
Using Little-JIL to Coordinate Agents in Software Engineering

Alexander Wise Aaron G. Cass Barbara Staudt Lerner Eric K. McCall

Leon J. Osterweil Stanley M. Sutton Jr.
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610 USA
wise, acass, ljo @cs.umass.edu

Department of Computer Science
Williams College

Williamstown, MA 01267 USA
lerner@cs.williams.edu

HP Laboratories
Palo Alto, CA 94304 USA

emccall@hpl.hp.com

IBM T. J. Watson Research Center
Hawthorne, NY 10532 USA

suttonsm@us.ibm.com

Abstract

Little-JIL, a new language for programming the coordi-
nation of agents is an executable, high-level process pro-
gramming language with a formal (yet graphical) syntax
and rigorously defined operational semantics. Little-JIL is
based on two main hypotheses. The first is that the specifi-
cation of coordination control structures is separable from
other process programming language issues. Little-JIL pro-
vides a rich set of control structures while relying on sep-
arate systems for support in areas such as resource, ar-
tifact, and agenda management. The second is that pro-
cesses can be executed by agents who know how to per-
form their tasks but can benefit from coordination support.
Accordingly, each step in Little-JIL is assigned to an exe-
cution agent (human or automated); agents are responsible
for initiating steps and performing the work associated with
them. This approach has so far proven effective in allowing
us to clearly and concisely express the agent coordination
aspects of a wide variety of software, workflow, and other
processes.

1. Introduction

Software engineering activities often involve many hu-
man agents and tools that must coordinate to produce a
complex artifact such as the design of a large software sys-
tem. The formalized specification and automated execution
of these software engineering activities has been the goal
of previous research on process programming. However,
to support the complex coordination that must be achieved
in software engineering processes, a coordination language

has to provide constructs to support a wide variety of pro-
cess abstractions such as organizations, activities, artifacts,
resources, events, agents, and exceptions, which can eas-
ily make a language large and complex. In this paper we
present Little-JIL, a process language that attempts to re-
solve the apparently conflicting objectives of supporting
this wide variety of abstractions and creating a language that
is easy to use and understandable by non-programmers.

Little-JIL is strongly rooted in our past research on pro-
cess programming languages [27, 28], but it makes some
important breaks with this earlier work. Of primary impor-
tance for this paper is the focus on the coordination of activ-
ities and agents. Coordination, as defined by Carriero and
Gelernter is “the process of building programs by gluing to-
gether active pieces” and is a vehicle for building programs
that “can include both human and software processes”[7].
From this perspective, it can be seen that coordination is a
logically central aspect of process semantics.

As with Linda [7], in Little-JIL we have separated co-
ordination from other language elements. Unlike Linda,
which is made up of a set of common primitives for the con-
struction of multiple coordination paradigms and removes
all computational elements, in Little-JIL we have selected
a single higher-level coordination paradigm that we believe
fits naturally with the domain of process and workflow spec-
ification and included a small set of computational con-
structs to allow the programmer to further refine the ways in
which the major computational elements interact. Further-
more, the paradigm we have selected serves as a natural fo-
cus to which other elements of the process such as artifacts
and resources can be related, and their use orchestrated.

Little-JIL is primarily a graphical language. This helps
to promote understandability, adoption, and ease of use.

However, Little-JIL language constructs are still defined us-
ing precise operational semantics as textual languages typi-
cally have.

We believe that focusing on coordination, and allowing
the process program to add additional layers of program
complexity incrementally can lead to benefits in many ar-
eas, including process analysis, understanding, adaptation,
and execution. In this paper, we present the design of Little-
JIL and evaluate our experience with it. We illustrate Little-
JIL’s features using an example process for solving the fa-
miliar problem of trip planning. While this process is not
as complex as the software engineering processes for which
Little-JIL is designed, it serves as an effective vehicle for
demonstrating the language features.

