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ABSTRACT

In this paper we describe our solution to a real-time dis-
tributed resource allocation application involving distributed
situation assessment. The hardware configuration consists
of a set of reconfigurable sensors at fixed locations, each hav-
ing local processing and low-bandwidth communication ca-
pabilities with other sensor nodes. The objective is to track
objects moving in the environment in real-time as best as
possible, given uncertainty and constraints on sensor loads,
communication, power consumption, action characteristics,
and clock synchronization. Once the target is detected, the
sensors must communicate and cooperate so that, within a
given window of time, the data needed to triangulate the
position of the target can be collected. Our solution to this
problem decomposes the environment into a number of sec-
tors, where individual sensor nodes in a sector are specialize
dynamically to address different parts of the goal. We de-
scribe our solution to this problem in detail, including the
high-level architecture and a number of the more interesting
implementation challenges. Results and future direction are
also covered.

(Video available at:
http://mas.cs.umass.edu/research/ants/ANTS.mov)

1. INTRODUCTION

Distributed vehicle monitoring as an example application
of distributed situation assessment and more generally dis-
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tributed resource allocation has been a problem studied ex-
tensively in the MAS community since its infancy [5][6][4].
To our knowledge, this work has been done in simulation,
and not dealt with real-time issues of coordination and re-
configurable sensors, so that they are focused appropriately
to track the desired object. This paper describes our work on
a distributed vehicle monitoring application involving actual
hardware. The hardware configuration consists of four radar
sensors with associated processors (see figure 12) at fixed lo-
cations connected through a low-bandwidth radio frequency
(RF) communication channel.

The goal of this application is to track one or more tar-
gets that are moving through the sensor environment. The
radar sensor measurements consist of only amplitude and
frequency values, so no one sensor has the ability to pre-
cisely determine the location of a target by itself. The
sensors must therefore be organized and coordinated in a
manner that permits their measurements to be used for tri-
angulation. In the abstract, this situation is analogous to a
distributed resource allocation problem, where the sensors
represent resources which must be allocated to particular
tasks at particular times, in order for the tasks to be ef-
fectively coordinated. Additional hurdles include a lack of
reliable communication, the need to eventually scale to hun-
dreds or thousands of sensor platforms, and the ability to
reason within a real time, fault prone environment. In this
paper, we will describe our solution to this problem.

The available sensor platforms have three scanning re-
gions, each a 120 degree arc encircling the sensor (see fig-
ure 1A). Only one of these regions can be used to perform
measurements at a time. The communication medium uses
a low-speed, unreliable, radio-frequency (RF) system over
eight separate channels. Messages cannot be both transmit-
ted and received simultaneously regardless of channel assign-
ment, and no two agents can transmit on a single channel
at the same time without causing interference. The sensor
platforms are capable of locally hosting one or more pro-
cesses, which share a common CPU. Our solution populates
each sensor platform with a single agent process, and we will
use the terms sensor, agent and node interchangeably in this
paper. Targets move through the environment in an arbi-
trary pattern as the scenario progresses. We assume that
agents have basic knowledge of themselves (i.e. position,
orientation, capabilities, etc.). Unless specified, all other in-
formation must be communicated by other agents over the
RF medium.

This problem has several key elements that make it an
interesting domain for exploration, including the need for
strong coordination of activities, limited resources, a real-
time environment, and varied sources of uncertainty.



Figure 1: High-level architecture. A: sectorization of the environment, B: distribution of the scan schedule,
C: negotiation over tracking measurements, and D: fusion of triangulation data.

The need to triangulate an target’s position requires fre-
quent, closely coordinated actions amongst the agents - ide-
ally three or more sensors performing their measurements at
the same time. In order to produce an accurate track, the
sensors must therefore minimize the amount of time between
measurements during triangulation, and maximize the num-
ber of triangulated positions. Ignoring resources, an optimal
tracking solution would have all agents capable of tracking
the target taking measurements at the same precise time
as frequently as possible. Restrictive communication and
computation, however, limits our ability to coordinate and
implement such an aggressive strategy. Low communication
bandwidth hinders complex coordination and negotiation,
limited processor power prevents exhaustive planning and
scheduling, and restricted sensor usage creates a tradeoff
between discovering new targets and tracking existing ones.

Another interesting aspect of the environment is that it is
real-time. A viable solution must consider issues such as the
amount of time it takes to do meta-level activities, schedul-
ing tasks with unknown or estimated execution durations
and coordinating individual sensor platforms in the absence
of a globally synchronizing clock.

Each of these factors contributes to a large degree of un-
certainty. Noisy measurements, unreliable communications,
varying hardware speeds, and sensor availability also make
knowing a target’s precise location and velocity very diffi-
cult. This in turn makes predicting and planning for future
events more difficult, which subsequently increases usage of
resources when unreliable data directs high level reasoning
to incorrect conclusions and actions.

In the remainder of this paper, we will describe our so-
lution which attempts to solve these complicated problems.
We will describe how we have adapted our existing agent
framework, JAF [3], by modifying our execution module
to work in parallel, adding a partial order scheduler that
takes advantage of parallelizable tasks and used TAEMS [1]
to model meta-level tasks to handle the transition to a real-
time environment. We will also discuss the agent organiza-
tion, negotiation protocols, and high-level problem solving
that we believe provide us with a robust, scalable and ex-

tendible solution to the problems of limited resources and
uncertainty. Next, we present results from testing which has
been done in both in simulation and on actual hardware. Fi-
nally, we conclude the paper by discussing future work and
directions for the project.

2. HIGH-LEVEL ARCHITECTURE

As noted above, our overall objective is to track targets
with the highest possible accuracy. At the same time, our
solution must be scalable, robust in face of hardware failure,
handle communication unreliability, and be able to conserve
scarce resources, such as the battery that powers the sensor
node. The high-level architecture described below attempts
to address these issues.

The environment itself is divided into a series of sectors,
each a non-overlapping, identically sized, rectangular por-
tion of the available area, shown in figure 1A. The purpose
of this division, as will be shown below, is to limit the inter-
actions needed between sensors, an important element of our
attempt to make the solution scalable. In this figure, sensors
are represented as divided circles, where each 120 degree arc
represents a direction the node can sense in. Although not
represented, sensor nodes may also have heterogenous ori-
entations and effective ranges. As agents come online, they
must first determine which sectors they can affect. Because
the environment itself is bounded, this can be trivially done
by providing each agent the height and width of the sec-
tors. The agents can then use this information, along with
their known position and sensor radius, to determine which
sectors they are capable of scanning in.

Within a given sector, agents may work concurrently on
one or more of several high level goals: managing a sec-
tor, tracking a target, producing sensor data, and processing
sensor data. Each sector will have a single sector manager,
which serves as the locus of activity for a given sector. This
manager generates and distribute plans (to the sensor data
producers) needed to scan for new targets, provides direc-
tory services, and assigns target managers. Target managers
are responsible for directing efforts to pinpoint and track



known targets. Each known target in the environment will
have a single track manager assigned to it, a role which can
potentially move from one agent to another as the target
moves. Agents producing sensor data perform the low level
task of issuing commands to sensors and gathering the re-
sulting data. Data processors take in sensor data and use it
to generate target location and track information.

