in both the num-
ber of TCP sessions N and round-trip time 2 should be taken into account. The
variations in R are due to a variable propagation time 7, where

i)
C

Let’s assume a range for the number of TCP sessions, say N > N, and the

R=24T,

round-trip time, R < R™. The objective is to select RED parameters L,.q and K
in (6) to stabilize the linear control system in Figure 6 for all these N and R. The
linear feedback control system in Figure 6 is stable if bounded exogenous inputs
produce only bounded outputs. This in turn implies that responses to initial con-
ditions will be bounded and converge exponentially to zero. Under this definition
of stability, we give the following two propositions:

Proposition 1: Let L,.q and K satisfy:

Lred(R+C)3 < w2

ev e SVret! ™
where
. 2N~ 1
L{)g = 0.1 min W, ﬁ . (8)

Then, the linear feedback control system in Figure 6 using C(s) = Ccq(s) in (6)
is stable forall N > N~ and all R < R™.

Proof: Consider the frequency response of the compensated loop transfer

function

L(jw) = Creg(jw)P(jw)e 7k

3 .
- Lred ((51532 eiij
(R+D(Ee + D) +1)
R2C R
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From this and (8) we have:

3 .
Lred (re) e*]wR

L{jw)  ——2—— Vw € [0,0,).
Ly

Now, givenany N > N~ andany R < R,

(RTC)3
Lredm

—
Viz+1
From this and (7) it follows that | L(jw,)| < 1forall N > N~ and forall R < R™.

Thus, the unity-gain crossover frequency is bounded above by w,. To establish

| L(jw)l <

closed-loop stability, we invoke the Nyquist stability criterion [9] and show that
LL(jw,) > —180°. To this end, we again use (8) to obtain

Kred@ 1800
LL(jwg) > L— P R > —90° — 01— > —180°.
=19 1 m
Pred
O
Remarks 2:

1. The rationale behind this choice of parameters is to force C,.4(s) to dom-

inate closed-loop behavior. This is done by making the closed-loop time
(R*)*C

sv— Of the

constant (= 1/w,) greater than either the TCP time-constant

queue time-constant R+.

2. Different choices of (L,.q, K) satisfy the condition above. For example,
Figure 7 illustrates a region of admissible parameters® when Rt = 0.25
secs, N~ = 40, 60 and 80 flows and C' = 3750 packets/sec.

3. This RED design is linearly robust to the network parameter variations N >
N~ and R < R*. The extent to which this feedback control system is stable
to further variations in these parameters is characterized in Proposition 2

below.

Svalues of admissible pairs (Lyeq, K) lie below the graphs.
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Figure 7: Stabilizing RED parameters L,.q and K.
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4. The multiplicative factor 0.1 in the choice of w, is the one which provides
stability margins. If we choose a higher value than 0.1, we produce a con-
troller with lower stability margins. The benefit of the more aggressive

design is that it gives faster response times (due to an increase in w).

5. It seems counter intuitive that the system is stable for all load levels greater
than /N . In fact, the system may oscillate if the load level makes the system
go into a region where the operating point lies in the discontinuity region of
the loss profile. This was studied in [7]. However, the gentle_ mechanism

recommended in [12] removes the instability related to the discontinuity.

6. At high load levels, the loss probability becomes sufficiently high to cause
some flows to go into timeouts. We have ignored timeouts in our model and
analysis. Timeouts should not impact stability from our analysis; indeed,

they tend to make the system less oscillatory.

Proposition 2: Consider any RED controller C.qq(s) satisfying conditions
(7) and (8) in Proposition 1. Then, the gain margin (GM) and phase margin
(PM) of the linear control system in Figure 6 satisfy:

GM > 5r; PM > 85°.

Consequently, this linear control system will remain stable if either R < 15R™ or
N> =N~

Proof: Sharpening a phase computation made in the proof of Proposition 1

gives
Ked s 180°
. rea (2N-)? o ~ o
ZL(]wg) Z ZTH — ng Z —-90° — 017 ~ —95°.

Pred

Thus, PM = 180° + /L(jw,) > 85°. The phase lag due to additional round-trip
time delay AR is:
Le W AR — —wy,AR.

16



From (8), w, < %*. Using this and w,AR = 85(5;) gives AR < 14.8R. For the

gain margin computation we recall from the proof of Proposition 1 that

I d(RC)3
. red (oN)?
P(jw) ~ 2 :_ 1) , Yw € [0,wy]
Consequently,
LP(jwg) > —90°
Since

Le IR — _gp°

then /L(j57—) > —180°. Because |L(jw,)| < 1, then 1/|L(jz7—)| ~ 2Rir0

2Ryt0 Wy
gives a lower-bound to the gain margin. Since w, < 0.1y, then GM > 5.
]

Example 2: Consider the case of network parameters: C' = 3750 packets/sec
6 N~ =60and Rt = 0.2 sec. From (8),

wy = 0.1 min{0.5259,4.0541} = 0.053 rad/sec.