2. Design Principles

Little-JIL draws on the lessons of our earlier work [28]
by retaining the “step” as the central abstraction and scoping
mechanism but refines the features in terms of which a step
is defined. The design of Little-JIL features was guided by
three primary principles:
Simplicity: To foster clarity, ease-of-use, and under-

standability, we made a concerted effort to keep the lan-
guage simple. We added features only when there was a
demonstrated need in terms of function, expressiveness, or
simplification of programs. To help make the language ac-
cessible to both developers and readers, we adopted a pri-
marily visual syntax.
Expressiveness: Subject to (and supportive of) the goal

of simplicity, we made the language highly expressive.
Software and workflow processes are semantically rich do-
mains, and a process language, even one tightly focused
on coordination, must reflect a corresponding variety of se-
mantics. We wanted the language to allow users to speak to
the range of concerns relevant to a process and be able to
express their intentions in a clear and natural way.
Precision: The language semantics are precisely de-

fined. This precision contributes to several important goals.
First, it enables automatic execution of process programs.
Second, precision supports the analyzability of process pro-
grams. Analysis is key to assuring that process programs
indeed have properties that are desirable for process safety,
correctness, reliability, and predictability (or, conversely,
for showing that those properties cannot be guaranteed).
Analysis also contributes to process understanding and val-
idation.

We also followed many other software and language de-
sign criteria, such as hierarchic decomposition, scoping,
and so on, but the three principles described were the pri-
mary concerns for Little-JIL. These concerns are related,
however, so the design of Little-JIL has also involved bal-
ancing tradeoffs. For example, adding a control construct

may increase expressiveness, but it may also increase com-
plexity in terms of the number of language features. Some
additional complexity may be warranted if new features
will be widely used or they result in a simplification of
programs. We believe that such decisions must be made
through experimentation.

3. Coordination Paradigm

A coordinated activity consists of the following ele-
ments:

A collection of agents each capable of carrying out one
or more tasks in support of the activity,
A communication mechanism enabling the agents to
share information,
A distribution mechanism enabling the agents to oper-
ate on separate machines,
An assignment of tasks to agents, and
A coordinating process that glues the agents and their
tasks together in a manner conducive to accomplishing
the coordinated activity.

The coordination paradigm of Little-JIL is one in which
independent agents are coordinated in their ability to share
information as well as being proactively assigned tasks.
All communication between the process and the individual
agents takes place via the agent’s agenda, which can mi-
grate from machine to machine. A new task is assigned to
an agent by placing it on the agent’s agenda along with data
required to complete the task. The agent informs the Little-
JIL interpreter when it has begun a task so that the inter-
preter can acquire resources on the agent’s behalf to assist
with the task. The agent also informs the interpreter when
it has completed a task, reporting back information to the
process such as updated data or exceptional situations that
prevented satisfactory completion of the task.

The binding between agents and tasks is done dynami-
cally. In particular, the process program contains declara-
tions of the capabilities the agent must have. Just before
assigning a task to an agent, the interpreter uses these dec-
larations of required capabilities to select an agent who has
those capabilities and is also available to do the task.

Agents may either be human or software. Little-JIL does
not distinguish between them. In particular, both human
and software agents have agendas. The distinction lies in
how the agents connect to their agendas. Specifically, hu-
man agents use a GUI which interacts with the interpreter
via a well-defined API, while software agents use this API
directly.

Decisions on how a process should proceed may be
based upon the following information:

Whether an individual task was successfully com-
pleted or not,

Which agents and resources are available to support
future tasks,
Decisions made dynamically by the intelligent agents
participating in the process. In particular, agents are re-
sponsible for making context-specific decisions based
upon the data within the process as well as criteria that
is external to the process.

Little-JIL’s coordination paradigm allows for a range of
strictness or flexibility in the execution of the process. This
is controlled by the process programmer’s choice of con-
structs and the specificity in the agent capability require-
ments. These are explained more fully below.

4. Language and Illustrative Example

Capturing the coordination in a process as a hierarchy
of steps is the central focus of programming in Little-JIL.
A Little-JIL program is a tree of steps whose leaves repre-
sent the smallest specified units of work and whose structure
represents the way in which this work will be coordinated.
Steps provide a scoping mechanism for control, data, and
exception flow and for agent and resource assignment.

As a process executes, steps go through several states.
Typically, a step is posted when assigned to an execution
agent, then started by the agent. Eventually either the step
is successfully completed or it is terminated with an excep-
tion. Many other states exist, but a full description of all
states is beyond the scope of this paper.

There are six main features of the Little-JIL language
that allow a process programmer to specify the coordina-
tion of steps in a process. Due to space constraints, we can
only give an overview of the language. Detailed operational
semantics are provided by the Little-JIL 1.0 Language Re-
port [29].