The scenario starts with agents determining what sectors
they can affect, and which agents are serving as the man-
agers for those sectors. Ideally, the sector managerial duty
would be delegated and discovered dynamically at runtime,
but due to the lack of a broadcast capability in the RF com-
munication medium, we statically define and disburse this
information a priori. In figure 1, managers are represented
with shaded inner circles. Once an agent recognizes its man-
ager(s), it sends each a description of its capabilities. This
includes such things as the position, orientation, and range
of the agent’s sensor. The manager then has the task of us-
ing this data to organize the scanning schedule for its sector.
The goal of the scan schedule is to use the sensors available
to it to perform inexpensive, fast sensor sweeps of the area,
in an effort to discover new targets. The manager formu-
lates a schedule of where and when each sensor should scan,
and negotiates with each agent over their respective respon-
sibilities in that schedule (see figure 1B). The manager does
not strictly assign these tasks - the agents have autonomy to
themselves decide what action gets performed when. Given
that sensors can potentially scan in multiple sectors, there is
also the possibility that an agent may receive multiple, po-
tentially conflicting requests for commitments. The agent
itself is responsible for detecting and resolving these con-
flicts. If one receives conflicting requests for commitments,
it can elect to delay or decommit as needed. Shaded sensors
in the previous figure show agents receiving multiple scan
schedule commitments.

Once the scan is in progress, individual sensors report any
positive detections to the sector manager which assigned
them the originating scanning task. Internally, the sector
manager maintains a list of all local track managers, and
location estimates for the targets they are tracking, which
it uses to determine if the sensor detected a new target, or
one which is already being tracked. If the target is new, the
manager selects one of the agents in its sector, using locally
available expected load knowledge, to be the track manager
for that target. The assigned track manager (shown in figure
1C with a blackened inner circle) is responsible for organiz-
ing the tracking of the given target. To do this, it must
first discover sensors capable of detecting the target, and
then negotiate with members of that group to gather the
necessary data. Discovery is done using the directory ser-
vice provided by the sector managers. One or more queries
are made asking for sensors which can scan in the area the
target is predicted to occupy. For triangulation to be possi-
ble, three or more agents must scan the target at the same
time, or within a relatively small window of time (within
one second or so). The track manager must therefore de-
termine when the scans should be performed, considering
such things as the desired track fidelity and time needed to
perform the measurement, and negotiate with the discovered
agents to disseminate this goal (see figure 1C). As with scan-
ning, conflicts can arise between the new task and existing
commitments at the sensor, which the agent must resolve lo-
cally. Importance values placed on individual commitments
allow for discrimination among them.

The data gathered from individual sensors is sent to an-

other agent (possibly the track manager itself), responsible
for fusing the data and extending the computed track (see
figure 1D). If enough measurements are performed, and they
occur within the same window of time, and the data values
returned are of high enough quality, then they are used to
triangulate what the position of the target was at that time.
This data point is then added to the track, which itself is
distributed back to the track manager to be used as a pre-
dictive tool when determining where the target is likely to
be in the future. At this point the track manager must again
decide which agents are needed and where they should scan,
and the sequence of activities is repeated.

More details on the exact mechanisms and technologies
used in this architecture can be found in the following sec-
tions.

3. IMPLEMENTED TECHNOLOGIES

3.1 Java Agent Framework

We use the Java Agent Framework (JAF) [3] as the foun-
dation to our implemented solution. JAF is a component-
oriented framework, similar to Sun’s JavaBeans technology.
The JAF framework consists of a number of generic com-
ponents that can be used directly or subclassed, along with
a set of guidelines specifying how to implement, integrate,
and use new components. Components can interact in three
different ways, each having different flexibility and efficiency
characteristics: direct method invocation, through event (mes-
sage) passing among components, or indirectly through shared
data.

JAF was designed with extensibility and reusability in
mind. The use of generic components, or derived compo-
nents with similar APIs, allows for a plug-and-play type ar-
chitecture where the designer can select those components
they need without sacrificing compatibility with the remain-
der of the system. The designer can therefore pick and
choose from the pre-written components, derive those that
aren’t quite what they need, and add new components for
new technologies. For example, generic components exist to
provide services for such things as communication, execu-
tion and directory services. In the environment presented in
this paper, special facilities are needed for communication
and execution. Derived versions of these two components
were written, overriding such things as how messages are
sent or how certain actions are performed. The communica-
tion component was also extended to provide a reliable mes-
saging service, using sequence numbers, acknowledgements
and retransmits to cope with the unreliable RF medium.
These derived components were then inserted in place of
their generic counterparts within the agent. The unmodified
directory service component can still make use of the com-
munication component, and if needed, communication can
also use the directory services. In all, 17 components were
used in the agents described in this paper: 10 were generic,
3 were derived, and 4 were new. This translates to roughly
20,000 lines of reused, domain independent code, and 8,000
lines of domain dependent code. The specific components
which were used to create the agents are: Control, Log,
State, Execute, Communicate, WindowManager, Observe,
Sensor, ActionMonitor, PreprocessTaemsReader, Directory-
Service, ResourceModeler, PartialOrderScheduler, Periodic-
TaskController, ScanScheduler, Coordinate, and AntProb-
lemSolver.

While layers of abstraction and encapsulation certainly
are not new ideas, their incorporation into this architecture
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Figure 2: An abbreviated view of the sensor initialization TAMS task structure.

is important because they both facilitate construction and
motivate reusability and clean software design. A variety of
components currently exist in JAF, providing services from
logging and state maintenance to scheduling and problem
solving.

3.2 TAEMS

TAEMS , the Task Analysis, Environmental Modeling and
Simulation language, is used to quantitatively describe the
alternative ways a goal can be achieved [1, 2]. A TEMS task
structure is essentially an annotated task decomposition tree.
The highest level nodes in the tree, called task groups, rep-
resent goals that an agent may try to achieve. The goal of
the structure shown in figure 2 is Setup-Hardware. Below a
task group there will be a set of tasks and methods which
describe how that task group may be performed, including
sequencing information over subtasks, data flow relation-
ships and mandatory versus optional tasks. Tasks represent
sub-goals, which can be further decomposed in the same
manner. Setup-Hardware, for instance, can be performed by
completing Startup, Init, and Obtain-Background-Noise.
Methods, on the other hand, are terminal, and represent
the primitive actions an agent can perform. Methods are
quantitatively described, in terms of their expected qual-
ity, cost and duration. Activate-Sector_0, then, would be
described with its expected duration and quality, allowing
the scheduling and planning processes to reason about the
effects of selecting this method for execution. The quality
accumulation functions (QAF) below a task describes how
the quality of its subtasks is combined to calculate the task’s
quality. For example, the q-min QAF below Init specifies
that the quality of Init will be the minimum quality of
all its subtasks - so all the subtasks must be successfully
performed for the Init task to succeed. Interactions be-
tween methods, tasks, and affected resources are also quan-
titatively described. The curved lines in figure 2 represent
resource interactions, describing, for instance, the produces
and consumes effects method Set-Sample-Size has on the
resource SensLock, and how the level of SensLock can limit
the performance of the method.

