
Implementing Soft Real-Time Agent Control

Vincent, Regis, Horling, Bryan, Lesser, Victor Wagner, Thomas
University of Massachusetts University of Maine

Department of Computer Science Computer Science Department
Amherst, MA 01003 Orono, ME 04469

vincent, bhorling, lesser@cs.umass.edu wagner@umcs.maine.edu

ABSTRACT
Real-time control has become increasingly important as technolo-
gies are moved from the lab into real world situations or physi-
cal simulations. The complexity associated with these systems in-
creases as control and autonomy are distributed, due to such issues
as precedence constraints, shared resources, and the lack of a com-
plete and consistent world view. In this paper we describe a real-
time environment requiring distributed control, and how we mod-
ified our existing multi-agent technologies to meet this need. Two
types of enhancements are covered: those which enable planning
to meet real-time constraints, such as our task representation, meta-
level costing, alternative plan selection, and partial-order schedul-
ing, and those which facilitate on-line real-time control, including
scheduling flexibility, caching, and windowed commitments.

1. OVERVIEW
An important aspect of most real-world systems is their ability

to handle real-time constraints. This is not to say that they must
be fast or agile (although it helps), but that they should be aware
of deadlines which exist in their environment, and how to operate
such that those deadlines are reasoned about and respected as much
as possible. This task can become harder yet when the system is
distributed, as the ability of a component to meet its deadlines can
depend on the performance of another component not under its con-
trol. Conversely, a particular component in such a system should be
able to reason about both its local deadlines, and those imposed on
it through interactions with other parts of the system. In this paper

Effort sponsored in part by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory
Air Force Materiel Command, USAF, under agreements num-
ber F30602-99-2-0525 and DOD DABT63-99-1-0004. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. This material is also based upon work supported by the
National Science Foundation under Grant No. IIS-9812755. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency (DARPA), Air Force
Research Laboratory or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

we describe our efforts to migrate our multi-agent system frame-
work into an environment which requires us to reason about and
act in real-time. Some or all of the technologies used in this frame-
work have been used successfully in several other environments
[10, 9]. They have not, however, been deployed in an environment
demanding real-time control that included real-time coordination
between agents.

The particular environment we are operating under consists of
several sensor nodes arranged in a region of finite area. Each sensor
node is autonomous, capable of communication, computation and
observation through the sensor itself. For the purposes of the sce-
nario we will assume a one-to-one correspondence between each
sensor node and an agent, which serves locally as the operator of
that sensor. The high level goal of the scenario is to track one
or more target objects moving through the environment. This is
achieved by having multiple sensors triangulate the positions of the
targets in such a way that the calculated points can be strung to-
gether to form estimated movement tracks.

The real-time requirement of this scenario is derived from the tri-
angulation process. Under ideal conditions, three or more sensors
will perform measurements at the same instant in time. Individu-
ally, each sensor can only determine the target’s distance and veloc-
ity relative to itself. Because each node will have seen the target at
the same position, however, these gathered data can then be fused to
triangulate the target’s actual location. In practice, exact synchro-
nization to an arbitrarily high resolution of time is not possible,
due to the uncertainty in sensor performance and clock synchro-
nization. A reasonable strategy then is to have the sensors perform
measurements within some relatively small window of time, which
will yield positive results as long as the target is near the same loca-
tion for each measurement. Thus, the viable length of this window
is inversely proportional to the speed of the target (in our scenarios
we use a window length of one second).

Competing with the tracking measurement activity are a number
of other local goals, including target discovery scanning, data pro-
cessing and measurement tasks for other targets. We don’t see these
as separate agents or threads, but rather as different objectives that
an agent is multiplexing. Meta-level functionality such as negotia-
tion, planning and scheduling also contend for local resources. To
operate effectively, while still meeting the deadlines posed above,
the agent must be capable of reasoning about and acting upon the
importance of each of these activities.

In summary, our real-time needs for this application require us
to synchronize several measurements on distributed sensors with a
granularity of one second. A missed deadline may prevent the data
from being fused, or the resulting triangulation may be inaccurate
- but no catastrophic failure will occur. This provides individual
agents with some minimal leeway to occasionally decommit from
certain deadlines, or to miss them by trivial amounts of time, with-
out failing to achieve the overall goal. Thus, our notion of real-time

here is relatively soft, enabling the agents to operate at a higher
level of detail than hard real-time systems do.

The real-time aspects of this problem come down to several prin-
ciples. An agent must know when actions should be performed,
how to schedule its time and commitments such that they can be
performed, and have the necessary resources on hand to complete
them.

Our solution to this problem addresses two fronts. The first is to
implement the technologies needed to directly reason about real-
time. We begin by accurately modeling the activities the agent
may perform, which can be done a priori or through a runtime
learning process. This information is represented, along with other
goal achievement and alternative plan information, in a TÆMS task
structure [3, 5]. In addition to modeling primitive actions, we also
model and schedule meta-level activities, such as negotiation. This
permits us to cost-out the characteristics of these activities, allow-
ing the agent to, for instance, directly reason about what sort of
negotiation is appropriate for the given context. A planning com-
ponent, the Design-to-Criteria scheduler (DTC) [17, 19], uses these
TÆMS task structures, along with the quantitative knowledge of
action interdependence and deadlines, to select the most appropri-
ate plan given current environmental conditions. This plan is then
given to a partial order scheduling process which determines when
individual actions should be performed, given precedence and run-
time resource constraints. In general, we feel that real-time can be
addressed by through the interactions of a series of components,
operating at different granularities, speed and satisficing (approxi-
mate) behaviors.