The main features of the language and their justifications
are the following:

Four non-leaf step kinds provide control flow. These
four kinds are “sequential,” “parallel,” “try,” and
“choice.” Non-leaf steps consist of one or more sub-
steps whose execution sequence is determined by the
step kind. A sequential step’s substeps are all executed
in left to right order. A parallel step’s substeps can
be simultaneously executed. A try step’s substeps are
executed in left to right order stopping when one com-
pletes successfully. Exactly one of a choice step’s sub-
steps is executed; the agents dynamically decide which
step to execute. It is important to note how the paral-
lel and choice step kinds accord to agents the power
to exercise their judgment and to make choices about
the order in which the substeps of a step should be per-
formed or how a particular item of work is to be done.

While the language can be used to constrain the alter-
natives, the agent is left free to make the choices.
Requisites are a mechanism to add checks before and
after a step is executed to ensure that all of the con-
ditions needed to begin a step are satisfied and that
the step has been executed “correctly” when it is com-
pleted. A prerequisite is a step that must be com-
pleted before the step to which it is attached. Simi-
larly, a postrequisite must be completed after the step
to which it is attached. While requisites decrease the
simplicity of the language, we have found them nec-
essary to allow process programmers to naturally de-
scribe common step contingencies. The need for pre-
and post-requisites appears common enough in process
programs and requisite step semantics seem different
enough from other kinds of sequential steps that a spe-
cial notation was introduced.
Exceptions and handlers augment the control flow
constructs of the step kinds. Exceptions and handlers
are used to indicate and fix up, respectively, excep-
tional conditions or errors during program execution
and provide a degree of reactive control that we believe
allows a process programmer to simply and accurately
codify common processes.
The exception mechanism in Little-JIL has been de-
signed to be simple yet remain expressive. It is based
on the use of steps to define the scope of exceptions
and handlers. Exceptions are passed up the step de-
composition tree (call stack) until a matching handler
is found.
Our experience has indicated that it is necessary to al-
low different exception handlers to work in a variety
of ways. After handling an exception, a continuation
badge determines whether the step will continue exe-
cution, successfully complete, restart execution at the
beginning, or rethrow the exception. Detailed seman-
tics are provided in [29].
Messages and reactions are another form of reactive
control and greatly increase the expressive power of
Little-JIL. The greatest difference between exceptions
and messages is that messages do not propagate up the
step decomposition tree, being global in scope instead
– any executing step can react to a message. Thus,
messages provide a way for one part of a process pro-
gram to react to events without being constrained by
the step hierarchy. Because messages are broadcast,
there may be multiple reactions to a single message.
The semantics of messages are still undergoing evalua-
tion and evolution, but experience so far has convinced
us that a process language must be both able to drive
execution forward through proactive mechanisms, and
be able to react to events from the environment.
Parameters passed between steps allow communica-

tion of information necessary for the execution of a
step and for the return of step execution results.
Resources are representations of entities that are re-
quired during step execution. Resources may include
the step’s execution agent, permissions to use tools,
and various physical artifacts.

What’s missing from the above feature list is also impor-
tant to note. Little-JIL does not specify a data type model
for parameters and resources. It also omits expressions and
most imperative commands. Little-JIL relies on agents to
know how the tasks represented by leaf steps are performed:
Little-JIL is used to specify step coordination, not execu-
tion. These typical language features have been excluded
in order to focus the process program on coordination. We
believe this makes the language more applicable to domains
in which the agents are primarily autonomous.

HandlerStep

Exception

Step Name

Reaction Step

Message

Parameter

SubStep

Interface Badge

Exception Handler Badge

Continuation Badge

Postrequisite Badge

Control Flow Badge

Reaction Badge

Prerequisite Badge

Figure 1. Legend

The graphical representation of a Little-JIL step is shown
in Figure 1. This figure shows the various badges that make
up a step, as well a step’s possible connections to other
steps. The interface badge at the top is a circle to which an
edge from the parent may be attached. The circle is filled if
there are local declarations associated with the step, such as
parameters and resources, and is empty otherwise. Below
the circle is the step name, and to the left is a triangle called
the prerequisite badge. The badge appears filled if the step
has a prerequisite step, and an edge may be shown that con-
nects this step to its prerequisite (not shown). On the right
is another similarly filled triangle called the postrequisite
badge to which a postrequisite step may be attached. Within
the box (below the step name) are three more badges. From
left to right, they are the control flow badge, which tells
what kind of step this is and to which child steps are at-
tached, the reaction badge, to which reaction steps are at-
tached, and the exception handler badge, to which excep-
tion handlers are attached. These badges can be omitted if
there are no child steps, reactions, or handlers, respectively.
The edges that come from these badges can be annotated

with parameters (passed to and from substeps), messages
(to which reactions occur), and exceptions (that a handler
should handle). It is possible for an exception to have a null
handler, in which case the continuation badge alone deter-
mines how execution proceeds.

