Generic Multicast Transport Services: Prototype
Design and Implementation

CMPSCI TR 00-53

Jonathan K. Shapiro Don Towsley
Brad Cain
Department of Computer Science
University of Massachusetts at Amherst
{jshapiro, towsley }@Qcs.umass.edu

November 9, 2000

Abstract

The difficulty of implementing scalable multicast transport protocols under the
standard IP multicast service model has engendered proposals to address the problem
inside the network by deploying advanced services in routers. Generic Multicast Trans-
port Services (GMTS), proposed by Cain and Towsley, is one example of this approach.
GMTS is a set of simple filtering and subcasting services for source-based multicast,
which can be used by protocol designers to improve scalability by supressing redundant
feedback and isolating transmissions to subsets of a multicast group. For such services
to be deployable in the internet, it must be possible to implement them simply in real
routers with a minimal performance impact on existing traffic. To understand poten-
tial implementation issues, we have constructed a prototype GMTS router. This work
presents a description of the implementation along with a preliminary performance
evaluation aimed at understanding the overhead providing such services imposes on
the router, itself. We also present some lessons learned and offer recommendations for
addressing implmentation concerns in future versions of the GMTS specifications.

1 Introduction

The development of scalable end-to-end multicast protocols poses a tremendous challenge
to network protocol designers. For example, the development of reliable multicast protocols
has received considerable attention in recent years. Many protocols based on an end-to-end

solution [4, 7, 9] have encountered problems scaling to hundreds, much less thousands, of

receivers. The primary obstacles to the development of scalable protocols have been feedback
implosion and transmaission isolation. The first of these concerns the difficulty for a large
multicast application to limit feedback from receivers to a data source or to each other. The
second concerns the difficulty of limiting the transmission of data to the subset of a multicast
group that requires it. This type of restricted transmission is known as subcasting.

There have been several proposals for adding functionality to routers for the purpose
of improving the performance of multicast applications, particularly reliable multicast. Pa-
padopoulous and Parulkar [8] introduced additional forwarding functionality to a router
which would allow each router to identify a special outgoing interface over which to transmit
a particular class of packets. They showed that this turning point functionality could be
used to improve the performance of reliable multicast protocols. Levine and Garcia-Luna-
Aceves [6] proposed the addition of routing labels to routing tables, which could be used to
direct packets over specific interfaces. One of these, called a distance label, was shown to be
quite useful in reliable multicast for directing requests for repairs to nearby repair servers.
The third and, perhaps most relevant proposal is the PGM protocol [3]. PGM is a reliable
multicast protocol which uses negative acknowledgements (NAKs). The PGM protocol is an
end-to-end transport protocol that contains a router component to perform NAK suppres-
sion and provide retransmission subcasting functionality. GMTS is especially motivated by
PGM and the recognition of utility in exporting a set of flexible, simple router-based func-
tionality (such as was used to implement PGM) for the purpose of protocol design. Such
router support greatly simplifies the design of a large class of scalable multicast transport
protocols. Recognizing the general usefulness of the PGM NAK suppression and subcasting
mechansims, Yano and McCanne have recently advocated a generalization that integrates
such mechansisms into the IP multicast service model [10].

In previous work, Cain and Towsley [1, 2] introduced Generic Multicast Transport Ser-
vices (GMTS) to help protocol designers deal with scalability problems. GMTS generalizes
many of the ideas contained in PGM, making a set of generic services available to support a
wide range of multicast transport protocols. These services are designed to assist the large-
scale collection of receiver feedback information and provide subcasting services for large

multicast groups. They consist of simple filtering and aggregation functions residing within

routers and can be invoked from the edges of the network. GMTS services are implemented
at the IP layer and provide unreliable best effort services. Transport protocols that make
use of GMTS must be robust in the face of failures and in the absence of GMTS-capable
routers in the network.

Since GMTS is not intended to provide sophisticated services which are difficult or im-
possible to implement in routers, our present work is aimed at exploring some of the im-
plementation issues and demonstrating how GMTS services can be introduced in a router.
To this end, we have constructed a prototype GMTS router and implemented a subset of
the proposed GMTS services. In this paper, we describe the prototype design, evaluate its
performance at modest loads, and review some of the lessons learned in its implementation.

The rest of this paper is organized as follows. In Section 2, we review the GMTS specifi-
cation, paying particular attention to those features we have implemented in the prototype.
We present the prototype design in Section 3, including a description of a daemon that pro-
vides the bulk of GMTS functionality and a set of minimal kernel modifications necessary
to support the daemon. Sections 4 and 5 describe the implementation of a simple reliable
multicast protocol and presents a limited evaluation of performance primarily aimed at es-
tablishing the correctness of the protocol and measuring the overhead required for GMTS
processing at the router. We conclude in Section 6 by reviewing the lessons learned in
the process of implementing the prototype and suggesting a few minor modifications to the

GMTS specification.

2 (Generic Multicast Transport Services

The services provided by GMTS are designed to operate over the unreliable IP multicast
protocol. A GMTS transport session is built on top of a multicast session between a single
source and multiple receivers. In addition to maintaining the routing state ordinarily associ-
ated the session, GMTS-capable routers on the multicast tree also maintain a set of GMTS
objects. The session source is responsible for setting up these objects and periodically re-
freshing their state. Object methods can be invoked by either sender or receiver as needed

to implement transport protocols. The GMTS specification includes a signaling protocol

to construct and invoke methods on objects in the network, and a collection of predefined
object types.!