TAEMS structures are used by our agents to describe how
particular goals may be achieved. Rather than hard coding,
for instance, the task of initializing the sensor, we encode the
various steps in a T/AEMS structure similar to that shown in
figure 2. This simplifies the process of evaluating the alter-
native pathways by allowing the designer to work at a higher
level of abstraction, rather than be distracted by how it can
be implemented in code. More importantly, it also provides
a complete, quantitative view that can be reasoned about
by planning, scheduling and execution processes. A given

task structure begins its existence when it is created, read
in from a library, or dynamically instantiated from a tem-
plate at runtime. Planning elements are involved both in
the generation of the structure, and then in the selection of
the most appropriate sequence of methods from that struc-
ture which should be performed to achieve the goal. This
sequence is then used by a scheduling process to determine
the correct order of execution, with respect to such things
as precedence constraints and resource usage. Finally, this
schedule will be used by an execution process to perform
the specified actions, the results of which are written back
to the original task structure.

The schedules produced by individual TAEMS structures
are the building blocks for an agent’s overall schedule of ex-
ecution. A valid schedule completely describing an agent’s
activities will allow it to correctly reason about and act upon
the deadlines and constraints that it will encounter. Typ-
ically, however, schedules are only used to describe lower-
level activity - in this domain, this encompasses sensor ini-
tialization, scanning and tracking activity, data fusion and
the like. An important class of actions, so called meta-level
activity, is missing from this list. Meta-level activities are
the high-level functions which enable the lower-level activ-
ities. These include such things as scheduling, negotiation,
communication, problem solving and planning. Without ac-
counting for the time and computational resources these ac-
tions take, the schedule will be incomplete and susceptible
to failure. In this study, we have begun accounting for these
activities by including negotiation and coordination activi-
ties in our TAEMS task structures. From a scheduling and
execution perspective, a negotiation sequence is just like any
other action - it will have some expected duration and cost,
a probability of success, and some level of required compu-
tational resources. By modeling negotiation sessions as a
task structure, we are able to cleanly account for and sched-
ule the time required to perform them, thus improving the
accuracy of our schedules. In the future we will explore
additional modeling of other meta-level activities, includ-
ing planning and scheduling. We currently handle the time
for these activities implicitly by adding slack time to each
schedule. This is accomplished by reasoning with the max-
imum expected duration time for a given schedule, rather
than the average time.

3.3 Real-Time Control

The nature of this project has forced us to take a close
look all components that were part of our agent architecture
and evaluate their capability to run in real-time. Originally
our agents had just a single goal and sequential execution.
If additional goals were requested, the agent had to merge



the task structures together and then re-plan and reschedule
all the actions. This solution was expensive and slow in
dynamic environments, and thus inappropriate for our real-
time needs. We needed a new agent control architecture
that could easily incoporate new goals at any time, plan
the methods required to achieve it and integrate the new
methods in the current schedule.

While our new approach is not optimal, it does signifi-
cantly reduces the planning and scheduling overhead. Prior
work has addressed a similar problem by separating the pre-
viously integrated functionalities of planning and schedul-
ing. We improve on this technique by producing partially-
ordered schedules, rather than ones where methods are as-
signed to run at specific points in time. When a goal is
received, the planning component is in charge of selecting
the set of methods required to achieve the goal, without
dealing with the resources needed by those methods. While
the planner does have to generate a plan compatible with
criteria and constraints given by the requester, it essentially
works in an ideal world where all required resources are as-
sumed to be available. The scheduler then takes this plan
and generates a partial ordered schedule, where all prece-
dence relationships and deadlines are explicitly represented.
This partial ordered schedule differs from a linear one by
only ordering methods that have relationships between them
- no particular order is enforced between unrelated meth-
ods. The flexibility of this scheduling form is much more
amenable to future goal and method integration, as well as
facilitating rescheduling in the face of failure or exantici-
pated results. The scheduler completes by ensuring appro-
priate resources are available for methods in the schedule.

We use a resource modeler to keep track of the known re-
source uses. The partial ordered scheduler uses the resource
modeler as a database to find times available for inserting
new method in the current schedule. Once all methods of the
new plan can be merged into the existing schedule without
breaking any deadlines or constraints, the modified sched-
ule is then published inside the agent as the new current
schedule. The partial order scheduler is also responsible for
propagating constraints inside the schedule, especially dead-
line constraints. If a goal has a deadline, this deadline is
propagated to all methods involved to achieve this goal, so
every method has their own execution window in correlation
with the global goal deadline. This feature is used by other
agent components, such as those dealing with negotiation, to
compute the flexibility they have on method execution time.
The execution window is maintained as new constraints ar-
rive or are discovered, such as new goals or resource conflicts.
If a constraint is broken, for instance by an event like execu-
tion taking longer than expected, the scheduler detects the
constraint violation and delegates the problem to a conflict
resolution module that will choose between the conflicting
tasks.

Using the ordering constrainted described in the sched-
ule, the execution component can directly determine which
methods can be run concurrently. By parallelizing the ex-
ecution, we reduce the total execution time, which effec-
tively increases the agents overall work capacity. The gain
in execution time, and resulting flexibility, is also used to
address resource availability, as well as improving the like-
lihood the scheduler can accommodate real-time changes
without breaking deadline constraints. The big advantage of
the partial order scheduler is to be able to quickly shift meth-
ods’ execution order at any point in time instead of doing
costly re-planning [9]. In a real-time environment schedule

adjustments are more frequent; by not imposing unnecessary
ordering constraints on our agent’s schedule the agent has a
better chance of achieving the time, cost and quality criteria
of its goal. We also attempt to reduce scheduling overhead
by caching and reusing plans from similar task structures.

Flexibility in the schedule should propagate to the ex-
ecution subsystem. In this agent control architecture, we
augment our existing execution component by adding two
new features. First, the execution module can use the par-
tial order scheduler to get a list of all methods which can be
currently executed. The partial order scheduler will check
that all of a method’s preconditions are true before autho-
rizing the execution. The second extension allows the agent
to pause currently executing methods and to resume work
on it at a later time. This mechanism allows our agents to
suspend working on a goal if a more important one arrives.
Later, when the important goal is completed, it can resum-
ing its work on the first goal. This mechanism is very similar
to a UNIX kernel scheduling [8].

In the next section, we will describe how our negotiation
module will assign the importance values used to resolve
conflicting tasks.

3.4 Negotiation

In this environment, communication costs and time con-
straints make traditional complex negotiation difficult. On
the other hand, some type of negotiation is still needed to
effectively delegate tasks for tracking and scanning for the
target. To address these requirements, we designed a satis-
ficing negotiation protocol for periodic tasks.