The second part of our solution attempts to optimize the running
time of our technologies, to make it easier to meet deadlines. The
partial order schedule provides an inherently flexible representa-
tion. As resources and time permit, elements in the schedule can be
quickly delayed, reordered or parallelized. New goals can also be
incorporated piecemeal, rather than requiring a dramatic analysis of
the entire schedule. Together, these characteristics reduce the need
for constant re-planning, in addition to making the scheduling pro-
cess itself less resource-intensive. Learning plays an important role
in the long-term viability of an agent running in real time, taking
advantage of the repetitive nature of its activities. Schedules may be
learned and cached, eliminating the need to reinvoke the DTC pro-
cess when similar task structures are produced, and the execution
history of individual actions may be used to more accurately pre-
dict their future performance. Finally, the notion of a “windowed”
commitment, as seen in the synchronization process above, permits
agents some measure of flexibility when satisfying commitments,
reducing the need for renegotiation. In the remainder of this pa-
per we will cover the functional details of the architecture, discuss
the need for the various optimizations that have been added, and
describe our performance experiences with the new design.

2. REAL-TIMECONTROLARCHITECTURE
Our previous agent control architecture, used exclusively in con-

trolled time environments, was fairly large grained. As goals were
addressed by the problem solving component, they would be used
to generate task structures to be analyzed by the DTC scheduler.
The resulting linear schedule would then be directly used for exe-
cution by the agent. Task structures created to address new goals
would be merged with existing task structures, creating a mono-
lithic view of all the agent’s goals. This combined view would
then be passed again to DTC for a complete re-planning and re-
scheduling. Execution failure would also lead to a complete re-
planning and re-scheduling. This technique leads to “optimal” plans
and schedules at each point if meta-level overheads are not in-
cluded. As will be shown in section 2.2, however, the combina-
torics associated with such large structures can get quite high. This

Solver
Problem

TAEMS Library

Cache Check

DTC

Partial Order Scheduler

Anytime/Parallel
Execution Module

Resource Modeler

Conflict Resolution Module

Task Merging

Learning

Plan

TAEMS

TAEMS

Goal Characteristics

Goal

Other Agents

Schedule

Update Caching

Schedule Failure

Results

Schedule
FailureStructure

Multiple

Combined
Structure

Update Expectation

Cache Hit

Fixed Schedule

Schedule

Method Usages

Resource Used

Figure 1: High-level agent control architecture.

made agents ponderous when working with frequent goal insertion
or handling exceptions, because of the need to constantly perform
the expensive DTC process. In a real-time environment, where the
agent must constantly reevaluate their execution schedule in the
face of varied action characteristics, this sort of control architec-
ture was impractical.

In our new architecture, we have attempted to make the schedul-
ing and planning process more incremental and compartmental-
ized. New goals can be added piecemeal to the execution schedule,
without the need to re-plan all the agent’s activities, and exceptions
can be typically be handled through changes to only a small subset
of the schedule. Figure 1 shows the new agent control architecture
we have developed to meet our soft real-time needs. We will first
present an overview of how it functions, and cover the implemen-
tation in more detail in later sections. In this architecture, goals
can arrive at any time, in response to environmental change, local
planning, or because of requests from another agents. The goal is
used by the problem solving component to generate a TÆMS task
structure, which quantitatively describes the alternative ways that
goal may be achieved. The TÆMS structure can be generated in a
variety of ways; in our case we use a TÆMS “template” library,
which we use to dynamically instantiate and characterize struc-
tures to meet current conditions. This structure is then used by our
Design-To-Criteria (DTC) planning component, along with criteria
such as potential deadlines, maximum cost, and minimum qual-
ity, to select an appropriate plan to achieve the goal. The planning
process itself is expensive, so a caching scheme has been devised
which retrieves past planning results from a cache whenever possi-
ble, bypassing the DTC call.

The resulting plan is used to build a partially ordered schedule,
which will use structure details of the TÆMS structure to deter-
mine precedence constraints and search for actions which can be
performed in parallel1. Several components are used during this
final scheduling phase. A resource modeling component is also
used during this analysis to ensure that resource constraints are also

From private conversations, it appears that the technique used to
generate this schedule is similar to that seen in the DRU scheduler
from the DECAF framework [4], a system developed concurrently
with the research presented here.

Task2
q_min

Set-Parameters enables2 Track
q_max

Track_Low Track_Medium Track_High

enables3 Send-Results

lock2 release2
RF

0.0 / 1000.0 / 1000.0

Figure 2: An example TÆMS task structure for tracking.

respected. A conflict resolution module reasons about mutually-
exclusive tasks and commitments, determining the best way to han-
dle conflicts. Finally, a task merging module allows the partial or-
der scheduler to incorporate the actions derived from the new goal
with existing schedules. Failures in this process are reported to the
problem solver, which is expected to handle them (by, for instance,
decommiting from the goal causing the failure).

Once the schedule has been created, an execution module is re-
sponsible for initiating the various actions in the schedule. It also
keeps track of execution performance and the state of actions’ pre-
conditions, potentially re-invoking the partial order scheduler when
failed expectations require it. A learning component also monitors
execution performance, potentially updating the TÆMS template
library when new trends are observed.

To better explain our architecture’s functionality, we will work
through a integrated example in the next several sections, using
simplified versions of task structures in the actual sensor network
application. At time 0 the agent recognizes its first goal - to initial-
ize itself. After starting the execution of the first schedule it will
receive another goal to track a target and sent the results before
time 2500. Later, a third goal, to negotiate for delegating tracking
responsibility, is received. We will show how these various goals
may be achieved, and their various constraints and interdependen-
cies respected.

