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Abstract

In this report we study a previously developed linearized model of
TCP and AQM. We use classical control system techniques to develop
controllers well suited for the application. The controllers are shown
to have better theoretical properties than the well known RED con-
troller. We present guidelines for designing stable controllers subject
to network parameters like load level, propogation delay etc. We also
present simple implementation techniques which require a minimal

change to RED implementations. The performance of the controllers
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are verified and compared with RED using ns simulations. The sec-
ond of our designs, the Proportional Integral (PI) controller is shown

to outperform RED significantly.

1 Introduction

Active Queue Management (AQM) is a very active research area in network-
ing. Specifically, the RED [1] variant of AQM has generated a lot of research
and interest in the community. Understanding the behavior of RED has
largely remained a “simulate and observe” exercise, and tuning of RED has
proven to be a difficult job. Numerous variants of RED have been proposed
2], [3], [4] to work around some of the performance problems observed with
RED. In [5], we performed a control theoretic analysis of a linearized model
of TCP and RED. The analysis enabled us to present design guidelines for
RED, which we verified via simulations using ns. Our investigations revealed
two limitations of RED. The first limitation deals with the tradeoff between
speed of response and stability. A design which is fast in it’s response time,
was found to have relatively low stability margins, while a design which is
very stable exhibits very sluggish responses. The other limitation of RED
is the coupling between queue length and loss probability. This coupling
results in a control system that has steady state regulation errors, which has
implications when the buffer size is limited. In this report we apply classical
control system techniques to design controllers which are better suited for
AQM than RED. We come up with two simple designs, namely the Propor-
tional and the Proportional-Integral (PI) controller. We present guidelines
to design these stable linear controllers. We verify our guidelines through
non-linear simulations using ns. We also present guidelines for a simple im-
plementation of the PI filter in a RED capable router or simulator. The PI
controller is shown via simulations to be a robust controller that outperforms
the RED controller under almost all scenarios considered.

The rest of the report is organized as follows. In Section 2, we present the



linearized control system developed in [5]. Section 3 develops the Propor-
tional controller, and presents design guidelines. In Section 4 we verify our
design guidelines with simulations and point out a deficiency of the Propor-
tional controller. In the next Section we develop the PI controller. Section
6 presents simulations using the PI controller and also compares it’s per-
formance with the RED controller. Finally we present our conclusions in

Section 7.

2 Background

In [5], we linearized a non-linear dynamic model for TCP/AQM developed
in [6]. The non-linear model is shown in Figure 1, while the linearized model

is depicted in Figure 2, see [5] for linearization details.
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Figure 1: Block-diagram of a TCP connection.

In the model C(s) is the compensator or controller, and P(s)e % is the

“plant” or TCP/AQM system we are trying to control. Ry is the round
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Figure 2: Block diagram of a linearized AQM control system

trip time, which causes a delay in the feedback of losses. P(s) is given by
Piep(8) Ppueue(s) where

PtCP(S) = L

Pqueue(s) - k. (1)

with

=

= round-trip time at the operating point
C = queue capacity (packets/sec)
N = load factor (number of TCP sessions)

We refer to the two poles 2N/(R2C) and 1/ Ry as piep and pyueue respectively.

The compensator which was studied in [5] was the well known RED [1]
controller. RED consists of a low-pass filter (LPF) and nonlinear gain map
as shown in Figure 3. The form of the LPF was derived in [6]. The pole K
is equal to log,(1 — «)/0, where « is the averaging weight and § is the sam-
pling frequency. Normally RED updates it’s moving average on every packet
arrival, and hence § is 1/C, where C' is the queue capacity in packets/sec.
At high load levels this sampling frequency exceeds C', whereas at low load

levels it falls below C'. On an average however, under the assumption of a
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stable congested queue, the sampling frequency is C'. The RED controller is
depicted in Figure 3. A transfer-function model for RED is:

Lred
C = Che = T, 1 2
(8) = Creals) = 7250 )
where l )
Lred - Pmaz X ; K = Oge( - a)a
MaL, — MMy, )

The output of the RED controller is a loss probability as a function of the
average queue length, as depicted in the RED profile in Figure 3. This loss
probability is utilized in dropping or marking packets.
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Figure 3: RED as a cascade of low-pass filter and nonlinear gain element.

