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Abstract

Our goal is for robots to learn conceptual systems
sufficient for natural language and planning. The
learning should be autoromous, without supervi-
sion. The first steps in building a conceptual sys-
tem are to say some things are alike and others
are different, based on how an agent interacts with
them, and to organize similar things into classes or
clusters. We use the BcD algorithm for clustering
episodes experienced by our robots. The clusters
contain episodes with similar dynamics, described
by Markov chains.

1 Introduction

Picture yourself in a room illuminated only by a computer
screen, onto which bit strings flash, two or three a second,
for a few seconds at a stretch. After a few moments of this,
the screen goes blank, until it starts up again with another
sequence of bit strings. Your task is to make sense of the bit
strings. Being human, you wonder what they mean. You try
to work out how they might refer to your own experiences.
You ask where they came from and what kind of process
generated them. But your questions lead nowhere, so lack-
ing a stronger model, you decide to analyze the bit strings
as tokens generated by a very simple machine, a Markov
chain. You treat each unique string as a token and tabu-
late the transition probabilities between them. And then
you cluster the sequences of tokens into groups with similar
transition probabilities. At the end of the day, you have
your answer: Although the machine has generated several
hundreds of sequences of bit strings, none identical, only five
clusters emerge. Whatever process is generating the data,
at some level of abstraction it seems to be doing only five
qualitatively different things.

We have just dwcribedae world as experienced by a Pi-
oneer 1 robot. As it does things in the laboratory — pushing
a toy cup, passing another, picking up a block — its percep-
tual system produces propositions such as (CBJECT A RED)
and (APPROACH ROBOT A). By design, we know what these
propositions mean but the robot does not. They might as
well be structures of gensyms. Two or three times a sec-
ond, the perceptual system produces a set of propositions
to describe the current state. Every few seconds, the robot
stops doing whatever it was doing and starts something else.
In the current work, we mark these episode boundaries for
the robot, although we are developing an algorithm to find
episode boundaries automatically. Episodes, then, are time
series representations, grounded in sensory data, of robot ac-
tivities. The problem for our robot, and the focus of much
of our research, is to learn enough about its activities and
the objects in its environment to support planning and nat-
ural language dialog with humans (2, 3, 12, 11, 14, 16]. This
paper describes an essential early step in the robot’s concep-
tual development: Clustering episodes by their dynamics.

Once the robot has identified clusters — once it knows that
these episodes are similar and those are not — it can search
for explanations, in particular, it can look for attributes of

episodes that predict cluster membership, .
We have developed a Bayesian algorithm for clustering

episodes described by logical proposition. In this work,
dynamics are captured in first-order Markov chains (see
[14, 12] for other approaches) and the clustering algorithms
puts together episodes that are likely to be generated by
the same process. Although a Markov chain is a very sim-
ple descriptions of a dynamic process, the algorithm, called
Bayesian Clustering by Dynamics (BcD), has been applied
successfully to cluster robot experiences based on sensory
inputs [17, 19], simulated war games [18], as well as the be-
havior of stocks in market and the fugues of Bach.

2 Bayesian Clustering by Dynamics

The BeD algorithm is easily sketched: Given time series of
tokens that represent states, construct a transition probabil-
ity table for each series, then measure the similarity between
each pair of tables to decide which tables try to cluster first,
and finally group similar tables into clusters if their grouping
increases a scoring metric. The clusters found by the BCD
algorithm have the interesting property that they comprise
a clustering with maximum posterior probability.