The GMTS signaling protocol is used by hosts to set up and invoke the provided services.
A session source first initializes one or more desired services by sending a GMTS setup
message to the multicast group address. GMTS-capable routers on the tree then aggregate
feedback from receivers and isolate transmissions through the use of filters set by either the
sender or the receivers. For robustness, the source periodically retransmits the setup message
to refresh GMTS state in the face of routing changes and other possible errors. It should
be stressed that GMTS services are only invoked for these signaling packets, which account
for a small fraction of the total session traffic. Data packets are treated no differently from
ordinary multicast traffic.

It is worth emphasizing that, while GMTS objects may be created within the network
at the discretion of the session source, the specific functionality of GMTS objects is defined
by the GMTS specification. GMTS does not permit the execution of arbitrary user-defined
functions uploaded to routers. At present, only one object type has been defined. As has
been shown elsewhere [1] this so-called General Purpose Object (GPO) can be used quite
flexibly to implement a variety of multicast transport protocols.

The job of a GMTS-capable router is to process the signaling protocol and implement
the functionality of of the objects defined by the GMTS specification. In Section 3 we will
describe how we implemented a prototype GMTS router. Before we present our prototype
implementation, however, we will present the GMTS signaling protocol and General Purpose

Object specifications in more detail.

2.1 GMTS Protocol

The GMTS signaling protocol introduces two special packet types: A state setup packet
(SSP) for declaring and initializing objects, and a method invocation packet (MIP) for re-
motely executing methods on objects. These signaling packets are trapped by GMTS routers

! Although GMTS currently only defines a single, highly flexible, object type, the protocol is capable of

handling multiple object types as more services are proposed.

for special processing.

An SSP is multicast by the sender to the multicast group. As it traverses the multicast
distribution tree, it is trapped by all GMTS-capable routers. Each router creates objects
corresponding to the declaration within the SSP if the objects do not yet exist, and then
forwards the packet. The second purpose of the SSP is to inform a GMTS router of the
address of the next upstream GMTS router. This information enables GMTS sessions to
send signals along the reverse multicast routing path via unicast, bypassing intervening
routers that do not support GMTS.

To maintain robustness in the presence of changes in the multicast tree topology, the
sender periodically rebroadcasts SSPs. GMTS routers that were on the original tree use
these packets to refresh the state of existing objects, and new objects are created along new
branches. A soft state mechanism controls object lifetimes so that objects residing on pruned
branches eventually time out and are removed by their routers.

GMTS supports both reliable and unreliable method invocation through the use of MIPs.
Each MIP identifies the methods to be invoked along with any required parameters. In ad-
dition, a MIP may include data. MIPs are primarily used by receivers to invoke object
methods. These methods typically alter the state of the objects or perform feedback ag-
gregation. Senders may also invoke methods. Each MIP contains one or more method
invocations and may invoke methods on multiple objects. Methods are invoked in the order
in which they appear in the packet. The presence of multiple methods in a packet does not
imply a guarantee of atomicity—the methods are invoked as if each arrived in a separate
packet.

To get an intuition of how methods may be invoked to implement a protocol, consider
a very simple reliable multicast mechanism. Receivers might invoke a method to signal a
negative acknowledgment (NAK) during a reliable multicast session. A sender would invoke
a different method to send the corresponding repair packet. The first method propagates
toward the source altering the state of objects in its path. The second method propagates
down the tree along the paths defined by the object state, resulting in a repair packet arriving
at each requesting receiver. We will return to this example throughout this discussion, filling

in details to illustrate exactly how GMTS makes such a protocol possible.

2.2 GMTS Objects

The intention behind GMTS is to define a small set of specific object types that are suf-
ficiently general to support a wide range of transport protocols and whose functions can
be easily implemented in routers. The current GMTS specification defines a single object
type,the General Purpose Object (GPO), which provides basic feedback suppression and sub-
casting services. The GPO methods and data members are well-documented elsewhere [1]
and we will not describe them completely here. However, we will review those aspects that
have been implemented in the prototype.

The GPO is designed to support protocols that employ a sequence number space and
thus maintains a set of data indexed by sequence number. Apart from a few parameters
stored at the object level, virtually all of the storage used by the GPO is associated with
this set of data. The object keeps data only for sequence numbers within a specified window
and allocates storage sparsely as needed within this range. The sequence data includes a
single non-negative integer, known as the sequence state and a vector of integers representing
the interfaces of the router, which we call the interface state vector. A “soft state” timer is
associated with each sequence number to limit the lifetime of sequence number data. Timers
for sequence number data are typically set to expire much faster than the owning object and,
unlike object-level timers, are not refreshed when an SSP is retransmitted.

Most of the GPO methods take a sequence number as a parameter and perform some
operation on the associated sequence state and interface state vector. We have implemented
two such methods.