Based on on the linearized model, we gave design rules in [5] for obtaining

a stable linear feedback control system with the RED controller.

3 The Proportional Controller

A limitation of the RED design (inherent in the nature of the RED controller)
is that the response time of the control system is quite long. Specifically, the

response time of the system is limited to 1/w, sec, where

wy = 0.1 min {Prep, Pgueue } - (3)

The multiplication factor of 0.1 is the tradeoff between stability margins and

speed of response. Larger values than 0.1 yields more responsive designs,
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however they have lower stability margins. Intuitively speaking, the lag in-
troduced by the low pass filter is a cause of the sluggishness of the response.
One way to improve the response time of the system is to remove the low
pass filter, and introduce what is known as the classical proportional con-
troller. In proportional control, the feedback signal is simply the regulated
output (queue length) multiplied by a gain factor. In the RED context, it
corresponds to obtaining the loss probability from the instantaneous queue
length instead of the averaged queue length. While we appreciate that one
of the design goals of the low pass filter was to let transient bursts pass
through, from a control standpoint the averaging can lead to instability and
low frequency oscillations in the regulated output. In fact, the averaging
mechanism is built into the queue dynamics, and the queue essentially acts
like a low pass filter. Thus, while not recommending that the proportional
controller replace the LPEF mechanism in RED, we give design rules to design
a stable proportional controller! in the following Proposition:

Proposition 1: Let K = oo and
(e +1) G + 1)

(rR+C)?
(2N-)2

Lred -

where wg is the geometric mean of Piep and pyyeye; i-€.,

[ 2N~
Wy = +/PtepPqueue = W (5)

Then, the linear feedback control system in Figure 1 using C(s) = Creq($) in
(2) is stable for all N > N~ and all R < R*. Moreover, the phase margins

are guaranteed to be greater than 33°.
Proof: Since w, is chosen as the geometric mean of p., and pgyeye, then

LP(jw,) > —90°

!Such a system was studied in [7] and shown to perform better than RED



for all N > N~ and all R < R*. Consequently,

. 180°
LL(jwy) = LP(jwg) + Le TR > —90° — == ~ 147°
m

for all N > N~ and all R < R*. Thus, the phase margins are guaranteed to
be greater than 180 — 147 = 33 degrees. O

Example 1: We consider the setup studied in Example 2 in [5], where
C = 3750 packets/sec 2, N~ = 60, qo = 175 and R = 0.246 sec. From (5),

wy = 1/(0.5259)(4.0541) & 1.5 rad /sec

and from (4)

Ly = = 5.8624(10) °.

(Fz + D2 +1)
3
)

0.53
(0.2467)3 (3750

(120)2

Thus,
Creq(s) = 5.8624(10)7°.

In Figure 4 we give the Bode plot for L(jw) for N = N~ and R = R*".

4 Experiments with the Proportional Con-

troller

We verify our proposition via simulations using the ns simulator. In all the
graphs shown subsequently in the paper, we depict the time evolution of the
instantaneous queue length, with the time axis drawn in seconds.