For K = 0.005, we compute from (7):

(2N7)? [w?
Lt < (g L 1= 1.86e — 4.

Thus, one choice for C,..q4 is

1.86(10) 4
Crea(s) = T s
0.005

In terms of implementation, we can break this C,..4(s) down as
Lyeq = 1.86e-4; K = 0.005

Now, for a link capacity of 3750 packets/sec, § = 2.66e — 04, yielding «, the
averaging weight, as 1.33e — 6. L,eq = Pmaz/max s, — ming,. Thus, if we choose
Pmaz as 0.1, then the dynamic range of the average queue size is approximately

17



Phase (deg); Magnitude (dB)

Bode Diagrams

Gm=32.264 dB (at 0.98141 rad/sec), Pm=88.03 deg. (at 0.052714 rad/sec)
50 T oo T oo T T oo T oo T Ty T

0 b T o
-50 - .
-100 - : : .
-150 - .
_200 | P | P | P | P |

0

-500

—-1000

~1500 N | PN M| M| M|
107° 107 107" 10° !

Frequency (rad/sec)

9(10)~"

Figure 8: Frequency response for loop using C,.q = T
0.01

18



540 packets. In Figure 8 we give the Bode plot for L(jw) for N = N~ and
R = R™" . The phase margin = 83° and the gain margin is 79 (38dB).

Remarks 3:

1. From the viewpoint of steady-state regulation it is desirable to select L4 in
(7) as large as possible. By steady state regulation we mean that d¢g should
go down to zero in steady state. However, under the RED mechanism the
steady state value of the queue length (for a stable system) depends upon
network conditions. Thus dq in our linear model never goes to zero which
is not a desirable feature. We can reduce this steady state error by decreasing

K. From (7), K — 0 allows L,y — oc. In this limiting case we have

K
Creq = —
S

which corresponds to classical integral compensation.

2. A drawback in using RED for stabilizing queue length is that it has a low
control-bandwidth w, which, from (8), must be less than the bandwidth of
either the queue or TCP dynamic. Consequently, closed-loop responses are
commensurately slow’. This can be improved by introducing lead com-
pensation into RED. This results in a classical proportional-integral (PI)
compensator

s/z+1
Cpr = KPILS)-

The design of such a compensator is discussed in a separate companion

paper [13].

bcorresponds to a 15 Mb/s link with average packet size 500 Bytes
"In Example 1, the bandwidth was approximately 0.053 rad/sec. Closed-loop responses are

dominated by the associated 20-second time constant.
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4 Simulations

We verify our propositions via simulations using the ns simulator. Although our
analysis was carried out with a linearized model, the simulations are non-linear
in nature. We look at a single bottlenecked router running RED. In addition to
infinite duration, greedy flows such as the one we model, we introduce short lived,
HTTP flows into the router, to generate a more realistic traffic scenario. The HTTP
flows were simulated using the http module provided with ns. The effect of flows
which are very short lived is essentially that of introducing noise to the queue. The
objective of the control system is to achieve full utilization of the bandwidth in the
presence of these short lived flows. In all our plots we depict the time evolution

of the instantaneous queue length, with the unit of the time axis being seconds.

4.1 Experiment 1

In the first experiment, we look at a queue with 60 ftp (greedy) flows, and 180
HTTP sessions. The link bandwidth is 15 Mb/s, and the propagation delays for the
flows range uniformly between 160 and 240 ms. We attempt to control the queue
to provide a queueing delay of around 50-70 ms, and hence set the min,, and
maxy, of the queue as 200 and 250 respectively, with average packet size being
500 Bytes. The averaging weight and p,,,,, 1s retained as “vanilla”, i.e. the values
which are the default in ns. The buffer has a maximum capacity of 800 packets.
We set the gentle_ parameter in RED as “on”. The instantaneous queue length
is shown in Figure 9. Observe the oscillating nature of the queue. It frequently
goes down to zero, thereby under-utilizing the link. The large oscillations also
add considerable jitter to the round trip times of the packets.

4.2 Experiment 2

Now we use the design as derived in Example 2. Thus, we set the averaging
weight to be 1.33e — 6, p,q, t0 0.1 and the dynamic range (miny,, maxyy,) to 150-
700 packets. This should yield a stable mode of operation. The results are plotted

20
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in Figure 10. We indeed see that the system is stable, with small fluctuations
about an operating level of the queue. The deterministic oscillations which were
observed in the previous experiment are absent in this configuration. A point to
note however, is that it takes a long time to “settle” to the operating point. This
initialization is a major “disturbance” and one doesn’t expect to encounter it in
the normal mode of operation. However, it is related to the responsiveness of the
control system to change in operating conditions. This slow response is related to
a low value of w, that we use. ® We can be more aggressive in our choice of w,,
to get a faster response, however that will lead to lower stability margins. In the

next experiment, we test a design which has a faster response time.