In a periodic task, an instance of the task will be repeat-
edly performed over time (see Figure 3). The requesting
agent will specify the task, how frequently it should be per-
formed, and what the reference origin time is for the execu-
tion periods. The agent must then determine if it is able to
repeatedly perform the task for each period past the origin
time. Within each period, the actual execution of the task
instance can be moved around, as long as it is done once
during the specified time span. For example, if an agent
commits to a tracking task, it may be expected to obtain
tracking data in a particular sector within a window of one
secord, occuring every five seconds relative to the epoch,
until it is told to stop.

Each periodic task is assigned an importance value, to
permit discrimination between conflicting tasks. As an ex-
ample, when the sector manager creates a scan schedule, it
will assign an importance value to each scan task needed
by the schedule. The assigned value can depend on several
factors, such as the location and expected quality of a par-
ticular agent’s sensor, and the availability of other sensors
in the area. For instance, agents along the border of an area
are assigned higher importance because they are more likely
to detect new, incoming targets. We will discuss importance
values in greater detail later in this section.

Whenever possible, negotiated tasks are represented as
periodic, rather than single-shot requests. Because of the
repetitive nature of sensor data collection, the distributed
vehicle monitoring domain is particularly amenable to this
type of activity, but many other domains exhibit similar

characteristics (e.g. assembly line scheduling, producer/consumer

marketplaces). Tight communication constraints also drive
the need for this more succinct negotiation style. Were
we to start a negotiation or coordination session for each
data collection action, the cost for communication would
increase dramatically, potentially overloading the available



Period 1 Period 2 Period 3

Start Deadline ~ Start Deadline ~ Start Deadline Time

Figure 3: Periodic task example: Three periods of
a task are shown, each action of the task can be
shifted within a specified start time and deadline.

bandwidth.

One of the most interesting characteristics of a periodic
task is that its lifetime is potentially unbounded. Regardless
of our scheduling horizon, there is no way to know before-
hand whether a periodic task can be successfully scheduled
for every period. As a result, it is very difficult to reason
about whether to commit to or refuse a proposal for a peri-
odic task at the time of allocation, especially in a dynamic
environment where new tasks can arrive at any time. A peri-
odic task can be fit into the schedule for the first period does
not mean that it can be always scheduled successfully. Simi-
larly, a periodic task which cannot be scheduled for the next
few periods might work fine for later periods. Negotiation
protocols and scheduling techniques working with periodic
tasks should be able to detect and handle these situations.

We lay out the continuous negotiation protocol for peri-
odic tasks as follows. When a new periodic task is generated,
the manager starts a new negotiation session by sending a
proposal to the agent, specifying the task, its period length,
and importance value. When receiving the proposal, the
agent does a “temporary” scheduling of the periodic task
for several periods. If this task can be placed in the sched-
ule without conflict, the agent will commit to the periodic
task. Otherwise, it will either refuse right away or counter-
propose a different period for the task. The manager will
then record the commitment, consider the counterproposal,
or if a refusal is received, consider other alternatives. The
agent who has committed to the task will then attempt to
schedule for each period afterwards. If it fails to schedule
some of the committed tasks for one periodic, the agent will
compare the importance values of the conflicting tasks. The
higher importance task will win and be scheduled. For a
task of lower importance value, a negotiation subsession is
initiated. The agent will decommit this period of the task
from the manager, which is called temporary decommitment.
If an agent has decommited from a task many times, it may
realize that it is not suitable for this task any more and
will permanently decommit from the manager. The man-
ager may decide to update or remove the whole task based
on information available. When a task is removed, the nego-
tiation session is ended. The finite state machines for both
the manager and the agent are illustrated in Figures 4 and
5. We call this protocol continuous since the negotiation ses-
sion is subdivided into subsessions and continues until the
whole task is revoked.

Each subsession of the negotiation can be either single-
shot or multi-stage, depending on the context. For instance,
having received a proposal for a periodic task from the man-
ager, the agent can generate a counterproposal according to
its schedule and send it back to the manager. The manager
will then consider the counterproposal, and either accept it,
reject it, or send a new counterproposal. Similarly, when an
agent decides to temporarily decommit from a periodic task,
the manager may consider this period of the task too impor-
tant to ignore and temporarily modify the original proposal,
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to convince the agent not to decommit from this period.

We apply this protocol to our problem. The track man-
ager starts a negotiation session by sending a proposal to
the sensor agent, specifying time, period, orientation and
the importance value of the task. When the proposal is
received, the sensor agent performs some initial reasoning
and either commits to or refuses the task. A sensor agent
who has committed to the task will schedule every period of
the track task. When it fails to schedule a specific period,
the agent compares the importance values of the conflicting
tasks to determine which activity should be scheduled. It
then uses a domain heuristic to determine how failure notifi-
cation is handled. If the task of lower importance value is a
track task, it will decommit this period of the task from the
manager. If it is a scan task, the agent simply removes it
from the schedule and does not report to the manager (im-
plicit decommittal). The sensor agent sends the data back
to the target manager when the measurement is performed.
The manager decides whether an agent can still see the tar-
get or not based on the data it receives. By incorporating
other data, the manager can also predict where the target
will be. If the target is moving from the sensor’s currently
assigned sector to another, the manager will send an update
message to notify the agent of this change. If the agent can
no longer see the target, the manager will tell it to remove
the committed track task, and the negotiation session will
end.

As mentioned previously, we have currently only imple-
mented the single-shot version of the protocol. We are cur-
rently working on the multi-stage version, and will compare



its performance with the single-shot version in this envi-
ronment. The main distinction between the two versions is
negotiation over temporary decommitments. In multi-stage
negotiation, one field of interest in the decommitment mes-
sage is the conflicting importance value, which specifies the
importance value of the conflicting task. When the track
manager receives the temporary decommitment message, it
first checks to see if there are sufficient agents satisfying their
commitments. If this is true, the manager accepts the de-
commitment by doing nothing. If a deficiency is caused by
the decomittal, it will check whether there are any other can-
didates for this period of the task. If there are, the manager
will negotiate with the most appropriate one. If there are
not, it will first recompute the importance value of the pe-
riodic task, since there might have been new changes in the
environment since last time the importance value is updated.
It will then compare this new value with the conflicting im-
portance value contained in the decommitment message. If
the recalculated value is larger, it will send the updated mes-
sage to the agent with the new importance value, in hope
that the agent will decommit from the conflicting task in-
stead. Otherwise there is nothing the manager can do but
to accept the decommitment.

The backbone of conflict resolution within this protocol is
this notion of importance. The manager assignes it based on
its needs, resource availability and quality. The agent then
uses the value to choose from conflicting tasks. An impor-
tant problem is to determine how these values are specified,
and how they may change during the course of execution, to
ensure that the most appropriate tasks are being performed
at a given time.

The importance value of a scan task is initially assigned
when the scan schedule is created, and later when the man-
ager modifies the schedule because of changes of the envi-
ronment (such as agents entering or leaving). The main con-
sideration when assigning importance value to a scan task is
the absolute location of the sensor. A new target can only
enter an area from the edge, so the agents along the edge of
an area are more likely to detect new targets. As a result,
they are assigned higher importance. If the area covered
by an agent in the proper orientation can be seen by other
agents, a lower importance value is assigned, since the miss-
ing period is more likely to be covered up by other agents.
Other metrics we will incorporate in the future include the
historical quality of the tasks performed by an agent, and
its expected workload.