In the first experiment, we look at a queue with 60 ftp (greedy) flows, and
180 HTTP sessions. The link bandwidth is 15 Mb/s, and the propagation
delays for the flows range uniformly between 160 and 240 ms, with average
packet size being 500 Bytes. The buffer size is 800 packets. We also provide

some time-varying dynamics to compare the speed of response of the LPF

2corresponds to a 15 Mb/s link with average packet size 500 Bytes
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Bode Diagrams

Gm=10.445 dB (at 3.9873 rad/sec), Pm=67.771 deg. (at 1.5 rad/sec)
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Figure 4: Frequency response for loop using C..q = 5.8624(10) 5.

vs. the Proportional controller. At time ¢ = 100, 20 of the greedy flows
drop out, and at time ¢ = 140 they start back again. For the Proportional
controller, we set the averaging weight to be 1, thereby removing the low
pass filter. We set the slope of the loss profile to be the gain calculated
in the example above, varying the loss linearly from 0 at queue length 100
with the slope specified by gain. Note that the buffer size of 800 puts an
upper limit on the marking probability, which is (800 — 100) - L4, which is
approximately 0.04. We’ll return to this limitation in a later section. For
the traditional RED controller with an LPF, we use the parameters derived

for stable operations in Example 2 of [5], with p,., being 0.1, th,,;, and



thme: 150 and 600 respectively, and the averaging weight 1.33e — 6. The
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Figure 5: Comparison of RED and the Proportional Controller

queue length plots are shown in Figure 5. As is evident from the plots, the
Proportional controller shows a much better response. It’s settling time is
much lower than RED, and it also responds much more quickly to variations
in load. RED on the other hand is quite sluggish in responding to changes
in the load level.

4.1 Experiment 2

We now push the limits of both our designs. Recall that increasing round

trip times led to instability in the designs. We repeat both the experiments



by doubling the round trip times for the flows.

The comparison is plotted

in Figure 6. While there is no noticeable change in the performance of the

Proportional controller, RED exhibits a markedly larger overshoot.
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Figure 6: Comparison of RED and the Proportional Controller

4.2 Limitation of the Proportional controller

While the Proportional controller exhibits a much more responsive behavior

than RED, it suffers from a limitation which makes it impractical to im-

plement under certain situations.

For stable operation of the controller, it

requires a relatively shallow slope in the loss profile. Buffer size limitations

result in placing a cap on p,,.; under the Proportional controller scenario.
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If the network conditions are such that it results in an operating point of
p between this p,,.. and 1, then that would lead to oscillations of the kind
studied in [8]. If we increase the slope, then that leads to instability. As an
example we repeat the previous experiment but change p,,q; to 1 from 0.04

for the Proportional controller. Figure 7 plots the result, and we see large

oscillations.
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Figure 7: Proportional Controller with high gain

Increasing the buffer size to work around this problem is also not an
option, as that could lead to unacceptably large queueing delays. This prob-
lem arises because of this coupling between the (average) queue size and the
marking probability. The two can be decoupled if we integral control [9] in
the AQM controller C'(s). Both the Proportional controller and RED have a
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steady state error, which is dependent on network parameters. While “error”
may not be important or evident from a networking perspective, sometimes
the error might be larger than the buffer size, which again leads to oscillatory
behavior. If the regulated output is not a constant independent of operating
conditions (for example load level or round trip time), then the controller
is said to have steady state regulation errors, with that error defined as the
difference between the steady state output value and the constant, desired
reference value. Integral controllers have the property that this steady state
error is 0. Thus, we can design an integral controller for AQM, which will at-
tempt to clamp the queue size to some reference value g,.r, regardless of the
load level. The simplest of such integral controllers is the PI (Proportional
Integrator) controller. The PI controller is appropriate in the AQM context,
as it is possible to design controllers having a much higher loop bandwidth
than the LPF RED controllers with equivalent stability margins. Higher loop

bandwidth results in a faster response time.

5 The PI controller

A PI controller has a transfer function of the form

CPI(S) = KPIM
In the AQM system, Cp/(s) is the C'(s) depicted in Figure 2. Thus, a PI
design involves choosing the location of the zero z and the value of the PI
gain Kp;. We now give a proposition to give design rules for a PI controller
for the linear control system shown in Figure 2.
Proposition 2: Assume
2N~ 1
Bc SR

With
2N~

(R+)*C

o.)g:
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let .