To better motivate each of these language features and
to illustrate their use, we present in Figures 2, 3, and 4 a
trip planning process, coded in Little-JIL. The process is
based on one presented in [5]. Our version involves four
people: the traveler, a travel agent, and two secretaries. The
basic idea is to make an airline reservation, trying United
first, then USAir. If (after making the plane reservation)
the traveler has gone over budget, and a Saturday stayover
was not included, the dates should be changed to include
a Saturday stayover and another attempt should be made.
After the airline reservation is made and travel dates and
times are set, car and hotel reservations should be made.
The hotel reservations may be made at either a Days Inn or,
if the budget is not tight, a Hyatt, and the car reservations
may be made with either Avis or Hertz.

The separation of the semantic issues into separate
graphical components, as described above, allows Visual-
JIL (our editor for Little-JIL programs) to selectively dis-
play information relevant to a particular aspect of a Little-
JIL program. Indeed, we illustrate this approach to visu-
alization in the subsequent figures to highlight various lan-
guage features.

4.1. Step Kinds

Figure 2 depicts the overall structure of the Little-JIL trip
planning process program. Each of the four step kinds are
used where appropriate:

A sequential step is used to make plane reservations
before car and hotel reservations,
A try step is used to try United first, then USAir,
A parallel step is used to allow two secretaries to make
car and hotel reservations simultaneously, and
Choice steps are used to allow a secretary to choose
which hotel chain or car company to try first.

Note that the process program is relatively resilient to
many expectable sorts of changes. For example, changing
the process program to express a preference in hotel or car
rental companies or deciding to attempt all reservations in
parallel, i.e., changing the way in which these activities are
coordinated, can be accomplished with a straightforward
change of step kind.

4.2. Requisites

There are two cases in the example (Figure 2) where
requisite steps have been used. A postrequisite has been

Sequential
Try
Choice
Parallel

PlaneReservation InBudget

HotelReservation CarReservation

DaysInnReservation

NotTightBudget

HyattReservation AvisReservation HertzReservation

CarAndHotelReservation

USAir Reservation

PlanTrip

UnitedReservation

Figure 2. Reservation process showing proactive control: step kinds, requisites.

attached to the PlaneReservation step to check that the
airfare hasn’t exceeded the budget. This means that after
the travel agent has successfully made an airline reserva-
tion, the traveler should complete the InBudget step. A
prerequisite for the HyattReservation step is also shown.
This prerequisite could be considered an optimization that
is based on the assumption that staying at a Hyatt depletes
one’s travel budget more than staying at a Days Inn. If a
secretary chooses to reserve a room at the Hyatt and the
budget is too tight, that step aborts immediately because it
will definitely cause costs to exceed the budget.

While the English description of the process does not
specify who should check the budget, the Little-JIL pro-
gram specifies that the traveler is responsible for this task.
Postrequisite steps help clarify how the delegation of work
can be done. For example, a subordinate can be assigned
to do the work associated with a step, but the subordinate’s
supervisor could be responsible for the postrequisite of the
step to check the acceptability of the work done by the sub-
ordinate. This is shown in the PlaneReservation step. If,
for example, the travel budget were sensitive information,
the execution agent forPlaneReservation could assign the
UnitedReservation and USAirReservation steps to other
agents without divulging the budget.

4.3. Exceptions and handlers

If the agent determines that the budget has been ex-
ceeded, the agent throws the NotInBudget exception to the
parent. The parent step’s handler, IncludeSaturdayStay-
over (in Figure 31), would check to see if a Saturday stay-

1In the figures, ellipses indicate where substeps have been omitted for
clarity. Visual-JIL elides information at the user’s request.

over was already included, and if not, it would change the
travel dates and restart the PlanTrip step with the new travel
dates. If there was already a Saturday stayover, the handler
could throw another exception (not shown) that would be
propagated higher up the process tree or would terminate
the program.