4.3 Experiment 3

We increase w, to 0.2 from 0.05. Recall that 1/w, is approximately the time
constant of the feedback loop. Thus, increasing w, should yield a faster response
time. There are a number of ways of incorporating the effect of the increased w,.
We look back at Proposition 1, and evaluate the effect of increasing w, on L;.q.
We could either maintain a constant w, /K ratio, thereby increasing K (which in
turn means increasing «) and maintain L,..4, or we could retain the value of K and
increase L,.q4 correspondingly. The latter can be achieved in two different ways -
by shrinking the dynamic range (recall that L, .4 = W ) or by increasing
Pmaz- I our first approach to obtain a faster response time, we make the dynamic
range shorter, reducing it to 150-250, from the earlier 150-700. The queue size for
this scenario is plotted in Figure 11. As we observe, the queue settles to around
the operating point after 60 seconds , compared to 80 seconds in Experiment 2.
Notice also the somewhat large deviations in the queue size around the 100-160
second range in the simulation. This is because our aggressive design has reduced
the stability margins. The presence of HTTP flows introduces a stochastic element

in the load level and hence we can expect to see those larger variations with lower

8The settling time is also increased due to the non-linear effects of the tail drop phenomena
happening as the queue size reaches 800. The clamping at 800 results in a longer time for the
average to “grow” to a value which can start providing loss feedbacks
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Figure 12: Experiment 3a

stability margins.

The non-linear effects of tail drop result in a higher settling time than pre-
dicted by linear analysis. We can reduce the non-linear effects by moving the
dynamic range down, however that leaves us with a lower margin of error as far as
underutilization of the queue goes. We show the effects of lowering the dynamic
range to 50-150 in Figure 12 (Experiment 3a). The settling time has indeed gone
down, however the queue length stays closer to zero and the link is much more
likely to be underutilized. Next we try the alternative approach of increasing /'
and retaining the original dynamic range of 150-700. This is shown in Figure 13
(Experiment 3b). As we can see, the settling time has come down and there is also

better margin at the lower end of the queue. Thus, choosing a larger value of K
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appears to be a better option than lowering miny,.

4.4 Experiment 4

Next we begin to investigate the relative stability of the design, and look at issues
relating to “over” designing or being too conservative. In Experiment 4, we take
the base stable design, but double the round trip times of one fourth of the flows.
The results are plotted in Figure 14. The system remains stable and the longer

round trip times of the fraction of the flows don’t affect things too much.
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4.5 Experiment 5

In this experiment, we double the round trip times of all the flows. Thus, our sys-
tem was designed for a much lower round trip time and it should show instability.
The plot is shown in Figure 15. Observe the large oscillations. One thing to take
from this experiment is that the phase margins for the non-linear system seem to

be a little lower than the ones we derived for the linear system.

4.6 Experiment 6

Now we retain the round trip time, but play around with the load level. First,

we reduce the number of ftp flows to 8. This should reduce the stability margin
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Figure 16: Experiment 6

according to Proposition 2. The plot in Figure 16 reveals some oscillations but the
system remains relatively stable. The gain margins in the non-linear system seem

to be retained from the linear model.

4.7 Experiment 7

Now we increase the load level. According to our analysis, the system should
remain stable, however since we have been too conservative in our design, the
performance of the compensator should be slower. Figure 17 exhibits the phe-
nomena, with the queue length taking a longer time to settle.
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4.8 Experiment 8

Finally, we retain the load level of 60, but reduce the propagation delay to 50ms.
This again should have no effect on stability, but performance should be degraded.
Figure 18 displays the slow response.

5 Conclusions

In this report we analyzed a combined TCP and AQM model from a control the-
oretic standpoint. We used linearization to analyze a previously developed non-
linear model of the system. We performed the analysis on an AQM system imple-

31



menting RED. We are able to present design guidelines for choosing parameters
which lead to stable operation of the linear feedback control system. We are also
able to derive expressions for the relative stability of the system so designed. We
performed non-linear simulations using ns which verified our analysis. We are
also able to make some comments on tradeoffs of various parameter choices for
RED. In doing the analysis, we uncovered some fundamental limitations of RED.
The control theoretic model we developed points us in the direction of controllers
more suited for the particular application. There are well developed tools in classi-
cal linear system analysis which help in designing improved controllers for AQM.
We are investigating those designs and they are the subject of another paper of
ours.

A Linearization of TCP Model

From (1) let
f(W,q,p) - Rttl(t) _ W(t)gfgt&)}%tt(t))p(t - Rtt(t))
gW,q) = gt((%W(t) - C.
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Recall the equilibrium values:
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