(= +1)
(RFC)3
(2N-)?

Kp[ = Wy

Then, the PI compensator

(F+1)
CPI(S) = KPIgT

stabilizes the feedback control system in Figure 1 for all N > N~ and all

R < R™. Furthermore:

1
PM =~ 90° — @wj.
™

Example 2: Consider the setup as in Example 1. From (6), w, = 0.53
rad/sec. From (7)

(j0.53 )
4.1
((0.2467)(3750))3

(120)2

Kp; =0.53 = 9.6426(10)7°.

Thus,
S 41
Cpi(s) = 9.6426(10)’6M.
s
In Figure 8 we give the Bode plot for L(jw) for N = N~ and R = R"".
Compared with the design for RED in [5] we observe that PI compensation
has increased the bandwidth from 0.05 to 0.5 rad/sec. This higher loop

bandwidth results in a much more responsive controller.

5.1 Digital Implementation of the PI controller

Implementing the PI controller in RED capable routers requires a simple
modification to the averaging algorithm. We require to keep the states of
two additional variables, but on the other hand potentially the number of
computations required for the implementation are reduced by orders of mag-

nitude over traditional RED implementations.

13



Bode Diagrams

Gm=19.152 dB (at 3.5968 rad/sec), Pm=75.089 deg. (at 0.52579 rad/sec)
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Figure 8: Frequency response for loop using Cp;(s) = 9.64(10)*6@.

The transfer function of the PI controller is described in the s domain
(Laplace transform). For a digital implementation, we need to convert the
description into a Z-transform. For the conversion, we need to decide a
sampling frequency. It is advisable to operate the digital controller at 10-20
times the loop bandwidth. Once we decide the sampling frequency Fj, then
we use any of the standard techniques, for instance the bilinear (Tustin’s
approximation) transform [10], to obtain the Z-domain transfer function.

s

A PI transfer function of the form K pI(E: yields a Z-domain transfer

function of the form

14



a*xz—0b
CPI(Z) = fl
This is the transfer function between Jp and d¢g, where 6¢ = q — g,.f, with
¢rey being the desired queue length to which we want to regulate. We can
assume pr.s to be 0, which makes op = p. Now
plz)  axz—b
5g(z) z—1
This can be converted into a difference equation of the variables yielding,
at time t = kT, where T = 1/Fj,

p(kT) = a % 6q(kT) — b dq((k — 1)T) + p((k — 1)T)

In pseudo code, it is implemented by the following snippet called at every
sampling instant
pi=a*(q— Gref) = b* (Qotd — Gres) + Pold
Pola *= P
dold = ¢

While this computation involves keeping two additional state variables,
the computation requirement is not more than that of RED, since we get
the loss probability p directly and don’t need to obtain it via the loss profile
using the average queue length. However, a big win comes from the sampling

frequency. For w, of 0.5 rad/sec calculated in the Example 2, we need to
(wg)

27
3-6 Hz. In the RED implementation, with 3750 packet arrivals every second

sample the queue length at approximately 10 to 20 times , which is about
on an average, the computation has to be carried out at 3750 Hz. Thus we
are able to speed up the computations by around 3 orders of magnitude. We
can be conservative and oversample it by a factor of 10, however we still end
up with a significant savings in the computational effort. We no longer need
to run the computations at line speed, it’s more dictated by the fastest round

trip time of the flows passing through.?

3Note that similar logic also applies to RED, sampling at every packet arrival is an
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6 Experiments with the PI controller

To validate the performance of the PI controller, we implemented it in ns
with a sampling frequency of 160 Hz. Thus the PI coefficients a and b that
were implemented were 1.822e-5 and -1.816e-5 respectively®. ¢,y for the PI

controller was chosen to be 200 packets.