2.1 TÆMS Generation
Before progressing, we must provide some background on our

task description language, TÆMS. TÆMS, the Task Analysis, En-
vironmental Modeling and Simulation language, is used to quanti-
tatively describe the alternative ways a goal can be achieved [3, 5].
A TÆMS task structure is essentially an annotated task decompo-
sition tree. The highest level nodes in the tree, called task groups,
represent goals that an agent may try to achieve. The goal of the
structure shown in figure 2 is Task2. Below a task group there will
be a set of tasks and methods which describe how that task group
may be performed, including sequencing information over sub-
tasks, data flow relationships and mandatory versus optional tasks.
Tasks represent sub-goals, which can be further decomposed in the
same manner. Task2, for instance, can be performed by complet-
ing Set-Parameters, Track, and Send-Results. Meth-
ods, on the other hand, are terminal, and represent the primitive ac-
tions an agent can perform. Methods are quantitatively described,
with probabilistic distributions of their expected quality, cost and
duration. Set-Parameters, then, would be described with its
expected duration and quality, allowing the scheduling and plan-
ning processes to reason about the effects of selecting this method
for execution. The quality accumulation functions (QAF) below
a task describes how the quality of its subtasks is combined to
calculate the task’s quality. For example, the q min QAF below
Task2 specifies that the quality of Task2 will be the minimum
quality of all its subtasks - so all the subtasks must be success-
fully performed for the Task2 task to succeed. On the other hand,

the q max below Track says that its quality will be the maxi-
mum of any of its subtasks - the agent has a choice of one or
more alternatives to complete Track (complete descriptions of
these and other QAFs can be seen in [5]). Interactions between
methods, tasks, and affected resources are also quantitatively de-
scribed as interrelationships. The enables interrelationships in
figure 2 represent precedence relationships, which in this case say
that Set-Parameters, Track, and Send-Results must be
performed in-order. lock2 and release2 are resource interre-
lationships, describing, for instance, the consumes and produces
effects method Send-Results has on the resource RF. We will
see in later sections how the different parts of a structure affect
planning and scheduling.

The problem solver is responsible for translating high-level goals
into TÆMS, which serves as a more detailed representation us-
able by other parts of the agent. This could be done by building
TÆMS structures in the source code, but this tends to be impracti-
cal for all but the most trivial goals. On the other hand, the problem
solver could read static structures from a plan library, selecting the
one designed to address the particular goal in question. This works
well, except is lacks the flexibility to easily handle the minor varia-
tions in structure needed when environmental conditions shift. We
developed a hybrid scheme, which uses a library of TÆMS tem-
plates, which are dynamically instantiated at runtime, taking into
account the agent’s current working conditions. In this way we
can handle such things as varying execution performance, negotia-
tion partners and commitment details. For instance, in figure 2, the
Send-Results method must specify which agent in the system
the results should be sent to. Similarly, if the learning component
determined that Track-Mediumwas taking longer than expected,
this information can be fed into the template to reflect that change.

At time 0 the agent will use its template library to generate the
initialization structure seen in figure 4A. In this structure, the agent
must firstInit and then Calibrate its sensor. Properties passed
into the template specifying the specific values used in Init, and
the number of measurements used during Calibrate. As speci-
fied by the enables interrelationship, Init must successfully com-
plete before the agent can Send-Message-1, reporting its ca-
pabilities to its local manager. Send-Message-1 also uses re-
source interrelationships to obtain an exclusive lock on the RF com-
munication resource. Only one action at a time can use RF to
send message, so all messaging methods have similar locking in-
terrelationships. As we will see later, this indirect interaction be-
tween messaging methods creates interesting scheduling problems.
Task2 and Task3, shown in figures 2 and 4B, respectively, are
generated later in the run in a similar manner.

2.2 DTC Planner / Initial Scheduler
Design-to-Criteria (DTC) scheduling is the soft real-time process

of evaluating different possible courses of action for an intelligent
agent and choosing the course that best fits the agent’s current cir-
cumstances. For example, in a cost constrained situation the agent
may be unable to purchase desired data and may thus be forced
to spend more time doing its own local processing to produce the
same quality result. Or, in a different situation when both time and
cost are constrained, the agent may have to sacrifice some degree
of solution quality in order to meet its deadline or cost limitations.
Design-to-Criteria is about evaluating an agent’s problem solving
options from an end-to-end view and determining which tasks the
agent should perform, when to perform them, and how to go about
performing them.

As TÆMS task structures model a family of plans, the DTC
scheduling problem has conceptually certain characteristics in com-
mon with planning and certain characteristics of more traditional
scheduling problems, and it suffers from pronounced combinatorics

!"#$%&'%()"*%$)+$(,+#-'(./(!"#$%&'(')*+*,-
!"#$%&'%($++*(,+#-'(./(."")&!"#$%&'(')*+,-
!"#$%&'%("-0.%$(+,('#1%2-3%'(*+(#+"'*$-#*(./

%#/01&!"#$%&'(')*+,-
4#1%2-3%(&"2($%#+$2(+-*5-*6

7%0+8%('+,*(*&'9()"*%$&#*)+"'(,$+0(:;<=4(*&'9'6
7%3&>('+,*(2%&23)"%'?(#+'*(3)0)*'?(&"2(@-&3)*/(*1$%'1+32'6
:)A1*%"()"*%$)+$(,+#-'(*+(!"#$%&'(')-
:)A1*%"($++*(,+#-'(*+(."")&!"#$%&'(')!
:)A1*%"("-0.%$(+,('#1%2-3%'(*+(#+"'*$-#*(*+

%#/01&!"#$%&'(')6
4#1%2-3%(&"2($%#+$2(+-*5-*6

7%'*+$%('+,*(*&'9()"*%$&#*)+"'6
7%'*+$%(2%&23)"%'?(3)0)*'?(&"2(*1$%1+32'6

B1)3%('5&#%("+*(,-33/(%>53+$%26

,22

45&#%(,-33/(%>53+$%2(+$(C4(')A"&3('%"*6

7%*-$"(.%'*('#1%2-3%6

7%A)'*%$(')A"&3(1&"23%$(.34567&89:&;<,7=>*D)*1(*1%(C4
4%*"%'?@A.B"*+(),C3&@DD5E873:&F56&1)#

Figure 3: Real-Time Control for DTC

on both fronts. The scheduler’s function is to read as input a TÆMS
task structure (or a set of task structures) and to 1) decide which set
of tasks to perform, 2) decide in what sequence the tasks should
be performed, taking advantage of soft relationships where possi-
ble, 3) to perform the first two functions so as to address hard con-
straints, e.g., deadlines on tasks, and to balance the soft design/goal
criteria specified by the client, to do this computation in soft real-
time so that it can be used online.