The method rcvr_update(n,value,pred, f, f,) performs feedback suppression and up-
dates state at the routers where it is invoked. It takes as parameters a sequence number n,
a non-negative integer value, a predicate identifier pred, and the identifiers of two update
functions f, and f,, which update the sequence state and interface state vector, respectively.
The method first evaluates the predicate pred(value, state(n)). If the predicate evaluates to

true, then the update functions are applied to sequence state and interface state.

state(n) <« fs(value, state(n)) (1)

inter face_state(n) <« f,(value,inter face_state(n), arrival_vec), (2)

6

pred(val, s) | fs(val,s) | f,(val,ifs,arr) gs(val, s) | gy(val,ifs)

val < s val +1 ifs && arr val — 1 ifs

val > s val ifs || arr val maz(0,ifs — val)
val < s val x arr maz(0,ifs — 1)
val > s mazx(ifs,val x arr)

val == s

Table 1: Predefined functions used by GPO methods. val and s are non-negative integers.
tfs and arr are vectors of integers.

where arrival_vec is a vector of all zeros except for a one in the position corresponding to the
interface over which the method was invoked. If state(n) has changed, then the rcvr_update
method is invoked over the link directed toward the source with v = state(n) and all other
arguments unchanged. Otherwise, no additional invocation occurs. This method is normally
invoked by receivers.

Subcast operations are implemented by invoking the method forward(n, value, gs, g,, data).
When this method is invoked at a router, it is re-invoked on all interfaces (except for
the one that the original invocation arrived on) for which the corresponding elements in
inter face_state(n) are greater than value. In addition, the sequence state and interface

state are updated according to the update functions g, and g,.

state(n) <« gs(value, state(n)) (3)

inter face_state(n) <« g,(value,inter face_state(n)), (4)

This method is typically invoked by the sender.

In the methods presented above, the values of pred, f,, f,, g, are selected from sets of
predefined functions. Table 1 lists the available functions for each argument. In Section
5 we will demonstrate how these two methods can be used to implement a simple reliable

multicast protocol.

2.3 A Simple Protocol

Let us now return to our previous example and consider in more detail how services provided

by the GPO can be used to implement a simple reliable multicast protocol. More sophisti-

cated protocols using GMTS are described in [1], but this simple one will be adequate for
the purposes of illustration.

Initialization: The source periodically multicasts an SSP that declares a GPO with an
associated timeout. The SSP initializes variables in the object for the start and end of the
sequence number window, and default sequence number state values and their associated
timeouts. As the session proceeds, the source may also use these periodic SSPs to advance
the window by reinitializing certain variables. Routers along the multicast tree construct
the object, record the address of their nearest upstream GMTS router and overwrite this
field of the GMTS header with their own address as they forward the SSP. Receivers record
the address of their nearest upstream GMTS router and the current sequence window.

Data transfer: Data packets are multicast to the group. Each packet contains a unique
sequence number. Receivers use these numbers to identify lost packets. These packets require
no GMTS support and are treated by the router as ordinary multicast packets.

Repair requests: When a receiver believes it has lost a packet with sequence number
n, it invokes the rcur_update method with seq = n,value = 1,pred =>, f;(z,y) = z, and
fo(value, vy, vs) = max(vy, value x v) by sending a MIP via unicast to its nearest upstream
GMTS router. The operation of the rcvr_update method causes the router to maintain an
interface vector for sequence number n that contains a 1 for each interface on which a NAK
is received. Furthermore, the router forwards the first such NAK towards the source but
suppresses subsequent NAKs.

Repair transmission: When the sender receives a copy of the MIP described above,
it interprets it as a repair request and immediately constructs a repair packet. The repair
packet is, itself, a MIP invoking the forward method with seq = n,value =1, g, = x, and
go = v. The data parameter contains the contents of the lost packet. The operation of
forward at the router reinvokes the method only along those interfaces which were marked
as the result of receiving a repair request. This MIP is eventually received by those (and
only those) receivers who requested a repair, where it is interpreted as a repair packet and
its data extracted.

In Section 3 we will describe our prototype router and revisit this example once more

when we describe our prototype router to see exactly how the router implements the actions

described above. We will also see that adding the necessary functionality to a real router

introduces a modest overhead, which is tolerable for many applications.

3 Router Prototype Design

We designed the GMTS prototype with several objectives in mind. First, we wanted to
validate the GMTS protocol specification by implementing a significant portion of it. Second,
we wanted to create a prototype that could be easily extended over time. Third, we wanted
to create a prototype that would run on a standard Linux PC configured as a router.

To be minimally functional, a GMTS router must have several features. It must be
able to process SSP and MIP packets as they traverse the router to create GMTS objects
and invoke methods on those objects. A timeout mechanism is required to handle object-
level timeouts and other scheduled operations. The router must intercept multicast GMTS
packets and modify their NEXT_HOP_ADDRESS field before forwarding them. Finally, the
router must be able to perform a subcast operation, forwarding a multicast packet on a

subset of downstream interfaces.

GMTS Daemon MRouteD
Session Session
(s1,G1) (s2,G2)

F GMTS ﬁ routing User
raw 7 system daenon

socket calls &7 N Jinterface Kernel
4 Linux IP Stack Multicast Routes
(192.168.1.1) |eth0 (S1,G1l)->(ethl,eth2,eth3)
(52,G2)->(ethl,eth3)
ethl eth2 eth3

(192.168.1.2) (192.168.1.3) (192.168.1.4)

Figure 1: A block diagram of the GMTS prototype architecture showing the three main
components along with the interfaces between them. We developed the GMTS daemon
specifically for this prototype and made several modifications to the Linux IP stack. An
unmodified mrouted multicast routing daemon is included on this diagram for completeness.