2.1 Estimating Markov Chains

Suppose we observe a time series S =
(z0, T1, T3, ..., Ti—1, Ti, ..), Where each z; is one of the states
1,...,8 of a variable X. In the current work, z; is a set of
propositions generated by the robot’s perceptual system at
time 4, such as ((MOVING-FORWARD R) (IS-RED A)). The
process generating the sequence S is a (first order) Markov
chain if the conditional probability that the variable X vis-
its state j at time ¢, given the sequence (zo, 21,22, ..., Z¢-1),
is only a function of the state visited at time ¢ — 1. Hence,
we write p(X; = j|(zo, Z1,%3, .., Zt-1)) = p(Xe = jl2e-1),
where X; denotes the variable X at time ¢. e
Markov chains can be represented as a probability dis-

tribution over the possible initial states of the chain and
a table P = (p;;) of transition probabilities, where p;; =
p(X: = j|X¢-1 = i) is the probability of visiting state j
given the current state i. Given a time series generated from
a Markov chain, we might estimate the probabilities of state
transitions X; = j|X;-1 = i from the data as p;; = n;;/ni,
where n; = ). nij and n; is the frequency of the transitions
X: = j|X¢-1 = i observed in the time series. Instead we
prefer a Bayesian estimate in which prior information about
transition probabilities can be taken into account. The prob-
ability p;; is estimated as pi; = (aij +n4;)/(a: + n:), where
ai = ). ai; and the so called prior hyper-parameter a;;
can be tfmught of as the prior frequency of the transition
Xt = j|X:i-1 = i, thus encoding prior knowledge about the
process [17). This estimate is a posterior probability in the
sense of being estimated from prior information a;; about



the transition X; = §)X;-1 = ¢ and the observed frequency
ni; of the transition. Thus, a; and n; are the numbers of
times the variable X visits state  in a process consisting of
« and n transitions, respectively.

2.2 Clustering

The story so far has the robot engaging with its environ-
ment in episodes of a few seconds duration. Each episode is
a time series S; of sets of propositions, and each time series is
transformed into a Markov chain as described above. Now,
given the set of Markov chains, the BCD algorithm is ready
to cluster the series in the set S = (Sk). The BCD algorithm
is agglomerative, which means that, initially, there is one
cluster for each Markov chain, then pairs of Markov chaing
are merged, iteratively. Merging two Markov chains yields
another Markov chain and so on until a stopping criterion
is met. Both the decision about whether to group Markov
chains and the stopping criterion are based on the poste-
rior probability of the clustering, that is, the probability of
the clustering conditional on the data. Two Markov chains
are merged if doing so increases the posterior probability of
the clustering, and the algorithm stops when the posterior
probability of the clustering cannot be improved. In fact,
BCD performs 3 hill-climbing search through the space of
clusterings, so it yields a locally-maximum posterior proba-
bility clustering. More precisely, it produces a partition —
a division of the episodes into mutually exclusive and ex-
haustive subsets. BCD’s task is to find a maximum posterior
probability partition of Markov chains. Said in yet another
way, BCD solves a Bayesian model selection problem, where
the model it seeks is the most probable partition of Markov
chains given the data.

The number of possible partitions grows exponentially
with the number of Markov chains, S0 BCD cannot evalu-
ate them all in its search for the most probable partition
given the data. A heuristic method is required to make
the search feasible. A good heuristic is merge or agglomer-
ate similar Markov chains. What makes two Markov chains
similar? The measure of similarity that BCD uses is there-
fore an average of the Kulback-Liebler distances between
row conditional distributions. Iteratively, BCD computes the
set of pairwise distances between the transition probability
tables, sorts the generated distances, merges the two clos-
est Markov chains and evaluates the result. Note that the
similarity measure is only a heuristic guide for the search
process rather than a grouping criterion. The evaluation
asks whether the resulting model M., in which two Markov
chains are merged and replaced by the resulting Markov
chain, is more probable than the model M, in which these
Markov chains are different, given the data S. If the proba-
bility p(M¢|S) is larger than p(M,|S), BCD updates the set
of Markov chains by replacing the two Markov chains with
the cluster resulting from their merging. Then, BCD updates
the set of ordered distances by removing all the ordered pairs
involving the merged Markov chains, and by adding the dis-
tances between the new Markov chain and the remaining
Markov chains in the set. The procedure repeats on the
new set of Markov chains. If the probability p(M;|S) is not
larger than p(M,|S), BCD tries to merge the second best, the
third best, and so on, until the set of pairs is empty and, in
this case, returns the most probable partition found so far.
The rationale for this search is that merging similar Markov
chains first should result in better models and increase the
posterior probability sooner. Empirical evaluations of the
methods in simulated data appear to support this intuition
[17). Further details are in [17] and [18].