Meeting these objectives is a non-trivial problem. In general, the
upper-bound on the number of possible schedules for a TÆMS task
structure containing actions is given in Equation 1. Clearly, for
any significant task structure the brute-strength approach of gener-
ating all possible schedules is infeasible – offline or online. This ex-
pression contains complexity from two main sources. On the “plan-
ning” side, the scheduler must consider the (unordered) dif-
ferent alternative different ways to go about achieving the top level
task (for a task structure with actions). On the “scheduling” side,
the scheduler must consider the different possible orderings of
each alternative, where is the number of actions in the alterna-
tive.

(1)

The types of constraints that may be present in TÆMS and the
existence of interactions between tasks (and the differentQAFs that
define how to achieve particular tasks), prevent a simple, optimal
solution approach. DTC copes with the high-order combinatorics
using a battery of techniques. Space precludes detailed discussion
of these, however, they are documented in [17]. From a very high
level, the scheduler uses goal directed focusing, approximation,
scheduling heuristics, and schedule improvement/repair heuristics
[22, 14] to reduce the combinatorics to polynomial levels in the
worst case.

The Design-to-Criteria scheduling process falls into the general
area of flexible computation [6], but differs from most flexible com-
putation approaches in its use of multiple actions to achieve flex-

ibility (one exception is [7]) in contrast to anytime algorithms [2,
13, 20]. We have found the lack of restriction on the properties of
primitive actions to be an important feature for application in large
numbers of domains. Another major difference is that in DTC we
not only propagate uncertainty [21], but we can work to reduce it
when important to the client.

Until recently, DTC supplied online scheduling/planning services
to other components by being “fast enough” for the activities being
scheduled. For example, in the BIG information gathering agent
[10], scheduling/planning accounted for less than 1% of the agent’s
execution time. However, in hard real-time situations, being fast
enough is not sufficient, as discussed in [19]. The current genera-
tion scheduler supports hard real-time deadlines at the grainsize af-
forded by the unix/Linux operating system. The control algorithm
used by the scheduler is shown in Figure 3. To meet hard deadlines
on the amount of time the scheduler can take to plan/schedule, it
first relaxes constraints that are likely to produce worst-case be-
havior and schedules. It then records the most highly rated sched-
ule, restores a portion of the constraints, and schedules again. This
schedule is also recorded. The scheduler then lessens its degree
of focusing, thus enabling it to explore a larger percentage of the
schedule solution space, and reschedules. The resulting schedule
is then recorded, the degree of focusing is decreased again, and
the scheduler again reschedules. This process continues until the
hard-deadline is met or the scheduler explores the entire schedul-
ing space. If the hard deadline occurs before the scheduler is able
to produce a single viable schedule, no schedule is returned to the
client.

As with most hard real-time applications, there is a minimum
temporal grainsize below which no solutions will be produced. With
TÆMS scheduling, the minimum temporal floor is defined by the
characteristics of the problem instance, e.g., number and types of
interdependencies, constraint tightness, existence of alternative so-
lution methods, classes of quality-accumulation-functions, etc. Pre-
dictability [15] in a hard real-time sense is thus still lacking. In gen-
eral, the issue returns to the grainsize of the problem. For some ap-
plications, a hard scheduling deadline of one second is reasonable
whereas for others, twenty seconds may be required to produce a
viable result. In the distributed sensor application, the scheduler
grainsize is too great, particularly when rescheduling occurs fre-
quently, as discussed below. Thus, additional, secondary measures
were needed to decrease the number of times DTC is invoked (see
section 3.2.

Returning to our example, DTC is used to select the most ap-
propriate set of actions from the initialization task structure. In
this case, it has only one valid plan: Init, Calibrate, and
Send-Message-1. A somewhat more interesting task structure
is seen in Task2 from figure 2, which has a set of alternative meth-
ods under the task Track. A deadline is associated with Send-
Result, corresponding to the desired synchronization time spec-
ified by the agent managing the tracking process. In this case,
then, DTC must determine which set of methods is likely to ob-
tain the most quality, while still respecting that deadline. Because
TÆMS models duration uncertainty, the issue of whether or not a
task will miss its deadline involves probabilities rather than simple
discrete points. The techniques used to reason about the probability
of missing a hard deadline are presented in [19]. It selects for exe-
cution the plan Set-Parameters,Track-Medium, and Send-
Results. After they are selected, the plans will next be used by
the partial order scheduler to both evaluate precedence and resource
constraints, and determine exactly when individual methods will be
performed.

2.3 Partial Order Scheduler
DTC was designed for use in both single agents and agents sit-

Task1
q_min

Init

enables1

Calibrate Send-Message-1

lock1

release1

RF

0.0 / 1000.0 / 1000.0

Task3
q_min

 Negotiate-Tracking

enables4

Send-Tracking-Info

lock3

release3

RF

0.0 / 1000.0 / 1000.0

A) Initialization task structure. B) Tracking goal negotiation task structure.

Figure 4: Two TÆMS task structures, abstractions of those used in our agents.

uated in multi-agent environments. Thus, it makes no assumption
about its ability to communicate with other agents or to “force”
coordination between agents. It is used as an oracle by other co-
ordination components, during agent communication and negotia-
tion. This design approach, however, leads to complications when
working in a real-time, multi-agent environment where distributed
resource coordination is an issue. When resources can be used by
multiple agents at the same time, DTC lacks the ability to request
communication for the development of a resource usage model.
This is the task of another control component that forms scheduling
constraints based on an understanding of resource usage. In most
applications, these constraints are formed by rescheduling to ana-
lyze the implications of particular commitments. In the real-time
sensor application, the rescheduling overhead is too expensive for
forming these types of relationships. The solution we have adopted
is to use a subset of DTC’s functionality, and then offloading the
distributed resource and fine grained scheduling analysis to a dif-
ferent component - the partial order scheduler. Specifically, DTC is
used in this architecture to reason about tradeoffs between alterna-
tive plans, respect ordering relationships in the structure, evaluate
the feasibility of soft interactions, and ensure that hard duration,
quality and cost constraints are met.