At a coarse level, the GMTS prototype is composed of three components—a GMTS

daemon operating in application space, a modified Linux kernel, and an unmodified multicast
routing daemon. This basic architecture is shown in Fig. 1 The GMTS daemon processes
GMTS packets and maintains the additional router state required by the GMTS protocol. In
an unmodified Linux kernel configured as a router, packets are forwarded entirely within the
kernel. Since the GMTS daemon must intercept and modify packets before forwarding them,
our prototype uses a kernel with modified forwarding code. This modified code is invoked
only for GMTS packets. The multicast routing daemon is required to process the IGMP
messages and maintain standard IP multicast router state, namely a list of downstream
interfaces for each combination of source and group addresses. We use mrouted for this
purpose.?2 In the rest of this section we will provide a more detailed look at both the

modified kernel and the design of the GMTS daemon.

3.1 Kernel Support

Our goal has been to implement as much of the GMTS functionality as possible in a daemon
so as to minimize the number of modifications to the Linux kernel. With this in mind, we

found that some kernel modifications were required to support three essential features of

GMTS:
1. Deferred forwarding, pending processing in the daemon.

2. Modifying GMTS headers (and therefore checksums) of forwarded packets.

3. Subcast.
IP Header % ip % | UDP Header GMTS Packet
Options
IP_PROTO_GMTS Router Alert Option

Figure 2: One possible way of implementing the GMTS within the IP protocol stack is to
tag GMTS packets with the IP router alert option and introduce a special GMTS protocol
identifier.

2Useful information about Linux implementations of mrouted and other multicast tools can be found at

http://www.cs.washington.edu/homes/esler /multicast.

10

The interface between the GMTS daemon and the kernel consists of a raw socket, an
extended sockaddr data structure, and three new system calls. GMTS packets are encap-
sulated in UDP packets, as shown in Fig. 2. Each GMTS packet contains a special protocol
identifier in the IP header protocol field and has the IP router alert option set.> GMTS
packets are placed in the read queue of the daemon’s raw socket during standard router alert
option processing in the kernel. In an unmodified Linux kernel, the inspection of router alert
packets would not disrupt the forwarding of the packet; a copy of the packet would simply
be placed in the queue of any interested raw socket. In the case of GMTS, however, the
daemon must make a forwarding decision and overwrite a field in the GMTS header before
the packet can be forwarded. We have therefore modified the Linux kernel to suspend the
forwarding of GMTS packets while they are processed by the GMTS daemon. The daemon
can resume forwarding in the kernel by executing one of three system calls, gmts_fwd(),
gmts_drop(), and gmts_subcast().

The GMTS daemon uses the rcvfrom() system call to obtain a copy of each GMTS

protocol packet traversing the router along with a completed sockaddr_gmts structure.

struct if_selector {
__u32 if_addr;
unsigned char sel;

};

struct sockaddr_gmts {
struct sockadd_in sin;
void *fwd_cookie;
int nifs;
/* Followed in memory by an array
of if_selectors...
struct if_selector ifs[nifs];
*/
+;

The sockaddr_gmts structure contains not only the IP address of the packets source, but
also a handle to the kernel’s copy of the packet stored in the fwd_cookie data member. The

daemon must pass this handle back to the kernel in one of the three GMTS system calls.

3The IP router alert option is defined in RFC 2113.

11

These system calls enable the daemon to control the forwarding behavior by instructing the
kernel to drop the packet, resume normal forwarding, or subcast the packet. The daemon
must execute exactly one of these system calls for each GMTS packet processed.

The sockaddr_gmts structure also contains an array of if_selector structures, one for
each virtual interface recognized by the router. The kernel uses this array to inform the
daemon which interface the packet arrived on by setting that interfaces sel field to 1 for
the arrival interface and 0 for all others. This same array is used later by the daemon to
provide the kernel with a subset of interfaces on which to subcast a packet when forwarding
is resumed with gmts_subcast(). During subcast, the kernel forwards a packet down any
interface that is part of the multicast tree and has been selected by the daemon.

To illustrate a typical interaction between the kernel and daemon, consider the operation
of the simple reliable multicast protocol presented in Section 2.3 implemented using the
GPO. The source multicasts an SSP to initialize the GPO state in the network. GMTS
packets are identified solely on the basis of the protocol identifier in the IP header and the
presence of the IP router alert option. When this packet traverses a GMTS router, it is
held in the kernel and a copy is passed to the routing daemon via the rcvfrom() system
call. The daemon processes the packet, creating the GPO object in memory, and instructs
the kernel to resume normal multicast forwarding using the gmts_fwd() system call. The
kernel retrieves its copy of the packet using the pointer passed back to it by the daemon and
reintroduces this packet into the kernel forwarding path. As it forwards the packet on each
downstream interface, the modified kernel replaces the NEXT_HOP_ADDRESS field in the
GMTS header with the IP address of the outgoing interface. Data packets multicast by the
source also traverse the router, but these packets do not have the router alert option set and
are therefore forwarded normally within the kernel.

The router receives repair requests in the form of MIPs unicast from downstream nodes—
either from receivers with no closer GMTS router on their forwarding path or from down-
stream GMTS routers. These packets are also passed to the daemon for processing. The
daemon uses the if _selector array returned from the kernel to construct the arrival vector
required by the rcvr_update method. Since the router itself is the final destination of the

MIP containing the repair request, the daemon instructs the kernel to drop the packet with

12

the gmts_drop() system call, freeing the associated memory in the kernel.* However, the
router will unicast a similar repair request upstream to its nearest GMTS neighbor if no
previous repair request has been sent for the specified sequence number.