For a track task, the situation is a little more compli-
cated. There are two related but different characteristics:
appropriateness and importance. Appropriateness is used to
show how appropriate an agent is to perform a track task,
and enable the manager to select potential agents to per-
form the task. A target close to a sensor will both produce
better detection results, because of reduced noise, and be
less likely to leave the sensor’s range in a short time. Thus,
the closer a sensor is to the expected location of the target,
the more appropriate it is to track the target. The workload
of the agent also has impact on its appropriateness. The
lighter the workload is, the more appropriate the agent is.
The workload is calculated based on the observed duties of
the agent, including track or sector management, in addition
to tracking or scanning tasks. We also take the predicted
path of the target into account when deciding the appro-
priateness of an agent. If the target is moving toward the
agent, a higher importance is assigned to it. If it is mov-
ing away from the agent, lower importance is assigned. The

tracking history of the agent is considered as well. The more
decommitments an agent has made, the less appropriate it
will be.

On the other hand, importance indicates how important
a track task is for the agents performing the task. For the
track tasks, there are two points where importance value
may be assigned (or reassigned) to an agent: when a new
periodic track task is negotiated over, and when the man-
ager decides to convince the agent to change its mind upon
receiving a temporary decommitment from it. The latter
case never appears for a scan task, as there are no tempo-
rary decommitments for scan tasks.

The manager assigns importance value to an appropriate
agent based on three considerations: the number of candi-
dates for this task, the number of consecutive data points
having been missed for this task (i.e., the track history of
the target), and the appropriateness of the agent to per-
form the task. Normally, the more candidates are available
to perform a track task, the less important a task is for
an individual agent. If this agent is unable to do it, it is
likely that someone else would be able to, so the likelihood
that a single decommitment would cause the failure of the
overall objective is lessened. On the other hand, if only
a minimum number of agents can perform a task, each is
quite important. When a track task is initially generated
and negotiated over, there is no notion of the track history
for this target, so only the number of candidates is taken
into account. During the negotiation over the temporary
decommitments, the environment may be changed, due to
decommittals from this task period. So, the importance val-
ues for individual agents should be reassigned to reflect the
new number of working agents, which will affect how those
commitments are respected.

When negotiating over a temporary decommitment, the
track history of the target should be taken into account.
If there are already several data points missing, more de-
commitments could cause a goal failure (e.g. loss of the
target). In this situation, the manager will increase the im-
portance values based on the number of missing consecutive
data points, in an attempt to regain agents’ attention.

There are still situations where reasoning process becomes
complicated. Consider the situation when several agents
temporarily decommit from a track task for the same pe-
riod. Should the manager buffer the decommitment mes-
sages, recalculate the importance value together and make
the decision? Or should it recalculate and decide individu-
ally at the time upon receiving a message? Similarly, one
should be careful to avoid an “arms-race” among managers,
each increasing their commitment importances in response
to agent decommittals. We leave these issues as open ques-
tions.

In the future, we will extend this single shot protocol to
multi-stage negotiation. Manager-to-manager negotiation
will be added to increase efficiency in multi-linked scenar-
ios. We will also design appropriate evaluation metrics to
compare the protocols in environments possessing different
communication characteristics.

3.5 Directory Services

The generic directory service component is capable of stor-
ing arbitrary textual data. Individual entries consist of one
or more named fields, each of which will contain data. The
directory itself possesses a set of one or more descriptions,
which specify the type of data they are willing to accept.
As a directory receives an entry to be added, it checks it



against each of its descriptions, and if any match, the en-
try is added. Queries may be made to local or remote di-
rectories. The syntax for entry descriptions and queries is
the same, consisting of a series of boolean, arithmetic or
string expressions. The functionality of the directory itself
is generic, and thus can serve as the supporting structure
for a number of different directory paradigms, such as yel-
low pages, blackboards or brokers [7].

In our system, directory services are used in a yellow pages
capacity, to centralize and disseminate information, thereby
limiting the amount of communication needed to gather in-
formation. Individual agents post their capabilities to the
sector manager’s directory, which allows one to search for
agents that can scan within a specified area. This sort of
interaction is used to both construct the scanning schedule,
and determine which agents are capable of sensing a target
at a particular location. Agents also locally store descrip-
tions of the sector managers in the environment, making it
easy for them to find the managers of their own and neigh-
boring sectors.

For example, a sector manager might have several direc-
tory entries for sensors capable of scanning in its sector.
These would take the following form:

[E SA1 [Name->SA1] [Task->Scan] [R->20]
[X->10] [Y->10] [0->60] [C->1]]

This contains such information as the sensor’s name, task,
radius, x and y position, orientation and communication
channel. Later, when, for instance, a track manager needs
to determine which nodes can scan in a given region, it might
formulate the following query:

((((((20 + R) >= X) & ((10 - R) <= X)) &

((10 + R) >=Y)) & ((0 - R) <= Y)) & (Task == "Scan"))

This query matches entries who’s x,y location falls within
a given area, offset by the sensor’s radius. In this case,
it should return all sensors which are capable of scanning
within the area (10,0),(20,10). If the region in question
spanned multiple sectors, the track manager would assimi-
late the results from several queries to different sector man-
agers.

In the future we can see the role of directory services being
expanded. Directories may automatically check outdated
entries, or send updated information to agents that have
made prior queries. Directory services are also used locally
at each agent in the system, to serve as a local cache of
remote query responses.

3.6 Problem Solver

The problem solver is one of the few components in the
agent that is strictly domain dependent. Its principle pur-
pose is to coordinate the activities of the other system com-
ponents, while reasoning about the environment at hand.
For this particular problem, the problem solver we con-
structed is required to take on one or more roles, in the
environment, including sector manager, track manager, and
Sensor.

To accomplish each of these roles, the problem solver
uses a set of modified Finite State Machines (FSMs) that
known as pulse actions (PA). A PA is defined as PA =
(A,C,6,a0,F) where A is a set of actions, C' is the set of
input conditions, § : A x C — A is the transition function,
ap € A is an initial action, and F C A is the set of final
actions. For this problem, we restricted C' = N U (M x S)
where N is the set of all nonnegative integers representing
discrete time (bounded by MAX LONG), M is the set of all
message types allowed in our communication protocol and

S is a subset of the agents the multi-agent system. Actions
are by no means implied to be simple states, but are in fact
executable code meant to perform some discrete task or set
of tasks. By using this model, we are able to break the ex-
ecution of complex activities into smaller pieces, to specify
a set of conditions which must be met before execution of
an action continues, and to execute multiple actions in par-
allel. In the remainder of this section, we will employ two
notational conveniences when talking about PAs. First, all
PAs have an initiating condition, typically a message, which
spawns a new instance of the PA, and will be mentioned
in the description of the PA. This indicates that the initial
action is always the action which follows the initial condi-
tion being met. Second, we reduce the size of the PAs by
removing actions that have no executable code and combin-
ing conditions which lead to transitions from one state to the
next. In this way, we specify a set of messages that must
be received in order to make a transition from one action to
the next.