6.1 Experiment 3

In our first Experiment with the PI control, we reused the scenario in Ex-
periment 1, with the time varying dynamics and the mixture of ftp and http
flows. The stable RED controller in Experiment 1 was also used. The queue
length plots for the two controllers are depicted in Figure 9. The faster re-
sponse time as well as the regulation of the output to a constant value by the
PT control is clearly observed. The PI controller is largely insensitvie to the
load level variations and attempts to regulate the queue length to the same
value of 200.

6.2 Experiment 4

In this experiment, we just use a mixture of ftp and http flows and remove
any time varying dynamics. The performance of the PI controller is plotted
alongwith the RED controller in Figure 10. Again, the faster response time

for the PI controller is observed.

6.3 Experiment 5

Now we increase the number of ftp flows to 180 and http flows to 360. By
our analysis, the performance of the controllers should slow down for higher
load levels (gain N). The queue lengths are plotted in Figure 11 and we

overkill and provides no perceptible benefit
4We retained only four significant digits as the controller doesn’t seem to be too sensitive

to rounding errors
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Figure 9: Experiment 3

observe significantly better performance from the PI controller. The RED
controller takes a long time to settle down, with the equilibrium queue length
quite large compared to the last experiment. The PI controller on the other
hand is still controlling the queue length at around 200 packets. Thus, the

PI controller appears to be much more robust in the face of higher loads.

6.4 Experiment 6

In this experiment we test the controllers at the other end of the stability
spectrum by reducing the ftp flows to 16. As observed in Figure 12, the RED

controller exhibits oscillations while the PI controller operates in a relatively
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Figure 10: Experiment 4

stable mode.

6.5 Experiment 7

We stretch the controllers to the limit in this experiment. We increase the
number of ftp flows to 400. As another comparison point, we implement
the stable Proportional controller derived earlier in the paper. The three
plots are shown in Figure 13. As we can observe, the PI controller continues
to exhibit acceptable performance, although it has become a little slower
in it’s response time. The two other controllers, on the other hand, “hit
the roof”. This is a result of the fact that at such high load levels, the
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Figure 11: Experiment 5

loss probability has become so high that the steady state regulation error
of those two controllers has pushed the operating queue length beyond the
buffer size. This experiment illustrates the importance of integral control in
an AQM system with a finite buffer.

6.6 Experiment 8

Finally, we repeat the time varying dynamics scenario of Experiments 1 and
3. We reduce the propagation delay for the flows to 40ms. Analysis indi-
cates that under this scenario the response of the controllers should become
sluggish. Figure 14 confirms that. While both the controllers have become
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Figure 12: Experiment 6

slower, the steady state error of the RED controller has increased due to the

shorter round trip time and the operating point queue length is higher than
that for Experiments 1 and 3.

7 Conclusions

In this report we have proposed and designed two alternative controllers to
RED for AQM. Both controllers that we designed have a much faster response
time than the RED controller. We presented guidelines for designing stable
linear controllers using the linearized model of TCP and AQM developed in
[5]. The first of the designs, the Proportional controller, while having very
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Figure 13: Experiment 7

good response times, suffers from a limitation of steady state error in queue
regulation. This restricts it’s usefulness in systems where the buffer size is
limited. Motivated by that limitation, we design another controller which
removes the steady state error. This controller, the classical PI controller,
has many desirable properties in the AQM context. The PI controller is also
very simple to implement in real systems, and we present clear guidelines
towards that end. We implemented the PI controller in ns and compared
performance under various scenarios with RED. The PI controller exhibited
superior performance under all cases considered. In this report we have
concentrated on simple and classical designs for AQM control. More modern
optimal control methodologies could be used; for example, the LQG/LTR,
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Figure 14: Experiment 8

H, or H,, methods. However, going this route may have obfuscated one of

our main objectives which is to relate AQM control objectives directly to

network parameters. The design of such controllers for AQM is very much a

research topic and we are currently investigating that.
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