Just as different step executions result from the different
step kinds, different executions result from different contin-
uation badges. If, for example, IncludeSaturdayStayover
were rewritten to make alternative plans, the continuation
badge would be changed to “complete,” indicating that the
exception step had provided an alternative implementation
of PlanTrip.

4.4. Messages and reactions

An example of a reaction, the “handler” for a mes-
sage, appears in Figure 3. Here, when the MeetingCan-
celled message is generated, the CancelAndStop substep
of PlanTrip is assigned to the traveler. In this case, there
may be very little information associated with that step; it
is assumed that the agent will take appropriate action (e.g.,
phoning the travel agent and secretaries and asking them to
abort).

4.5. Parameters

In the example, it is clear that information must be
passed from step to step. For example, the PlaneReser-
vation step must pass the trip dates and times to the other
reservation steps so that a hotel room and car are reserved
for the correct times. Information is passed between steps

NotInBudget: exception

InBudget

PlanTrip

MeetingCanceled

UnitedReservation

PlaneReservation

USAir Reservation
NoUnited: exception NoUSAir: exception

NoMoreChoices

CancelAndStop
IncludeSaturdayStayover

CarAndHotelReservationNoUnited

NotInBudget

NoPlane

NoUSAir
Continue
Throw

Restart
Complete

NoPlane: exception

Figure 3. Reservation process showing reactive control: exceptions, messages.

via parameters. Parameter passing is indicated by anno-
tations made on the step connections, shown in Figure 4.
Three parameter passing modes are defined in Little-JIL.
Arrows attached to the parameters indicate whether a pa-
rameter is copied into the substep’s scope from the parent,
copied out, or both.

Because Little-JIL is focused on coordination, a process
specifies at what points during execution parameter values
should be copied to and from steps without specifying the
computations to be performed on them. Thus, it is assumed
that the agents executing those steps understand the mean-
ings of the parameter values. For example, the use of In-
Budget as a postrequisite provides guidance about when to
check the budget, but doesn’t dictate any particular compu-
tation for doing so.

4.6. Resources

Resource requirements for a step are indicated by anno-
tations on the step’s interface specification and resources
play a central role in the execution of Little-JIL programs.
By identifying and acquiring resources at run time, a re-
source management component enables a Little-JIL pro-
gram to adapt to different environments, allowing more dy-
namism during process execution. Because the resource
model is external to any one process and may be shared by
multiple processes, the details of the resource model are not
represented in the process program.

In Figure 4 execution agent resources are specified as
annotations on the interface badge. The steps for Hotel-
Reservation and CarReservation specify a secretary as
the agent responsible for the task. We allow for the possi-

bility that these tasks could be done in parallel by two dif-
ferent secretaries–but in an environment with only a single
secretary, we also allow for the dynamic assignment of both
of these tasks to the same secretary who might interleave
the activities or perform them sequentially.

In the example, only the agents are being managed as
resources, however, resources can be any artifact for which
the resource manager’s ability to identify artifacts and avoid
usage conflicts would be an asset.

5. Related Work

In our research, we have constructed a richly-featured
process language including agent coordination, resource
dependencies, proactive control constructs, both broadcast
and scoped reactive control, data flow specification and pre-
and post-requisites. These features are used to specify the
set of tasks required, and the ways in which a collection of
agents can cooperate to achieve a goal, but still offer the
agents flexibility in the way the tasks are performed. This
top-down approach contrasts with most work in coordina-
tion (e.g., [14, 3, 17, 22, 7]) in which coordination is spec-
ified from the perspective of the individual agents, and as
such, our work is most directly comparable to workflow sys-
tems and other process programming languages. A notable
exception is the ’set-plays’ in [26]. Set-plays are multi-step
multi-agent plans, and as such are similar to our approach
of specifying the interactions between the agents from an
integrated perspective.

While our use of high-level, process-oriented abstrac-
tions and a focus on the “step” as the unit of work separates

UnitedReservation

PlaneReservation

USAir Reservation
Airline := United Airline := USAir

TripTimes
Hotel

HotelReservation CarReservation

agent: TravelAgent

PlanTrip

agent: Traveller

agent: Secretary

TripTimes

Airline AirlineTripDates

Airline

TripDates
TripTimes

Car
TripDates

CarAndHotelReservation

Input/output

Input

Budget
TripDates

TripDates
TripTimes

Budget
Car

Hotel

Budget
TripDates

agent: Secretary

TripTimes

Output

Figure 4. Reservation process showing data flow.