3.6.1 [Initialization

Before an agent can take on a role in the organization, it
is important to have it initialize itself. The process of ini-
tialization includes preparing the communication channels,
warming up the sensors, calculating the background noise of
the area, and registering itself with its nearby sector man-
ager(s). All of these tasks are handled by the TEMS ask
structure seen in figure 2. As you can see, we split up the
major steps of the process into tasks, while individual steps
are represented as methods.

The most notable task (and one that is not shown in the
condensed version of the initialization task structure) is that
of registering the sensor with the sector manager. This will
be discussed in the next section.

3.6.2 Sector Manager

The sector manager plays a pivotal role in the organization
of the agents in the system. It is responsible for managing
all proximal tasks which happen within its area of effect.
Because of this, the sector manager acts as a directory ser-
vice, scan manager, and target resolver. Directory services
is discussed in detail in section 3.5.

The scanning phase is used to discover new targets within
the environment. By taking agent locations into account and
using fast and cheap sensor mechanisms, high probability of
target detection can be achieved while using relatively little
power. The “scan schedule” consists of a periodic sequence
of scanning actions organizing this effort. Scan scheduling is
therfore done by evaluating where an agent lies within the
environment and the positional relationship of the agent to
other agents around it. The scan schedule is then set up by
evaluating the trade-off between discovering a new target in
a timely manner, power consumption, and potential conflicts
with existing tasks. Currently, the scan scheduler employs
a simple heuristic in making its schedule. It has each of
the agents scan in a circular pattern, activating each sensor
every 3.3 seconds. In practice this works quite well, although
work is being done to make this process more efficient.

The next major role of the sector manager is that of target
resolver. When a sensor agent detects a target, it reports
a target detection message to the sector manager, with the
observed amplitude and frequency measurements, as well as
the sector and time the detection occurred. The sector man-
ager checks two caches to see if the target is already known.
The first cache keeps a list of targets that have not yet been
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Figure 6: The target detection pulse action is used
to determine if a new track manager should be as-
signed and to whom the new role belongs.

resolved. This permits mutiple concurrent detections to be
resolved. The second cache is a time critical list of the known
location of targets being tracked in the sector. This cache
prevents two detections of the same target when they are
temporally spaced far enough apart not to be resolved by
the first cache. If the target is not resolved by these caches,
then a Target Detect (TD) PA is activated.

Before we discuss the TD pulse action, the target reso-
lution procedure should be covered. When a target is first
detected, we only have a vague notion of where the tar-
get actually is, because it takes at least three coordinated
measurements from three separate scanners to triangulate
the position of a target. Lacking this data upon initial de-
tection, we can only approximate an estimated region and
bounding circle. This approximation is later refined as bet-
ter measurements are made, although due to background
and measurement noise a bounding circle is still needed to
describe where the target is likely to be. The radius of the
circle is used as a measure of uncertainty in our understand-
ing of where the target is actually located. Each time mul-
tiple targets are resolved in the system, a check is made
to determine if their bounding circles intersect. When we
want to determine which agents are capable of sensing the
target, the directory service is queried for sensors whose ob-
servable area intersects the bounding circle. So, when the
target is first located, we assign the bounding circle that has
a center and radius which provides maximal coverage of the
sector it was discovered in, while minimizing overlap into
adjacent sectors or outside the scanning range of the agent.
It then becomes a trade-off though between falsely resolving
two targets to be the same and not resolving to targets that
should be the same.

The TD PA has three states and is responsible for deter-
mining through further scrutinization whether or not a new
detection is actually a new target, and if it is, to assign a new
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Figure 7: The track pulse action starts and monitors
the track until the target is determined to be lost. It
spawns update track pulse actions to make changes
to the sensors employed for tracking.

track manager to monitor the target (see figure 6). Action
0 is responsible for determining if the target can be resolved
by track managers. This is done by asking the track mangers
that are currently tracking targets in the sector where each
of their targets are currently located. Because the responses
to the messages are not instantaneous, the PA is sent into
a waiting state until responses are received from all of the
track managers or a timeout has occured. When all of the
messages come back, the machine goes into action 1. If there
are no track managers then the machine moves into action
2. State 1 checks all of the replies from the track managers
to see if the target is already known. Again, the new target
is given a bounding circle that is compared to the bounding
circle returned by the track manager. Track managers assign
bounding circle based on the relative speed of the target, the
direction of the target, and the last time a measurement of
the target was successfully taken. If the target is resolved,
the PA is terminated. If not, it immediately moves to ac-
tion 2. The final action, action 2, actually chooses a track
manager for the new target and sends out the notification
message. Choosing a track manager is done by finding the
agent within the sector which has the least number of task
currently assigned to it. So, if an agent is the sector man-
ager and is tracking a target, they get a score of 2. If the
agent is just scanning, they get a score of 0. The agent with
the lowest score (and therefore load) gets the job. Ties are
broken randomly.

3.6.3 Track Manager

The track manager is responsible for only one thing, man-
aging the agents that are needed to track a given target.
Because of this, the track manager utilizes information from
the sector manager (acting as directory services) and the
estimated target location to reason about which sensors to
employ in the track. The track manager is composed of two
PAs: track and update track (figures 7 and 8). The track
PA is initiated by a manage target message from the sec-
tor manager. This message includes information about the
current estimated position of the target, the time that the
target was at that location, and a list of agents that can



track the target and their estimated loads. The track PA
has three actions. The first, action 0, is responsible for de-
termining which agents actually get assigned to track the
targets as well as what sensors they should use to do it, and
how often it should be done. The first question is answer by
figuring out how important an agent might be to tracking
the target. We do this with the following formula.
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Here, Agents is the set of agents in the system, L; is the
load of the agent i, R is the scan radius of a sensor node,
D;) is the distance of the target to agent i. In the future,
we hope to employ velocity in the calculation so that if a
target is moving toward a sensor, then that sensor has a
higher importance (because it can track longer). Currently
we have a = 0.75. Once we have determined the importance
of the agents, we choose the top four agents and start a
negotiation session (see section 3.4). Periods are assigned to
the track commitment based on the estimated duration of a
track measurement with some slack time added to it. The
period slack time is chosen to allow flexiblity. This prevents
overloading of the agent and subsequent decommitments on
the tracking task when the estimated measurement time is
incorrect.

Starting the track is only a small portion of the work
that needs to be done. The remaining two actions of the
track PA monitor the status of the track. Details such as
the target’s location, direction, and speed, as well as the
agents that have decommited (explicitly or implicitly) from
their periodic tracking commitment are monitored closely
to prevent the track manager from losing the target. Action
1 monitors the target under normal conditions. Contained
within it, is the reasoning needed to determine when one
or more of the agents involved in tracking the target needs
to be changed or when the track should be terminated all
together. This action is run every three seconds as long as a
change to the tracking task is not being made. To determine
if a target is lost, the results from the agents tracking are
monitored. The criteria currently used is to check whether
or not all of the agents that have reported results in the
three second window have amplitude measurements below
the background threshold. We additionally require that at
least half of the agents must report this condition. This
means with four agents tracking, if three reported results
and none of the results exceed the background noise then
the track is dropped and the target is considered lost.