DTC presents the partial order scheduler with a linear schedule
meeting the requested deadline. Timing details, with the exception
of hard deadlines generated by commitments to other agents and
overall goal deadlines, are ignored in the schedule, which is essen-
tially used as a plan. The partial order scheduler uses this to build
a partially order schedule, one which includes descriptions of the
interrelationships between the scheduled actions in addition to their
desired execution times. In this partially ordered schedule, we ex-
plicitly represent precedence relationships between methods, con-
straints and deadlines. This information arises from commitments,
resource and method interrelationships, and the QAFs assigned to
tasks. Much of this information can be directly determined from the
TÆMS task structure. Resources, however, must be analyzed in a
more robust fashion, because of potential interactions from other
activities, both locally and those to be performed by other agents.

In order to bind resources, we used another component called
the resource modeler. The partial order scheduler does this by first
producing a description of how a given method is expected to use
resources, if at all. This description includes such things as the
length of the usage, the quantity that will be consumed or pro-
duced, and whether or not the usage will be done throughout the
method’s execution or just at its start or completion. The sched-
uler then gives this description to the resource modeler, along with
some constraints on when the method can start or finish, and asks
it to find a point in time when the necessary resources are available
to be used.

As with most elements in TÆMS the resource usage is proba-

bilistically described, so the scheduler must also provide a mini-
mum desired chance of success to the modeler. When searching,
the resource modeler takes into account all the resource usages that
it has been previously told about. At any potential insertion point,
the modeler computes the aggregate affects of the new resource us-
age, along with all prior usages up to the last known actual value of
the resource. The expected usage for a given time slot can become
quite uncertain, as the probabilistic usages are carried through from
each prior slot. If the probability of success for this aggregate usage
lies above the range specified by the scheduler, then the resource
modeler assumes the usage is viable at that point. Since a given
usage may actually take place over a range of time, this check is
performed for all other points in that range as well. If all points
meet the success requirement, the resource modeler will return the
valid point in time. After this, the scheduler will insert the usage
into the model, which will then be taken into account in subsequent
searches.

Once potential interactions, through interrelationships, deadlines
or resource uses, are determined, the partial order scheduler can
evaluate what the best order of execution is. Wherever possible,
actions are parallelized to maximize the flexibility of the agent. In
such cases, methods run concurrently require less overall time for
completion, and thus offer more time to satisfy existing deadlines
or take on new commitments. Once the desired schedule ordering is
determined, the new schedule must be integrated with the existing
set of actions.

The partial order scheduler makes use of two other technologies
to integrate the new goal with existing scheduled tasks. The first
is a conflict resolution module, which determines how best to han-
dle unschedulable conflicts, given the information at hand. Most
time-constrained tasks in the agent are added through negotiation
with other agents, which will have assigned an importance value
to their particular commitment. This value remains associated with
the task structure and scheduled methods as they are created. Thus,
when scheduling conflicts arise, the conflict resolution component
can compare the relative importance of the conflicting actions, and
remove the one of lesser priority. If such a decommittal is made, or
if no valid resolution can be found, the problem solving component
is notified of the situation so that it can take appropriate action.
A second component handles the job of merging the new goal’s
schedule with those of prior goals. The specific mechanism used is
identical to that which determines order of execution. Interdepen-
dencies between this large set of methods, either direct or indirect,
are used to determine which actions can be performed relative to
one another. This information is then used to determine the final
desired order of execution.

To this point in our example, the agent has been asked to work
towards three different goals, each with slightly different execution
needs. Task1 allows some measure of parallelism within itself,

as Init and Calibrate can run concurrently. Task2, received
some time later, must be run sequentially, and its method Send-
Resultmust be completed by time 2500. Task3 is received later
still, and also must be run sequentially. All three, however, require
the use of the RF resource, for communication needs, and are thus
indirectly dependent on one another. The partial order scheduler
produces the schedule seen in figure 5A, where all the known con-
straints are met. Some measure of parallelism can be achieved, seen
with Set-Parameters and Send-Message-1, and also be-
tween Track Medium and the methods in Task3. Note that the
resource modeler detected the incompatibility between the methods
using RF (shaded gray), however, and therefore do not overlap.

Suppose next that Negotiate Tracking is taking longer than
expected, forcing the agent to dynamically reschedule its actions.
Because the method Send Tracking Info cannot start before
the completion of Negotiate Tracking, due to the enables
interrelationship shown in figure 4B, the partial order scheduler
must delay the start of Send Tracking Info. A naive approach
would simply delay Send Tracking Info by a corresponding
amount. This has the undesirable consequence of also delaying
Send-Result, because of the contention over the RF resource.
This will cause Send-Result to miss its deadline of 2500, as
shown in the invalid schedule seen in figure 5B.

Fortunately, the partial order scheduler was able to detect this
failure, because of the propagation of execution windows. Send-
Result was marked with a latest start time equal to 2000. This
caused the partial order schedule to try other permutations of meth-
ods, which resulted in the schedule shown in figure 5C, which de-
lays Send Tracking Info in favor of Send-Result. This
allows the agent to proceed successfully despite its failed expecta-
tions.