us from process languages based on general-purpose pro-
gramming languages or Petri-Nets, such as APPL/A [27],
AP5 [11], and SLANG [2], many process or workflow lan-
guages have focused on process steps (variously also called
tasks or activities). For example HFSP [20], EPOS [12],
Teamware [30], and APEL [13]. None of the features in
Little-JIL are unique, but the way we have combined proac-
tive and reactive control and resource and artifact manage-
ment into a single consistent abstraction is. For example,
while ALF [6] “MASPs” include an object model (param-
eters), tools (with pre/postconditions), ordering constraints
on operators (path expressions), rules (reactions) and “char-
acteristics” (postconditions on the MASP as a whole), ALF
lacks explicit exception handlers and treats human agents
and tools separately. ProcessWeaver [16], Merlin [19], and
Adele-Tempo [4], focus on notions related to “work con-
texts” (which may be correlated with steps). Work contexts
are generally assigned only to humans and such languages
treat tools and humans differently thereby requiring pro-
cess programmers to determine agent assignments at design
time.

APEL [13] is a process modeling formalism with many
of our same goals, namely to provide a high-level, expres-
sive, yet executable language suitable for many process do-
mains. While the APEL project has defined many aspects
of process modeling in great detail (such as the artifact
model, which we leave to a separate model), we have cho-
sen to concentrate on the coordination aspects. APEL’s con-
trol flow mechanisms are similar to Little-JIL’s in that both
proactive and reactive control can be specified, and activ-

ities can be arranged hierarchically. However, the reactive
control in APEL is limited to an un-scoped broadcast mech-
anism similar to Little-JIL’s reaction mechanism. As such,
Little-JIL’s scoped exception handling has no direct analog
in APEL. This scoped exception mechanism allows a flex-
ible, yet careful way to deal with exceptional behaviors at
run-time.

6. Experience and Conclusions

We have implemented several tools to support the defi-
nition and execution of Little-JIL programs. The tools are
written in Java and have been used both on Linux and Win-
dows platforms. The tools include a graphical editor, an in-
terpreter [9], a distributed object substrate, an agenda man-
agement system [24], and a resource manager [25].

6.1. Process programs

We have applied Little-JIL to problems ranging from
data mining [18], to electronic commerce [8], to the high-
level coordination of teams of robots [1]. In the software
engineering domain, we have written process programs for
coordinating the actions of multiple designers doing Booch
Object Oriented Design [23] and the assignment and track-
ing of bug reports from submission through regression test-
ing. These processes have focussed on programming co-
ordination among programmers, and also on how to assure
that the processes provide support to humans, while not ap-
pearing to be too prescriptive or authoritarian. We have

also written process programs for guiding the use of the
FLAVERS dataflow analysis toolset [15]. In this work we
have been particularly interested in using Little-JIL to pro-
vide guidance both novice and expert users in being more
effective in using several tools in this complex toolset. We
have also written process programs for guiding the applica-
tion of formal verification methods and tools, but here our
experience has been rather limited. Finally, we have also
used Little-JIL to program the ISPW 6 software develop-
ment process [21].

6.2. Language extensions

To maintain its simplicity, we have resisted impulses to
add features to the language, but our experience indicates
that it may be necessary to add several new language fea-
tures to improve expressiveness. For example, we have en-
countered several idioms that simplify the design and under-
standing of processes for which a formalism might be use-
ful. The most common of these is resource-bounded recur-
sion which allows a step to be repeated multiple times exe-
cuting with a different resource on each iteration and ceas-
ing when there are no more resources. Resource-bounded
parallelism is similar to resource-bounded recursion except
that in this case the iterations are allowed to happen in paral-
lel. While we can express these idioms currently, introduc-
ing appropriate constructs would allow much more concise
and understandable representation of the idioms. In partic-
ular, we have found that we currently need to use excep-
tions to terminate the resource-bounded recursion and par-
allelism. This is an inappropriate use of exceptions since
those termination conditions are not exceptional but an es-
sential piece of the idioms.

We have also begun to explore the role of timing in a
process program and are developing constructs to support
the definition of timing criteria. We intend to use that in-
formation to support deadlines for tasks and also to enable
scheduling analyses of processes

6.3. Analysis

Complex processes typically involve a great deal of con-
current activity being performed by multiple agents. We
want to reason about common concurrency problems, such
as ordering of activities, possibilities for deadlock or star-
vation, and so on.