Repair packets take the form of MIPs sent to the group multicast address by the source.
As before, these packets are trapped by the daemon and processed. In this case, the router
will subcast the packet only on those downstream interfaces on which a repair request previ-
ously arrived. To perform this subcast, the daemon encodes the current interface state vector
as an ()_selector array appended to a sockaddr_gmts structure. It passes this structure to
the kernel via a call to gmts_subcast (). The kernel reintroduces its copy of the packet into
the multicast forwarding path, but restricts forwarding to only the interfaces indicated.

The required modifications to the Linux kernel required changing only five source module
and three header files, and the introduction of two additional header files. Table 2 summarizes

the changes that we made to the Linux kernel source code.

3.2 GMTS Daemon

The GMTS daemon waits in its main loop for GMTS packets to be passed from the kernel
via a raw socket, processing each packet as it arrives. The daemon is responsible for imple-
menting the GMTS protocol by processing SSP and MIP packets. SSPs contain one or more
GMTS objects, each uniquely identified by a combination of source address, group address,
and object identifier. The daemon processes SSPs by creating an in-memory representation
of each object described in the packet or refreshing the state of any objects that already
exist.

The daemon is implemented in C, although its has an underlying object-oriented design.
This design separates the functionality of specific GMTS object types from the general type-

independent protocol processing, making it easy to introduce new object types as GMTS

4Although repair requests are unicast directly to the router, the kernel delivers these packets to the
daemon as a result of processing the router alert IP option. This router alert processing occurs before the
kernel recognizes that the packet is addressed to the local host. Since kernel processing for the packet is
suspended until daemon processing completes, the daemon simply instructs the kernel to drop the packet

rather than allowing it to be presented a second time.

13

Module

Description

net /socket.c

net/ipv4/ip_forward.c
net/ipv4/ip_input.c
net/ipv4/ipmr.c

net/ipv4/raw.c

include/linux/gmts.h
include/linux/gmtspcol.h
include/linux/in.h
include/linux/net.h
include/linux/skbuff.h
include/net /ip.h
include/net/raw.h
include/net/sock.h

Implemented three new entry points for the SYS_socketcall

system call for gmts_fwd(), gmts_subcast(), and gmts_drop().
Added ip_reforward method to resume deferred forwarding.
Modified ip_call ra_chain to support deferred forwarding.

New functions gmts_queue_xmit() and gmts_forward() implement
subcast and modify NEXT_HOP_ADDRESS. New function
ip_mr_reinput() allows deferred multicast packet to be

reintroduced into forwarding path.

Actual implementation of system calls in raw_gmts_fwd(),
raw_gmts_subcast(), and raw_gmts_drop(). Modified rcvmsg
implementation for raw sockets and introduced new RA_NO_FORWARD
socket option add support for deferred forwarding.

Defines kernel-daemon interface.

Protocol packet data structures and constants.

Defined IPPROTO_GMTS.

Defined new socket system call identifiers.

Added timestamp to skbuff structure for performance measurement
Declarations of new forwarding functions.

Declarations of functions implementing GMTS system calls.

New raw socket option for deferred forwarding

Table 2: Summary of modifications to the Linux kernel source code.

GMTSTypeEntry|[]

typeld
getSize()
addMethods ()
init()
setDefaults ()
cleanup()
invoke ()
dump ()

GMTSObj
src e -
grp Tt~
objId N
gmtsOpt GMTSObjTimeoutEvt
typeld -~ >
nextHop [evt
timeout - ob] -
methods -~
__> HASH TABLE GMTSMethod
_ - -7 mthdId
rcvrCallable
sndrCallable
reliable

Figure 3: Data structures comprising the type-indpendent representation of GMTS objects.
An array of GMTSTypeEntry structures indexed by typeID holds pointers to type-dependent
functions. A GMTSObjTimeoutEvt structure handles object-level timeouts. Method options

are type independent, although each object type implements different methods.

Type-

dependent code is responsible for adding the appropriate GMTSMethod structures to the hash

table.

14

GPO
src -~
grp e
objId - <
gmts gmtsOpt --
typeId -~ <
nextHop =~
timeout - -
methods ~ =
opt ~ -
startRange - -
endRange =~

dfltSegState GPOInterfaceState[] T~a
dfltIfsState < s RN
dfltSegStateTimeout LINKED_LIST / : SO
segState - +7777> - - N | \
state
' ' ' \ : ‘.
\ \ \ | .
- GPOSeqState < GPOSeqState - GPOSegState «d |
seq seq seq T~ |
state state state | T~ |
numIfs numIfs numIfs P T~ |
ifs ifs ifs r ~ o /
arrivalVec arrivalvVec arrivalVec A N /
timeout timeout timeout |- — _GPOSegStateTimeoutEvt \/ /
evt _ P 7
state F--- _ -
obj b —=--"

Figure 4: Data structures used to represent the GPO. The GPO maintains a linked list of
sequence number data for up to a window’s worth of sequence numbers. Each GPOSeqState
structure has an individual timeout, managed by a GP0SeqStateTimeoutEvt structure.

evolves. In object oriented terms, all GMTS object types are derived from a virtual base
class. The daemon interacts with specific object types through a set of type-specific functions
implemented differently for each type. Appendix B.1 lists the typeEntry data structure and
function definitions used to implement the type-specific function table. A global array of
typeEntry structures contains pointers to sets of functions indexed by object type.