3. OPTIMIZATIONS
The high-level technologies discussed above address the funda-

mental issues needed to run in real-time. Unfortunately, even the
best framework will fail to work in practice if it does not obtain
the processor time needed to operate, or if activity expectations are
repeatedly not met. A good example of this is the execution sub-
system. It may be that planning and scheduling have successfully
completed, and determined that a particular method must run at a
particular time in order to meet its deadline. If, however, some
other aspect of the agent has control of the processor when the as-
signed star time arrives, the method will not be started on time and
may therefore fail to meet its deadline.

3.1 Meta-Level Accounting
Several issues cause this problem described above. Of primary

concern in this example is the fact that the agent is not accounting
for and scheduling all the activities the agent is performing. Many
systems only schedule for the low-level tasks they perform - the
actions which directly and tangibly affect the goal at hand. At the
same time, however, there is an entire class of actions which the
agent is performing, and therefore compete for the same process-
ing time, which are not accounted for. Such tasks include many
elements seen in figure 1: communication, negotiation, problem
solving, planning, scheduling and the like. These so-called “meta-
level” activities can constitute a significant fraction of the agent’s
running time, but are not being directly scheduled.

In this research we have added meta-level accounting of com-
munication and negotiation. To do this, we first modeled these ac-
tivities with TÆMS task structures. From a planning and schedul-
ing point of view, there is no difference between low and meta-
level actions, so to account for this time we need just an accurate
model and a component capable performing these actions in re-
sponse to a method execution. Given this, we can use our existing

TÆMS processing components to correctly account for this time.
The task structure from our running example, seen in figure 4B,
models both negotiation and communication activities. The du-
ration of a negotiation task is relatively deterministic, or at least
can be described within some bounds, so creating the task struc-
tures was a matter of learning the characteristics of our negotia-
tion scheme. An additional benefit of describing these activities in
TÆMS is that it permits the planning component to reason about
the selection of negotiation schemes. Consider a system where one
had several different ways to negotiate over a particular commit-
ment, each with different quality, cost and duration expectations.
By describing these in TÆMS , we can simply pass the structure
the generic DTC planning component, which will determine the
most appropriate negotiation scheme for the current environmental
conditions. Furthermore, once a given scheme is selected, it can
potentially be parallelized by the partial order scheduler for greater
efficiency.

In future research we hope to model other meta-level activities,
such as scheduling and planning. These topics are more compli-
cated due to their non-deterministic nature, i.e. the agent does not
necessarily know a priori how long it will take to schedule an arbi-
trary set of interdependent actions. In addition, the need to quickly
schedule and plan in the face of unanticipated events, and the po-
tential need to schedule the scheduling of activities itself makes
these processes particularly difficult to account for. We currently
handle the time for these activities implicitly by adding slack time
to each schedule. This is accomplished by reasoning with the max-
imum expected duration time for a given schedule, rather than the
average time.

3.2 Plan Caching
A second issue affecting the agent’s real time performance is

that meta-level tasks take significant time in the first place. In sys-
tems which run outside of real-time, the duration performance of a
particular component will generally not affect the success or fail-
ure of the system as a whole - at worst it will make it slow. In
real time, this slowdown can be critical, for the reasons cited previ-
ously. Thus, as part of developing this control architecture, we have
looked into optimizing the meta-level performance of our compo-
nents.

One particular computationally expensive process for our agents
is planning, primarily because the DTC planner runs as a separate
process, and requires a pair of disk accesses to use. Unfortunately,
this is an artifact caused by DTC’s C++ implementation; the re-
mainder of the architecture is in Java. We noticed during our sce-
narios that a large percentage of the task structures sent to DTC
were similar, often differing in only their start times and deadlines,
and resulting in very similar plan selections. This is made possi-
ble by the fact that DTC is now used on only one goal at a time,
as opposed to our previous systems which manipulated structures
combining all current goals. To avoid this overhead, a plan caching
system was implemented, shown as a bypass flow in figure 1. Each
task structure to be sent to DTC is used to generate a key, incorpo-
rating several distinguishing characteristics of the structure. If this
key does not match one in the cache, the structure is set to DTC,
and the resulting plan read in, and added to the cache. If the key
does match one seen before, the plan is simply retrieved from the
cache, updated to reflect any timing differences between the two
structures, and returned back to the caller. This has resulted in a
significant performance improvement in our agents, which leaves
more time for low-level activities, and thus increases the likelihood
that a given deadline or constraint will be satisfied. Quantitative
effects of the caching system will be covered in section 4.

3.3 Learning

Calibrate
Init Send-Message1Init

500 1000 1500 2000 2500 3000

Negotiate_Tracking Send_Tracking_Info

b)
Set-Parameters Track_Medium Send-Result

Calibrate
Init Send-Message1

Track_MediumSet-Parameters Send-Result

Init Send_Tracking_InfoNegotiate_Tracking

500 1000 1500 2000 2500 3000

a)

InitInit
Calibrate

Send-Message1

Track_MediumSet-Parameters Send-Result

500 1000 1500 2000 2500 3000

Send_Tracking_InfoNegotiate_Tracking

c)

Figure 5: A) Initial schedule produced after all the goals have been received, B) Invalid schedule showing the deadline constraint
broken by a method execution taking too long, C) Corrected schedule respecting all constraints.

Much of the material discussed in previous sections assumes
that the TÆMS models describing our activities are faithful to real
world performance. It should be clear that without accurate models,
it will be quite difficult for the agent to correctly allocate its time.
In prior research [8], some quantitative and structural elements of
TÆMS structures have been shown to be learnable using off-line
analysis of a large corpus of results. While this technique would
work to a certain extent for our application, we are more interested
in using a lightweight runtime learning component to give the agent
the capability to dynamically adapt to changing conditions.

Our current learning system automatically monitors all method
executions in the agent, and maintains a set of the last n results.
When queried, the component uses these results to compute a du-
ration distribution for the particular method in question. This data
can then be used to condition new task structures, improving their
predictive accuracy and thus improving the agent’s ability to sched-
ule its time.