Thus far most of our static analysis has been limited
to manual evaluation of processes, but Little-JIL is precise
enough to allow application of static analysis technology,
especially to the analysis of issues directly related to the
coordination of step execution. In recent work we have
begun to demonstrate success in applying the FLAVERS
static dataflow analyzer to Little-JIL process programs [10].

This work has been very revealing. We have succeeded in
demonstrating the presence of specific bugs in some Little-
JIL process programs, and the absence of bugs in others. We
have also discovered that apparently simple and intuitive
Little-JIL constructs such as the parallel and choice steps
(especially when used in conjunction with recursion) often
conceal considerably semantic complexity. This buttresses
our contention that these language constructs are important
additions to process programming languages, as they are in-
tuitively clear, yet represent substantial semantic content.

Much of the detailed behavior of a process is left un-
specified in Little-JIL process programs. Rather it is left
to the agents because we believe micromanagment of an
agent’s activities is inappropriate. Because this and many
other aspects of the process are not completely represented
in Little-JIL, it will be interesting to discover what the prac-
tical limits of analysis are. It will likely be necessary to per-
form analysis across the boundaries separating the process
and the software agents to prove certain desirable character-
istics of our processes.

Acknowledgments

The authors would like to thank Rodion Podorozhny
for his early contributions to Little-JIL and the resource
management system, and Yulin Dong, Hyungwon Lee, and
Marcia Zangrilli for programming in and providing feed-
back about many versions of the language. This research
was partially supported by the Air Force Research Labo-
ratory/IFTD and the Defense Advanced Research Projects
Agency under Contract F30602-97-2-0032. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,
of the Defense Advanced Research Projects Agency, the Air
Force Research Laboratory/IFTD, or the U.S. Government.

References

[1] E. Araujo, D. Karuppia, Y. Yang, R. Grupen, P. Deegan,
B. Lerner, E. Riseman, and Z. Zhu. Software mode changes
for continuous motion tracking. In Int’l Workshop on Self
Adaptive Software, Apr 2000.

[2] S. Bandinelli, A. Fuggetta, and S. Grigolli. Process model-
ing in-the-large with SLANG. In Proc. of the Second Int’l
Conf. on the Software Process, pages 75–83. IEEE Com-
puter Society Press, 1993.

[3] M. Barbuceanu and M. S. Fox. COOL: A language for de-
scribing coordination in multi agent systems. In Proc. of the
First Int’l Conf. on Multi-Agent Systems, 1995.

[4] N. Belkhatir, J. Estublier, and M. L. Walcelio. ADELE-
TEMPO: An environment to support process modeling and
enaction. In A. Finkelstein, J. Kramer, and B. Nuseibeh,

editors, Software Process Modelling and Technology, pages
187 – 222. John Wiley & Sons Inc., 1994.

[5] E. Bertino, S. Jajodia, L. Mancini, and I. Ray. Multiform
transaction model for workflow management. In Proc. of
the NSF Workshop on Workflow and Process Automation in
Information Systems, May 1996.

[6] G. Canals, N. Boudjlida, J.-C. Derniame, C. Godart, and
J. Lonchamp. ALF: A framework for building process-
centred software engineering environments. In A. Finkel-
stein, J. Kramer, and B. Nuseibeh, editors, Software Process
Modelling and Technology, pages 153 – 185. John Wiley &
Sons Inc., 1994.

[7] N. Carriero and D. Gelernter. How to Write Parallel Pro-
grams A First Course. MIT Press, 1990.

[8] A. G. Cass, H. Lee, B. S. Lerner, and L. J. Osterweil. For-
mally defining coordination processes to support contract
negotiations. Technical Report 99-39, University of Mas-
sachusetts at Amherst, Jun 1999.

[9] A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, and
A. Wise. Logically central, physically distributed control
in a process runtime environment. Technical Report 99-65,
University of Massachusetts at Amherst, Nov. 1999.

[10] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. Verifying
properties of process definitions. Technical Report 99-63,
University of Massachusetts at Amherst, Nov. 1999.

[11] D. Cohen. AP5 Manual. Univ. of Southern California, In-
formation Sciences Institute, March 1988.

[12] R. Conradi, M. Hagaseth, J.-O. Larsen, M. N. Nguyên, B. P.
Munch, P. H. Westby, W. Zhu, M. L. Jaccheri, and C. Liu.
EPOS: Object-oriented cooperative process modelling. In
A. Finkelstein, J. Kramer, and B. Nuseibeh, editors, Soft-
ware Process Modelling and Technology, pages 33 – 70.
John Wiley & Sons Inc., 1994.