Determining how and when to make changes to the agents
involved in the track is the second part of this action. This is
done by estimating the target’s location in the future, and
then determining if the agents that are currently tracking
should continue or need to track using a different sensor.
Optimally, it would be much easier to make changes based
on the current state, but because it takes time to enact
changes, the projected location must be used. Projections
are generated based on the current location and velocity
of the target. Using this, we can derive the new location
at some time in the future. More succinctly, if we have
X, Y:, Ve, Vy: we can calculate the future position of the
target at time p as Xp, = Vo (p—t)+ Xt, Yp = Vyr x (p —
t)+Y:. In the case where the target does not change velocity
or where (p —t) = 0, we can get a very accurate position
estimate. To help deal with larger values of p — ¢ or changes
in velocity we create a bounding circle around the target
and calculate its radius to be r = B(p — t)(y/(Va? + Vyi).
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Figure 8: The update track pulse action modifies the
agents used to track a target. Note the dashed lines
indicate the pulse action being externally modified
by the track pulse action (see text).

The constant 8 is a tunable parameter that allows us to
set the amount of uncertainty in the predictive capability
of velocity on the target location. Higher values indicate
less belief in the predictive capability of current velocity,
lower values indicate more belief in the predictive capability
of current velocity. In the future we may employ methods
of changing B based on environmental conditions. Using
this estimate, our knowledge of locations of the sensor that
are being employed to track, and the location of sensors
we have previously used (not currently tracking), we create
three lists; the good list, bad list, and ugly list.

The good list contains the names of agents that are locally
known that will be able to see the target in the future and
are not currently involved in tracking the target. Agents
are only added to this list if the number of agents currently
tracking is less than the desired number. For example, if
we want four agents to track and only have three tracking
then we would add one new agent to the list. The bad list
contains the names of all of the agents that will no longer
be able to see the target if the projected position is correct.
The ugly list includes the names of all agents who must
change scanning direction in order to maintain the track
if the projected position is correct. If after analyzing this
information, the good, bad, or ugly list contains the name
of an agent then the track PA goes to action 1 and spawns
an update track PA. If the lists don’t contain a name, then
the track is presumed to be operating correctly. The track
PA waits for another 3 seconds and checks the state of the
track.

Track PA action 2 is a monitoring state that is used during
the updating of a track. Because of this, it never spawns an
update track PA. The purpose then of action 2 is to monitor
the target and ensure that the changes being applied by the
update track PA are in fact valid. If they are not, the track
PA causes the update to cease and reverses any changes that
have already taken place. The mechanisms for how it mon-
itors the changes are simple, on each check, it generates the



good, bad, and ugly lists and checks for changes between the
new list and the one being used for the update. Depending
on which action is being executed or waiting to be executed
by the update track PA and the differences in the lists, sev-
eral things can occur. For example, if an agent that was
listed on the good list is no longer on the good list, then the
update track action (if it hasn’t started negotiation) is re-
moved and the track PA transitions to action 1. Like action
1, action 2 transitions to itself on a fixed interval until the
update is concluded or a change is made to the update that
returns it to action 1.

The last of the PAs in the track manager is the update
track PA. As the name implies, this PA is instantiated when-
ever the track PA has determined that a change needs to be
made to the current tracking plan. The update track PA
consists of four actions. The first action, action 0, checks
to see if the bad list has entries. If it does, then the direc-
tory service is queried for the agents that will be able to see
the target at the future location and the PA goes to action
1. If there are no entries on the bad list then it spawns
negotiations for all agents on the good list and transitions
to state 2 at the time that the changes should be enacted
(the original projection time). So, if we were at time 2000
and projected three seconds into the future (3000), then the
actual enact time would be at time 5000. The update track
PA waits until the projection time to enact changes so that
they can be stopped if the projection is incorrect and to
allow for time to finish negotiation. Action 1 of this PA
collects the results from the directory services query and
rescores the importance levels of all agents involved in the
track. This could be considered a more global reorganiza-
tion of the tracking assets and is used to prevent multiple
small changes in the future. After the agents are rescored
then negotiation is started for all new agents being added
and the PA transitions at the enact time to action 2. Action
2 is responsible for finishing all of the changes that need to
be made to the track plan. It sends out remove messages
to agents that should no longer track the target and change
messages to agents that need to alter the sensor they are
using for tracking. Change and remove messages are consid-
ered nearly instantaneous actions are therefore not started
when negotiation for an add is done. This scheme is used to
prevent the communication expense of revoking the action if
the predicted target location is significantly wrong. The last
action of this PA is the contingency action. This action can
only be reached when the update track is waiting to transi-
tion to action 2 (enact the changes) and the track PA finds
an error in the changes that are being made. This action
is an emergency revocation of any adds that have started
and a prevention of change and remove messages being sent
out when they are no longer needed. Currently, all actions
that have begun are stopped by a transition to action 3 and
the update track PA is completely reset to action 1. In the
future, a more managed contingency plan will be developed
that will correct the execution of the update track PA and
allow it to finish completion without restarting.

3.6.4 Sensor Agent

As a sensor, the agent is only responsible for performing
scan and track tasks that have been committed to during a
negotiation with the sector and track managers. The agent
is responsible for returning results to the track manager,
for a track task, or determining if a given scan is actually a
positive detection. These tasks are all accomplished through
the use of the real time control module discribed in section

3.3.

4. RESULTS

Because the hardware version of the environment is not
directly available to us, we used a simulated environment,
called RADSIM, to develop and test our implementation.
The simulator was designed to closely emulate the actual
hardware environment and provides a common software in-
terface for our agents. We can configure RADSIM to scale
to a large number of nodes (currently we have tested up to
32) and and arbitrary number of targets (we have tested up
to 2). The target’s path can be programmed in order to test
specific aspects of our agents reasoning.

To aid in the evaluate of our results, we developed the
visualization tools seen in figures 9 and 10. The views in
figure 9 allow us to compare our measured tracks against
the actual track taken by the target. The data fusion pro-
cess interprets the amplitude values returned by the sensors
as the ring shapes seen there, and triangulation is done by
finding the strongest point of intersection among several of
those rings. A substantial portion of the uncertainty in our
solution is derived from the unavoidable noise values that af-
fect amplitude measurements. As can be seen by comparing
A and B in figure 9, the noise can dramatically shift the es-
timated location of the target, which will in turn affect both
the generated track and future sensor allocations. Figure 10
shows the target location error over time, and how closely
synchronized the agents measurements are in relation to one
another. Each “dot” in the lower half of the timeline repre-
sents a measurement which was performed. An idealized run
would have each column of dots be perfectly aligned, which
would represent measurements that were completely syn-
chronized. As you can see, our measurements are relatively
aligned - each contained within a roughly 500ms window,
which is sufficiently synchronized for our purposes. These
tools allow us to easily and quickly evaluate changes that
made to the underlying architecture.