8 Clustering Robot Experiences

The robot in these experiments is a Pioneer 1 platform.
All told, the robot generates roughly 40 time series of real-
valued sensor data, sampled at 10Hz. In previous work we

showed how to cluster episodes described by raw sensor data
[19, 12, 16, 14, 15]. In this work, we cluster time series
of propositions returned by a rudimentary perceptual sys-
tem. One reason is that we overload the clustering algorithm
when we force it to both resolve the ambiguity in sensory
data — the job of perception — and find similarities in time
series. The robot’s perceptual system is a work in progress,
but for our most recent experiments, it could describe the
state of the world with up to 47 propositions at any instant.
The state space for the robot may therefore be represented
as a bit string of length 47. Each unique bit string rep-
resents a unique combination of propositions; for example,
LEFT-0F A B, IS-RED A, IS-ORANGE B is one such string,
in which three bits — corresponding to these propositions
— have the value 1 and the rest have value 0. Although the
state space is 247, in practice the robot encounters only a
few of these states, and in this experiment encountered only
40. Because the robot encountered only 40 unique states,
BCD can represent each episode as a transition probability
table of size 40 x 40. For example, in the first ten steps of
an episode, one sees six unique states, described in Table 1.

Episodes in the experiment were “set pieces” in which
the robot executed a simple program in an environment
controlled by us, such as moving forward past one object
and bumping into another. Each episode lasted between
two and eight seconds. Three replications, with different
starting locations for the robot and objects in its environ-
ment, were run for each of the scenarios described in Table
2. Of course, the robot cannot group and differentiate these
episodes based on what we call them, it must do so based
on its perceptions during the episodes. BCD produced a par-
tition of six clusters for these episodes that is displayed in
Table 3. The numbers in parentheses refer to the replications
of episodes; for instance, the first cluster contains all three
replicates of PUSH-C and APPROACH-C, whereas the second
cluster contains one of the three replicates of PASS-RIGHT-C.
Clusters 3 and 4 each contain the replicates of just a single

activity, whereas Clusters 5 and 6 contain several activities.
How should we evaluate this partition? Let us note, first,

that it was produced by a single run of BCD, with no ef-
fort to tune the o parameter, or clean up the perceptual
data, or to “help” BCD in any way. BCD did not produce
14 clusters (corresponding to the 14 scenarios in Table 2),
but instead grouped some activities together. For example,
Cluster 4 contains four activities in which the robot moved
toward object A. Sometimes it stopped short of the object,
sometimes it passed the object (on the left or right), and
sometimes it pushed the object. It is not surprising, nor
particularly disappointing, that BCD grouped these activi-

"Notice that some states are physically impossible; for example,
in the fifth state in Table 1, the robot is apparently receding from an
object and stopped. The perceptual system is imperfect and has no
“common sense® about the world, so it not infrequently constructs
impossible state descriptions.

((STOP R) (IS-RED A))

((STOP R) (IS-RED A))

((APPROACH A R) (STOP R) (IS-RED A))
((STOP R) (IS-RED A))

((RECEDE A R) (STOP R) (IS-RED A))
((IS-RED A))

((MOVING-FORWARD R) (IS-RED A))
((MOVING-FORWARD R) (IS-RED A))
((MOVING-FORWARD R) (IS-RED 1))
((MOVING-FORWARD R) (IS-RED A))

Table 1: An example of propositions returned by the per-
ceptual system of the robot.