3.4 Commitment Windows
Despite the improvements listed above, it is still difficult to model

and execute actions to a millisecond resolution in a complex agent
running on top of an uncontrolled environment (e.g. Java, generic
kernel with competing local processes). Thus, our techniques must
be able to tolerate the variability in execution time inherent in the
real time environment.

We have previously discussed the importance of the partial or-
der scheduler, which facilitates the efficient shifting of scheduled
methods as dictated by temporal needs. Wherever possible, we of-
fer similar flexibility in our commitment structures by specifying
negotiated tasks with windows of execution time, rather than just
fixed deadlines. This corresponds well to our problem domain, as
commitments over scanning and tracking tasks naturally have win-
dows of time where they may be successfully performed. As ac-
tions are scheduled or shifted, the window provides some leeway
in when a time-constrained method can be performed, giving the
agent the potential to locally resolve conflicts arising from failed
expectations and new commitments. In addition, the notion of an
execution window provides a clear metric usable for the relaxation
or tightening of constraints occurring during negotiation2.

Our commitments are typically delivered in the form of a pe-
riodic task, an action which should be performed repeatedly over

Implementation of this scheme was done by Jiaying Shen and
Roger Mailler.

some specified period. Again, this notion maps well to our sensor
environment, where a given node may be needed to perform a series
of measurements for scanning or tracking. This has the quality of
reducing coordination overhead, important in our communication-
limited environment. More germane to the topic at hand, however,
is the periodic task’s predictive capacity. By explicitly specifying
a series of desired actions, the agent is able to schedule the peri-
odic task out to an arbitrary point on its time horizon. This in turn
better equips the agent to reason about and negotiate over potential
actions and commitments in the future.

4. PERFORMANCE
We implement this architecture to be able to track a vehicle mov-

ing using distributed radar sensors. In this section we will describe
the real time environment our system operates in, and present per-
formance results.

The goal of this application was to track one or more targets
moving through the sensor environment. The radar sensor mea-
surements consist of only amplitude and frequency values, so no
one sensor has the ability to precisely determine the location of a
target by itself. The sensors must therefore be organized and coor-
dinated in a manner that permits their measurements to be used for
triangulation. In the abstract, this situation is analogous to a dis-
tributed resource allocation problem, where the sensors represent
resources which must be allocated to particular tasks at particular
times, in order for the tasks to be effectively coordinated.

The available sensor platforms have three scanning regions, each
a 120 degree arc encircling the sensor. Only one of these regions
can be used to perform measurements at a time. The communica-
tion medium uses a low-speed, unreliable, radio-frequency (RF)
system over eight separate channels. Messages cannot be both
transmitted and received simultaneously regardless of channel as-
signment, and no two agents can transmit on a single channel at
the same time without causing interference. The sensor platforms
are capable of locally hosting one or more processes, which share a
common CPU. Our solution populates each sensor platform with a
single agent process. Targets move through the environment in an
arbitrary pattern as the scenario progresses. We assume that agents
have basic knowledge of themselves (i.e. position, orientation, ca-
pabilities, etc.). Unless specified, all other information must be
communicated by other agents over the RF medium.

The need to triangulate a target’s position requires frequent, closely
coordinated actions amongst the agents - ideally three or more sen-

Component Num. Calls Execution Time
DTC Scheduler 72.14 300 ms
DTC Caching 31.12 74 ms

Partial Order Scheduler 531.03 36 ms

Table 1: Average results over 1077 runs of 180 seconds.

sors performing their measurements at the same time. In order to
produce an accurate track, the sensors must therefore minimize the
amount of time between measurements during triangulation, and
maximize the number of triangulated positions.

To test our architecture, we used both a simulated environment,
RADISM3, and a physical hardware platform. More details on
these experiments can be found in [16]. The configuration we used
had four sensors, using four PCs running Linux as sensor’s hosts,
and one single target. The target was moving at 1 foot/sec. RMS
error, which calculates the difference between the measured and ac-
tual tracks, is used as a rough metric to determine the effectiveness
of the agent’s synchronization (several other factors affect RMS as
well). In the simulator, we were able to achieve an RMS error of
1.68 feet averaged over 1077 runs with reliable communication. In
this case, the agents were able to synchronize their measurements
within an average window size of 58 ms. To put this value into
perspective, the average execution time for those measurements is
about 1500 ms. Table 1 shows other timing measures used to deter-
mine how effective our optimization techniques were. The caching
system in these tests was able to avoid calling DTC 43.13% of the
time. It is also interesting to note that our agent calls the partial
order scheduler almost at every cycle, to update and maintain the
current schedule. With an average number of call 531.03 per run,
we are calling this component every 338 ms.

5. FUTUREWORK
It is important to note that the architecture presented here falls

into the soft real-time computation class. In contrast to architec-
tures like CIRCA [11], we cannot make performance guarantees
[15] about agent control. However, in contrast to CIRCA, the ap-
proach presented here operates on multiple distributed agents and
the statistically “fast enough” model addresses the requirements of
this application. In the future, hard real-time approaches for mul-
tiple distributed agents may be possible, but, currently, the com-
plexity of the distributed agent control problem, particularly when
agents have complex activities and are situated in dynamic and un-
certain environments, prevents such approaches. It is also unclear
for other applications, e.g., information gathering via the net, if
hard real-time guarantees are useful or needed.