[13] S. Dami, J. Estublier, and A. Amiour. APEL: A graphical
yet executable formalism for process modelling. Automated
Software Engineering, Mar. 1997.

[14] K. S. Decker and V. R. Lesser. Designing a family of co-
ordination mechanisms. In Proc. of the First Int’l Conf. on
Multi-Agent Systems, 1995.

[15] M. B. Dwyer and L. A. Clarke. Data Flow Analysis for Ver-
ifying Properties of Concurrent Programs. In Proceedings
of the Second ACM SIGSOFT Symposium on Foundations
of Software Engineering, New Orleans, pages 62–75. ACM
Press, December 1994.

[16] C. Fernström. PROCESS WEAVER: Adding process sup-
port to UNIX. In Proc. of the Second Int’l Conf. on the
Software Process, pages 12 – 26, 1993.

[17] T. Finin, Y. Labrou, and J. Mayfield. Kqml as an agent com-
munication language. In Software Agents. MIT Press, 1997.

[18] D. Jensen, Y. Dong, B. S. Lerner, E. K. McCall, L. J. Os-
terweil, S. M. Sutton Jr., and A. Wise. Coordinating agent
activities in knowledge discovery processes. In Int’l Joint
Conf. on Work Activities Coordination and Collaboration,
July 1998. submitted.

[19] G. Junkermann, B. Peuschel, W. Schäfer, and S. Wolf.
MERLIN: Supporting cooperation in software development
through a knowledge-based environment. In A. Finkelstein,
J. Kramer, and B. Nuseibeh, editors, Software Process Mod-
elling and Technology, pages 103 – 129. John Wiley & Sons
Inc., 1994.

[20] T. Katayama. A hierarchical and functional software process
description and its enaction. In Proc. of the 11th Int’l Conf.
on Software Engineering, pages 343 – 353. IEEE Computer
Society Press, 1989.

[21] M. I. Kellner, P. Feiler, A. Finkelstein, T. Katayama, L. J.
Osterweil, and M. H. Penedo. ISPW-6 software process
example. In Proc. of the First Int’l Conf. on the Software
Process, pages 176 – 186, 1991.

[22] K. Kuwabara, T. Ishida, and N. Osato. Agentalk: Coordina-
tion protocol description for multi-agent systems. In Proc.
of the First Int’l Conf. on Multi-Agent Systems, 1995.

[23] B. S. Lerner, S. M. Sutton, Jr., and L. J. Osterweil. Enhanc-
ing design methods to support real design processes. In 9th
IEEE Int’l Workshop on Software Specification and Design,
pages 159–161. IEEE Computer Society Press, Apr. 1998.

[24] E. K. McCall, L. A. Clarke, and L. J. Osterweil. An Adapt-
able Generation Approach to Agenda Management. In Proc.
of the 20th Int’l Conference on Software Engineering, pages
282–291, Apr. 1998.

[25] R. M. Podorozhny, B. S. Lerner, and L. J. Osterweil.
Modeling resources for activity coordination and schedul-
ing. In Proceedings of Coordination 1999, pages 307–322.
Springer-Verlag, Apr 1999. Amsterdam, The Netherlands.

[26] P. Stone and M. Veloso. Task decomposition, dynamic role
assignment, and low-bandwidth communication for real-
time strategic teamwork. Artificial Intelligence, 1999.

[27] S. M. Sutton, Jr., D. Heimbigner, and L. J. Osterweil.
APPL/A: A language for software-process programming.
ACM Trans. on Software Engineering and Methodology,
4(3):221–286, July 1995.

[28] S. M. Sutton, Jr. and L. J. Osterweil. The design of a next-
generation process language. In Proc. of the Joint 6th Eu-
ropean Software Engineering Conf. and the 5th ACM SIG-
SOFT Symp. on the Foundations of Software Engineering,
pages 142–158. Springer-Verlag, 1997.

[29] A. Wise. Little-JIL 1.0 Language Report. Technical Report
98-24, University of Massachusetts at Amherst, Apr. 1998.

[30] P. S. Young and R. N. Taylor. Human-executed operations
in the teamware process programming system. In Proc. of
the Ninth Int’l Software Process Workshop, 1994.