APPROACH-A

PASS-RIGHT-A
PASS-RIGHT-A-THEN-PUSH-C
PASS-RIGHT-C-THEN-PASS-RIGHT-A
PASS-LEFT-A
PASS-LEFT-A-THEN-PUSH-C
PASS-LEFT-A-THEN-PASS-LEFT-C
PASS-LEFT-A-THEN-PASS-RIGHT-C
PASS-LEFT-C-THEN-PASS-RIGHT-A
PUSH-A

APPROACH-C
PASS-RIGHT-C

PASS-LEFT-C

PUSE-C

Table 2: Scenarios used in the experiment.

Cluster 1 PUSH-C (1 2 3)

APPROACH-C (1 2 3)

Cluster 2 PASS-LEFT-C (1 2 3)
PASS-RIGHT-C (1)

Cluaster 3 PASS-RIGHT-A-THEN-PUSH-C (1 2 3)

Cluster 4 PASS-RIGHT-C-THEN-PASS-RIGHT-A (1 2 3)

Cluster 6 APPROACH-A (1 2 3)
PASS-RIGHT-A (1 2 3)
PASS-LEFT-A (1 2 3)
PUSH-A (1 2 3)

PASS-LEFT-C~-THEN-PASS-RIGHT-A (2 3)

Cluster 6 PASS-LEFT-C-THEN-PASS-RIGHT-A (1)
PASS-RIGHT-C (2 3)
PASS~LEFT-A-THEN-PUSH-C (1 2 3)
PASS-LEFT-A-THEN-PASS-LEFT-C (1 2 3)
PASS-LEFT-A-THEN-PASS-RIGHT-C (1 2 3)

Table 3: Clusters produced by the BCD algorithm.

ties together, as they share similar dynamics: they all begin
with approaching the object.

The disappointment is that BcD included
PASS~-LEFT-C-THEN-PASS-RIGHT-A (2 3) in Cluster

5, where they clearly do not belong. The story for Cluster 6
is similar: Three of the activities (and nine of the episodes)
involve passing A on the left and then interacting with C,
but one episode, PASS-LEFT-C-THEN-PASS-RIGHT-A (1)
doesn’t belong. The remaining two episodes, PASS-RIGHT-C
(1 2), have similar dynamics to the latter phase of
PASS-LEFT-A-THEN-PASS-RIGHT-C (1 2 3), so grouping
them in Cluster 6 is not incorrect. As to Cluster 1, pushing
C involves first approaching it, so grouping these activities
together makes sense. Lastly, Cluster 2 is “pure” but for
the inclusion of PASS-RIGHT-C (1). In sum, we would have
been happier had the activities in Clusters 5 and 6 not been
grouped together, and we have identified four episodes (out
of 42) that clearly do not belong in the clusters to which
they were assigned, but on the whole, the partition above

is satisfactory.

In a followup analysis, we ablated the state descriptions
and re-ran BCD, to see how much the partition depended on
particular propositions in the state descriptions. For exam-
ple, we removed the propositions IS-RED X and IS-ORANGE
X and re-wrote the affected state descriptions (so the state

((APPROACH R A) (IS-RED A)) becomes (APPROACH R A)).
Similarly, we removed the propositions MOVING-BACKWARD R
and MOVING-FORWARD R. In these analyses, BCD did not pro-
duce partitions of the episodes identical with the one above,
but many of the clusters’ substructures were maintained.
For example, after removing propositions about color, BCD
grouped together the elements in Clusters 1 and 3, above. It
also formed a new cluster from PASS-RIGHT-C (1 2 3) and
PASS-LEFT-A (1 2 3) episodes, which seems odd, although
part of the explanation is that the robot identifies objects A
and C by color, so with color terms gone, it confuses activi-

ties with objects A and C. . .
‘We have used BCD in other experiments with the robot,