The in-memory representation of a GMTS object is shown graphically in Figures 3 and 4.
This representation is designed to allow tasks common to all object types, such as refreshing
object timeouts, to be handled by a generic object management framework. The represen-
tation for each type of object is a data structure that must contain a GMTSObj structure as
its first member. The type-independent code only operates on this portion of the object.
The type-specific functions defined in the function table operates on the remaining structure
elements. The listing in Appendix B.2 shows how the GPO object type is declared in term
of the abstract object structures.

A centralized timeout mechanism handles timeouts for all scheduled operations main-
taining a linked list of event data structures. A standard ANSI C alarm signal is set for
the earliest event. When the alarm fires, the timer manager calls raises a flag but defers

actual event processing if a packet is currently being processed. During event processing an

15

execution procedure is invoked for any expired events through the exec function pointer of
the Event data structure. The timeouts of all remaining events are adjusted and the alarm
is reset. By treating events generically, the timer mechanism is able to process timeouts for
objects of all types as well as for components of specific types of objects, such as sequence
number data in the GPO that can expire independently. Appendix B.3 shows the abstract
Event base class along with two concrete types of events.

The basic algorithm for processing an object contained in an SSP, shown Fig. 5, is one
example of how the generic object management code interacts with type-specific operations.
As the algorithm shows, the object creation process is divided between type-specific opera-
tions such as setting default variable values and generic protocol operations such as storing
the object in a hash table for future retrieval.

Method invocation similarly divided. Each object type exposes its own set of meth-
ods, however, the implementation of method options such as reliable invocation is type-
independent. Support for method options is not implemented in the current prototype. All
methods are invoked unreliably and may be invoked by either sender or receiver. Thus

method invocation in the prototype is delegated entirely to type-specific code.

4 Protocol Correctness

The first experiment we conducted was primarily to test the correctness of the simple reli-
able transport protocol presented in Section 2.3. The experimental setup consisted of our
prototype router switching among three hosts, as shown in Fig. 6.

Since our hosts and router were connected via point-to-point Ethernet and we operated
the router well under full utilization, packet losses were simulated by having each receiver
drop packets independently with probability p. Only data packets were subject to losses in
our experiment. In a large multicast tree, we would expect the presence of GMTS-capable
routers in the tree to reduce the number of repair requests reaching the source as well as
the number of unrequested repairs arriving at each receiver. Due to the small size of our
testbed (one router, one source and two receivers) it is difficult to draw any quantitative

results about the performance of this protocol, but we were able to verify its correctness.

16

GMTSPktSspObj pktObj; /* Packet representation of a GMTS object*/
GMTSObj obj; /* In-memory representation of a GIMS object*/
typeEntry *type; /* type-specific functions */

for each pktObj in SSP {
type = GetTypeEntry(pktObj->typeld);
obj = LookupObject(pktObj->src, pktObj->grp, pktObj->objId);
if (obj == NULL) {
/*0bject does not exist. Create it.*/
obj = AllocateObject(type->getSize());

/*Set type-independent datax/

obj->src = pktObj->src;

obj->grp = pktObj->grp;

obj->objId = pktObj->objId;

obj->typeld = pktObj->typeld;
SetObjectOptions(obj, pktObj->opt);
obj->timeout = SetTimeout(pktObj->timeout);

/*method options are type-independent, but the methods themselves
are type-specific. Threrefore, type->addMethods() is used to fill
the methods hash table*/
obj->methods = CreateHashTable();
type->addMethods (obj, obj->methods);
for each method in pktObj {

SetMethodOptions (Get (obj->methods, method->id) method->opt);
}

/*Set type-specific variables to default values*/
type->setDefaults();

/*0verride defaults with values contained in SSP*/
for each var in pktObj {
type->setValue(obj, var->id, var->value);

/*Final type-specific initializationx*/
type->init();

/*Hash the object for later usex/
StoreObject(obj);

} else {
/*0bject already exists. Refresh its statex/

/*Reset options and timeout#*/
SetObjectOptions(obj, pktObj->opt);
obj->timeout = SetTimeout(pktObj->timeout);

/*Set method options*/
for each method in pktObj {

SetMethodOptions(Get (obj->methods, method->id) method->opt);
}

/*Set type-specific variables#*/
for each var in pktObj {
type->setValue(obj, var->id, var->value);

Figure 5: A pseudo-C Algorithm for processing an object declaration contained in a SSP.

17

Source

Receiver Receiver
1 2

Figure 6: Configuration of testbed for verifying a simple reliable multicast protocol.

We simulated a 1 MB file transfer at a maximum packet size of 1500 bytes. A total of
732 data packets were required to complete the transfer. We deliberately slowed down the
transmission of packets using a leaky bucket mechanism so that the operation of the protocol
could be observed.> We executed this file transfer with and without the GMTS daemon in
operation. In both cases, the protocol correctly delivered the entire set of sequence numbers
to both receivers. However, the number of messages required for correct operation was
reduced when the daemon was turned on. During each experimental run, we kept track
of the following quantities: The number of NAKSs received by the source ng, the number of
repair packets sent by the source r,, the number of repair packets received by each receiver r;
and 7o, the set of sequence numbers lost by each receiver N; and N,. The quantities n,, 7y, rq,

and ry are related to the sizes of the sets N; and N, differently depending on whether the

5The longest path in our test bed is two 100Mbps Ethernet links each under 10 feet in length. Since
we operate the router at very low utilization, data packets propagate through our testbed with negligible
delay. Without regulating the transmission speed it is possible for data packets to overtake the first SSP as
it awaits processing at the router and reach the receivers before the GMTS object has been created. Note
that it is also possible for a packet loss to occur before the SSP has been completely processed. However, a
receiver will be unaware of its upstream GMTS router and the current sequence window until GMTS state

has been completely established along its path to the source, such losses must go unreported.