To test how well our system performs, we ran 600 test runs
of 8 minutes each while varying the reliability of communi-
cations. We chose to vary reliability of communication as a
way of seeing how our system adapted to changing timing
conditions and increased uncertainty in the actual time of
a task will take to be completed, due to the potential need
to retransmit information. We used four agents running on
Pentium IIT PCs of varying speeds. The simulator ran on a
separate machine to prevent an agent process from slowing
the simulator down. The target’s specified track can best be
described as a diamond in the center of the environment (see
figure 9A). The sensors were positioned in the environment
such that they had overlapping coverage in the center of the
environment.

A summary of the results of our testing is shown in figures
11A, 11B, and 11C. As expected, as communication loss in-
creases, we observe an increased RMS error of the actual
versus estimated track location, a measure of how different
the two tracks are. As communication loss increases, the
number of measurements successfully sent from the agents
to the track manger decreases. We see the exponential in-
crease in error because the track manager fails to achieve
the three synchronized measurements needed to triangulate
often enough. In fact, if you look at figure 11B, you can
see that the average time between updates of the track posi-
tion increases at a functionally equivalent rate. One positive
aspect of the tests can be seen in figure 11C. This figure
shows the average duration between the earliest and lat-
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Figure 9: The track visualization tool gives information about estimated target location versus the actual
target location. A shows the actual amplitude rings returned by the sensors, B shows the same rings without

the effects of noise.
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Figure 10: Target location error (top) and agent synchronization (bottom) over time.

est measurement used to do a triangulation which we call
the update window. Note that as communication becomes
more restrictive, the update window does not significantly
increase. This is testament to the ability of periodic commit-
ments to operate in a communication degrades environment.

There are a number of interesting metrics that we have not
included at this time. For example, we would like to make
a comparison of the sensor utilization versus the number of
the targets within the environment. In addition, we would
like to explore how communications is utilized as the number
of agents increases. Both of these metrics are central to the
goal of the project and will be available when we scale up
the system.

We also conducted testing of our system on hardware.
For the hardware test, we used a configuration with four
sensors (figure 12A) on the corners of a 10 by 12 foot rect-
angular area. Each of the platform had one of its sensors
pointed directly toward the center of the area. For a target,
a model railroad train with a copper radar reflector (used to
increase the signal to noise ratio) was employed. The train

was placed on an oval 9 by 6 foot track and operated at a
speed of about one foot per second (See figure 12B). The
sensors were connected to Pentium computers operating at
various speed from 333MHz to 460MHz. The agents were
started and after a one minute calibration time, the target
was put in motion. We ran the target for approximately two
minutes before concluding the test.

The results for these tests were mixed. We found that
after some initial calibration of the expected run times for
methods on the hardware, we were able to synchronize the
agents almost as precisely as on the simulator. This showed
to us that our architecture was capable of operating in a real
time environment as the simulator predicted. Unfortunately,
we were not able to track the target as accurately as we had
on the simulator. We are currently investigating the reason
for this but believe it may be simply due to a incorrect sensor
calibration.

4.1 Visualization Tool
The visualization tool graphically shows how the agents
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Figure 11: Performance results from 600 eight minute trials with varied communication reliability.

Figure 12: A: The hardware sensor platform. B:
The mobile target used in hardware tests.

are performing and the results of their coordinated actions.
Two different log files are kept while the system is running.
One file records the true location of the target when it was
detected by a sensor. The other file records the details about
each measurement taken, and how it was used to calculate
the location of the target.

When the tool is run, two graphs are displayed on the
screen (Figure 9 & 10). The first display shows the track of
the target as estimated by our agents and the actual track
of the target if that information is available. One can step
through each measured target location to get information
like the X and Y coordinates, velocity, measurement values
returned by the sensors, and its distance from the actual lo-
cation of the target. There are also many overlays available
that present additional information:

1. Amplitude rings - The amplitude value returned by
the sensors represents an arc along which the target
resides. This overlay shows what the sensor measured
minus the background noise. See Figure 9A.

2. Perfect amplitude rings - These amplitude rings are
what the sensors should have reported had there been
no noise in their measurement. See Figure 9B.

3. Velocity - This overlay adds the velocity vector to each
of the data points, both real and measured. It allows
one to see the direction and speed of the target at each
point.

4. Connect-the-dots - This draws a line between each
point and the following point to help illustrate the path
of the target.

Figure 10 shows error over time and synchronization of
the agents. Both graphs share the X-axis, which is time in
seconds. The upper graph plots the points where enough
data had been collected to estimate the location of the tar-
get. Its Y-axis is the error in feet from the actual location

of the target. The lower graph plots the measurement times
for each agent. That allows one to quickly examine the syn-
chronization achieved between agents. Using the two graphs
together, one can start to correlate agent synchronization
with error in target location. This graph is also very use-
ful in lower-level debugging showing where problems occur,
which can then be examined in the more detailed log files
for more information.

S. FUTURE WORK

There are an abundance of areas for future exploration in
this domain. We are currently exploring the effects induced
by the scale of the system, first addressing scenarios with
six and later 32 sensor nodes. In these scenarios we must
evaluate both how the system scales in general, and how it
handles the nuances that come with these larger areas (i.e.
boundary cases for object detection, the potential for com-
munication degradation over distance). We also will explore
new, more sophisticated negotiation strategies, and investi-
gate how the details of our organizational design should be
implemented when dealing with larger roaming areas. Mul-
tiple targets will be added to the environment, increasing the
probability of conflicting, high-importance commitments. In
other scenarios the sensor platforms themselves will become
mobile, sensors may fail or be added during runtime and the
sensors may be jammed by adversaries in the environment.

6. CONCLUSIONS

In this paper we have described our solution to a real-time
distributed tracking problem. The environment is first par-
titioned, reducing the level of potential interaction between
agents. Within each sector, agents dynamically specialize to
address scanning, tracking, or other goals. The agents must
reason within a resource and communication-constrained en-
vironment, handling uncertainty in measurements, timing
and coordination. We have successfully demonstrated our
approach in both simulation and actual hardware.

A number of interesting technologies used by our agents
or implemented for this problem were described. The JAF
agent framework was used to implement the agents, allowing
the reuse of a large code base, in addition to facilitating the
construction itself. TAEMS was used to provide agents with
domain problem solving knowledge, and to model the costs
of meta-level activities. Our control architecture, including
the DTC [10]planning component, partial-order scheduler,
and resource modeler, enabled the agents to function effec-
tively in a real-time environment. Negotiation, using peri-
odic tasks capable of temporary decommital and updates,



was used to disburse tasks to agents and synchronize their
activity without significant use of bandwidth. Finally, the
directory service component provided a simple way of keep-
ing information up to date and getting that information to
the agents that needed it.

Our results indicate that our architecture is robust enough
to operate in both simulated and real world environments.
They also indicate that using a continuous negotiation pro-
tocol for periodic commitments may in fact provide the nec-
essary framework for handle the difficulties associated with
a real-time distributed resource allocation problem in a com-
munications degraded environment.
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