with similar results — it groups together instances of activ-
ities, and groups activities that share components such as
approaching an object — and we have also used it to cluster
simulated engagements in a wargame simulator [18], as well
as time series of financial instruments, and Bach’s fugues.
In all these cases, we have been pleased with the results,
but we recognize the need for more objective evaluation cri-
teria. Generally it is difficult to say whether a partition of
episodes is correct: Even if a gold standard partition exists
for a given problem (and it doesn’t in these experiments),
we would need a metric that accounts for partially matching
the gold standard. A different approach would be to assess
whether a partition leads to good or poor results when it
is used for some purpose, such as classification or another
predictive task. But as yet, we have not put the robot’s
clusters to use in the life of the robot.

4 Related Work

At first glance it may appear that BCD and Hidden Markov
Models (HMMs) are similar technologies, and indeed we
have used HMMs for some robot learning tasks [4], but
they are quite different. A HMM is a state machine with
transition probabilities between states and each state has a
probability distribution over the tokens it emits [13]. HMMs
are trained with time series (univariate or multivariate, con-
tinuous or categorical), which means the probability distri-
butions within states and the transition probabilities be-
tween states are estimated. One must specify the number
of states in advance, although the algorithm in [4] dynami-
cally splits HMM states in accordance with a minimum de-
scription length principle. Might one use HMM technol-
ogy to find maximum likelihood partitions of time series,
as BCD does? This problem would have to be transformed
into one of finding the probabilities of emitting tokens and
transition probabilities in a model of a specific number of
states. An obvious choice would be to fit one HMM with n
states to each episode with n unique states, then cluster the
HMMs, but it is unclear what advantage this holds over our
current method of estimating Markov chains and clustering
them. Another idea is to have each state represent a cluster
of Markov chains. The difficulty is that, within an HMM
state, one can only model the marginal probabilities of to-
kens, not the conditional probability of a token given the
previous token. These conditional probabilities are modeled
as state transition probabilities in HMMs, which means that
an episode must be modeled as a sequence of HMM states,

not as a single state. . .
The Bayesian modeling-based approach used in BCD is

similar to that used, for example, by Raftery [5] to cluster
static data. Recent work [20] attempted to extend the idea
to dynamic processes without, however, succeeding in find-
ing a closed form solution as the one we have identified.An
important attribute of our method is its heuristic search,
which makes the algorithm feasible. BCD is similar in some
respects to other algorithms for clustering time series de-
veloped in our lab. To assess the dissimilarity of a pair of
multivariate, real-valued time series, Qates applies dynamic
time warping to force one series to fit the other as well as
possible; the residual lack of fit is a measure of dissimilarity,



and with this, Oates can cluster episodes [12]. Rosenstein
solves the problem by first detecting events in time series,
then measuring the root mean squared difference between
values in two series in a window around an event [14, 15).
It is worth noting that these methods and BCD handle time
very differently. In Rosenstein’s method, two time series
are compared moment by moment for a fixed interval. In
Oates’s approach, one series is stretched and compressed
within intervals to make it fit the other as well as possible.
The former method keeps time rigid, the latter makes time
elastic. We are beginning a study of the relative strengths
and weaknesses of these methods on several kinds of time
series.

5 Conclusion

Our goal is for robots to learn conceptual systems suffi-
cient for natural language and planning, without supervi-
sion. By conceptual systems, we mean organizations of
concepts that denote activities and objects in the robots’
world; and knowledge about how activities unfold, and the
roles that objects play in activities. With Lakoff and oth-
ers [9, 8, 10, 7, 21, 6, 22, 1] we assert that the first step
in building a conceptual system is to say some things are
alike and others are different, based on how we interact with
them, and to organize similar things into classes or clusters.
BCD organizes the robot’s activities into clusters.The next
step, currently underway, is to organize the objects in the
robot’s environment into clusters based on their roles in ac-
tivities. Once we have clusters of activities and objects, we
will apply standard classification algorithms such as c4.6
to find the attributes of activities and objects that predict
cluster membership.
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