There are number of technical directions that we think are im-
portant in developing this framework further. One involves devel-
oping a better understanding of how to make choices at the DTC
level, given that in some cases the primitive methods can be ex-
ecuted in parallel if resources are available. We currently can do
some of this reasoning at the DTC level [18] but it is does not use
information from the detailed resource modeler, and for that rea-
son we don’t currently exploit this capability of DTC. Thus, the
decisions at the DTC level are overly conservative about what plan
alternative is most appropriate for accommodate the given dead-
line. We would thus like to create additional mechanisms to make
better predictions. Along this line, we would also like to develop
an efficient meta-meta reasoning component in order to decide how
much effort should we allocate to the DTC component in the cur-
rent situation given the ability of the DTC component to work in an

RADISM was designed and built by Rome Labs.

anytime mode. Another role for this new component is to decide
where and how much slack to put in the schedule to accommodate
unexpected meta-control activities. As we discussed early in the
paper, we don’t explicitly allocate slack time for unexpected meta-
control events such as planning and scheduling for new goals or
revisions to existing schedules. Another aspect of the framework
that we would like to extend is the conflict resolution component.
One direction is to make it more sophisticated in its understanding
exactly what previously scheduled event(s) is responsible for the
conflict.

6. REFERENCES
[1] Ella M. Atkins, Edmund H. Durfee, and Kang G. Shin.

Detecting and Reacting to Unplanned-for World States. In
Proceedings of the Fourteenth National Conference on
Artificial Intelligence, July 1997.

[2] T. Dean and M. Boddy. An analysis of time-dependent
planning. In Proceedings of the Seventh National Conference
on Artificial Intelligence, pages 49–54, St. Paul, Minnesota,
August 1988.

[3] Keith S. Decker and Victor R. Lesser. Quantitative modeling
of complex environments. International Journal of
Intelligent Systems in Accounting, Finance, and
Management, 2(4):215–234, December 1993. Special issue
on “Mathematical and Computational Models of
Organizations: Models and Characteristics of Agent
Behavior”.

[4] John R. Graham and Keith S. Decker. Towards a distributed,
environment-centered agent framework. In Proceedings of
the Sixth International Workshop on Agent Theories,
Architectures, and Languages (ATAL), Florida, jul 1999.

[5] Bryan Horling et al. The tæms white paper, 1999.
http://mas.cs.umass.edu/res-earch/taems/white/.

[6] Eric Horvitz, Gregory Cooper, and David Heckerman.
Reflection and action under scarce resources: Theoretical
principles and empirical study. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, August 1989.

[7] Eric Horvitz and Jed Lengyel. Flexible Rendering of 3D
Graphics Under Varying Resources: Issues and Directions.
In Proceedings of the AAAI Symposium on Flexible
Computation in Intelligent Systems, Cambridge,
Massachusetts, November 1996.

[8] D. Jensen, M. Atighetchi, R. Vincent, and V. Lesser.
Learning quantitative knowledge for multiagent
coordination. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence, Orlando, FL, July
1999. AAAI.

[9] Victor Lesser, Michael Atighetchi, Bryan Horling, Brett
Benyo, Anita Raja, Regis Vincent, Thomas Wagner, Ping
Xuan, and Shelley XQ. Zhang. A Multi-Agent System for
Intelligent Environment Control. In Proceedings of the Third
International Conference on Autonomous Agents (Agents99),
1999.

[10] Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja,
Thomas Wagner, and Shelley XQ. Zhang. BIG: An agent for
resource-bounded information gathering and decision
making. Artificial Intelligence, 118(1-2):197–244, May
2000. Elsevier Science Publishing.

[11] David J. Musliner, Edmund H. Durfee, and Kang G. Shin.
CIRCA: A cooperative intelligent real-time control
architecture. IEEE Transactions on Systems, Man and
Cybernetics, 23(6), 1993.

[12] David J. Musliner, James A. Hendler, Ashok K. Agrawala,

Edmund H. Durfee, Jay K. Strosnider, and C. J. Paul. The
Challenge of Real-Time Artificial Intelligence. Computer,
28(1):58–66, January 1995.

[13] Stuart J. Russell and Shlomo Zilberstein. Composing
real-time systems. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence,
pages 212–217, Sydney, Australia, August 1991.

[14] Wolfgang Slany. Scheduling as a fuzzy multiple criteria
optimization problem. Fuzzy Sets and Systems, 78:197–222,
March 1996. Issue 2. Special Issue on Fuzzy Multiple
Criteria Decision Making; URL:
ftp://ftp.dbai.tuwien.ac.at/pub/papers/slany/fss96.ps.gz.

[15] John A. Stankovic and Krithi Ramamritham. Editorial: What
is predictability for real-time systems? The Journal of
Real-Time Systems, 2:247–254, 1990.

[16] Régis Vincent, Bryan Horling, Roger Mailler, Jiaying Shen,
Raphen Becker, Kyle Rawlins, and Victor Lesser. Distributed
sensor network for real time tracking. Submitted to
Autonomous Agents 2001.

[17] Thomas Wagner, Alan Garvey, and Victor Lesser.
Criteria-Directed Heuristic Task Scheduling. International
Journal of Approximate Reasoning, Special Issue on
Scheduling, 19(1-2):91–118, 1998. A version also available
as UMASS CS TR-97-59.

[18] Thomas Wagner and Victor Lesser. Design-to-Criteria
Scheduling for Intermittent Processing. UMASS Department
of Computer Science Technical Report TR-96-81,
November, 1996.

[19] Thomas Wagner and Victor Lesser. Design-to-Criteria
Scheduling: Real-Time Agent Control. In O. Rana and
T. Wagner, editors, Infrastructure for Large-Scale
Multi-Agent Systems, Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2000. To appear. A version also
appears in the 2000 AAAI Spring Symposium on Real-Time
Systems and as UMASS CS TR-99-58.

[20] S. Zilberstein and S. J. Russell. Optimal composition of
real-time systems. Artificial Intelligence, 82(1):181–214,
December 1996.

[21] Shlomo Zilberstein. Using anytime algorithms in intelligent
systems. AI Magazine, 17(3):73–83, 1996.

[22] M. Zweben, B. Daun, E. Davis, and M. Deale. Scheduling
and rescheduling with iterative repair. In M. Zweben and
M. Fox, editors, Intelligent Scheduling, chapter 8. Morgan
Kaufmann, 1994.