18

daemon is turned on or off. Whe the daemon is turned off, all quantities are equal since the
sender responds with a repair for each NAK received and no NAKs are suppressed or repairs
subcast.

ng =71y =11 =19 = [Ny UN3| + [Ny N Ny (5)

When the daemon is turned on, each one of these quantities is reduced to the minimum
required for reliably communicating every sequence number to both receivers under the

simplified loss model of this experiment.

ns = |NyUDN; (6)
rs = |NyU N (7)
rio= [Ny (8)
r2 = [Ny (9)

We evaluated the correctness of the protocol by verifying that the above relations held in
the experimental traces. When the daemon was turned off, the sender saw one NAK for each
packet loss, experiencing duplicate NAKs for packets lost by both receivers. Each receiver
received a repair packet for every NAK arriving at the sender, leading to unrequested repairs
in cases where only one receiver lost a packet and redundant repairs when both receivers
sent NAKs. When the daemon was operating, the sender received at most one NAK for
each sequence number and each receiver received repairs corresponding to actual losses with
no unrequested or redundant repairs. This experiment verified the GMTS router’s ability to
perform feedback aggregation and subcast correctly.

When performing multiple simulated file transfers back to back, we observed a bug in our
implementation that may have implications for the design of the GMTS protocol. Sequence
number data is typically short-lived compared to its owning object and timers associated with
individual sequence number data elements are not refreshed automatically when that state
is modified.® However, it is possible for long-lived sequence number data to interfere with
protocol operation. When running two file transfers in immediate succession, for example,

we found that sequence state created during the first transfer could expire during the second

6Tf need be, sequence state timers can be extended via an explicitly invoked method.

19

transfer between the receipt of a NAK at the router and receipt of its corresponding repair
packet, causing the router to lose track of which downstream interfaces had requested the
repair. In this case, the router failed to deliver the repair to any receivers and the protocol
operated incorrectly. We eventually traced the source of this bug in our application to
a faulty timer implementation. However, this problem can easily occur simply due to an
unfortunate choice of timeout values. One way to address this problem in the protocol is
to introduce a session identifier field in the GMTS header. Objects in the router would be
uniquely identified by the combination of sender address, group address and session identifier,
making it impossible for unexpired state from recently terminated sessions to interfere with

protocol operation.

5 Performance Measurement

Although high performance was not an explicit goal of our prototype design, it is interesting
to conduct a simple experiment to get a sense of the impact of GMTS processing on end-to-
end performance. In a this experiment, designed to measure the overhead associated with
slow-path processing of GMTS packets, we instrumented our router to record the the time
required to process a GMTS packet over and above the time required for normal packet
forwarding. Recall that in our prototype, each SSP and MIP must be passed from the kernel
to the GMTS daemon for processing and a system call must be executed to resume forwarding
within the kernel. Transferring control between the kernel and the daemon is a significant
source of overhead which could certainly be reduced in a more sophisticated implementation.
We are interested in measuring the total overhead introduced by our mechanism as well as
how this time was divided between the kernel and the daemon.

In this experiment, we collected the appropriate timestamps for each SSP packet pro-
cessed during a one MB file transfer, repeating the experiment for 30 such transfers in
succession. The results are presented in Fig. 7. The figure presents processing times for
successively received SSPs over all 30 transfers.

We notice that processing times are grouped into four “bands”. We believe that each

of these bands corresponds to a characteristic processing time depending on the extent to

20

Experiment 1

14000 , | | | I
kernel + user +
kernel X
4+ user X
12000 |
10000 _
4]
@
@
o
S
‘€ 8000 |
©
£
g 6000 [_
a -
?
®
o
e TR Mhe
S 4000t |
2000 _
s Qw% -
K o ok M i soww d LSRR K SIOK WX XK

0 500 1000 1500 2000 2500 3000 3500
SSP packet arrival

Figure 7: Total processing time for about 3000 subsequent SSP arrivals at the GMTS router.
This plot shows the total processing time including the time spent transferring control from
the kernel to the daemon as well as the daemon and kernel components separately. We
can see the absence of the linear increase trend in the fastest daemon processing times (the
horizontal band at the bottom of the figure), leading us to believe that this slowdown is
introduced by the kernel.

which the daemon was interrupted by the operating system while processing an SSP. Of
particular interest are the lowest two bands of the daemon data set, as these correspond to
the minimum time required to perform essential GMTS slow path processing.”

There is a gradual linear increase in processing time that we have yet to explain. We
believe this increasing overhead is introduced in the kernel itself because the fastest daemon
processing times, most likely corresponding to instances of uninterrupted processing, do not
exhibit this increase. When the trend is removed from the data, we observe that the time

required to process a SSP in the daemon is typically about three milliseconds. An additional

"We conjecture that the sparse band of fastest daemon processing times represent uninterrupted processing

in which much of the daemon code and GMTS object data was retrieved from cache.

21

one to two milliseconds is added in transferring control from the kernel to the daemon and
back. In the best case, the SSP was processed in the daemon in less than one millisecond in
the absence of operating system overhead. Thus sub-millisecond processing times seem to
be a reasonable target for developing performance optimized code in the future.

Our performance measurements are the same order of magnitude as overheads measured
by Lehman, et al. [5] in another prototype active router. We emphasize that our prototype
contains no performance optimizations at all and admits numerous opportunities to reduce
the processing overhead.

To understand these results in proper context, consider a typical end-to-end path in the
Internet consisting of around ten hops with a total round trip time on the order of a few
hundred milliseconds. Operating GMTS along such a path might increase the round trip
time by between one and ten percent for (relatively infrequent) GMTS packets, depending
on the number of GMTS-capable routers in the path. Ordinary data packets would not

experience any additional delay.

6 Conclusion

In the process of developing this prototype, we have observed several places in which the
protocol could be improved. We conclude this report by summarizing some of the lessons
learned.

In is important for GMTS objects always to be constructed in a consistent state. It
must therefore be possible to initialize object data and set default values using a single
SSP. In the case of the GPO, for example, the object must be configured with the default
timeout to assign to sequence number data. To address this need, we have extended the SSP
packet format to include a variable initialization block. To enable a possible performance
optimization, we have added an object sequence number to each object entry in the SSP.
Incrementing this sequence number informs a GMTS router that the current SSP contains
explicit changes to object variable. This allows the router to distinguish such SSPs from
those that are merely intended to refresh the timer state. The revised format is shown in

Appendix A.

22

As mentioned in Section 4, we have observed that long-lived state in the network can
interfere across sessions. Appropriate setting of timeouts is important to ensure that state is
removed in a timely fashion. However, introducing a session identifier in the GMTS header
would enable GMTS to prevent such interference even when timeouts are set incorrectly.

Error handling in the GMTS protocol remains incompletely specified in GMTS to date.
We would like to make some observations relevant to how protocol failures should be handled.
It is useful in this discussion to distinguish between two failure modes, which we refer to
as internal and external. External failures are due to errors in the GMTS packet, whereas
internal errors are caused by unavailable resources at the router.

In the case of external errors, there is no sense in wasting network resources processing
malformed packets once the error has been detected. At the same time, we would like to
allow end-to-end detection of such errors. One way to do this is to introduce an error bit
in a GMTS packet which is set by the first router to detect a malformed packet. Once
this bit is set, the packet (if it is a multicast packet) is forwarded along the multicast tree,
but not processed at any other routers. Receivers detecting such packets must notify the
source. To avoid a feedback implosion due to error reporting, we propose introducing a
default error object present in each GMTS router with a well-known, reserved, type and
object ID. The error object would provide a method for aggregating error conditions back
toward the source. We have yet to fully specify such an object. In general, having a reserved
type identifier for “system” objects combined with well known object identifiers for different
system objects would create a reasonably sized ID space for introducing new system objects
as GMTS evolves.

Internal errors are handled differently. Consider a case in which a router has insufficient
resources to create a new object in an SSP. In this case, the router should not mark the
error bit so that downstream routers will still try to create the object. It is important that
a router with insufficient resources to leave the NEXT_HOP_ADDRESS field of the GMTS
header unchanged when forwarding the SSP. The router will simply not participate in the
transport protocol managed by this object.

Our experience designing and implementing the GMTS prototype router provides support

for the idea that such services can be implemented in routers easily and with only a modest

23

impact end-to-end protocol performance. The presence of services such as those proposed
by GMTS would enable a range of scalable multicast transport protocols by making it easy
to perform functions like reliable transfer, congestion control and polling.

In future work, we intend to consider the impact of a large aggregate of GMTS session on
the performance of routers, as well as the impact of incomplete deployment of GMTS within
the network on the effectiveness of the transport protocols it supports. We would also like to

investigate how GMTS services can be implemented in high-performance hardware routers.

References

[1] B. Cain and D. Towsley. Generic multicast transport services: Router support for

multicast applications. Technical report, University of Massachusetts, 1999.

[2] B. Cain and D. Towsley. Generic multicast transport services: Router support for

multicast applications. In Proc. Networking 2000, May 2000.
[3] T. Speakman et al. Pgm reliable transport protocol. Technical report, IETF, 2000.

[4] S. Floyd, V. Jacobson, S McCanne, C. Lin, and L. Zhang. A reliable multicast frame-
work for light-weight sessions and application level framing. IEEE/ACM Trans. on
Networking, 5:784-803, Dec. 1997.

[5] L. H. Lehman, S. J. Garland, and D. L. Tennenhouse. Active reliable multicast. In
Proc. INFOCOM’98, 1998.

6] B. N. Levine and J. J. Garcia-Luna-Aceves. Improving internet multicast with routing

labels. In Proc. ICNP-97, pages 241-250, Oct. 1997.

[7] J. Lin and S. Paul. Rmtp: A reliable multicast transport protocol. In Proc. INFO-
COM’95, 1995.

[8] C. Papadopoulos and G. Parulkar. An error control scheme for large-scale multicast

applications. In Proc. INFOCOM’98, 1998.

24

9] D. Towsley, J. Kurose, and S. Pingali. A comparison of sender-initiated and receiver-

initiated reliable multicast protocols. IEEE JSAC, April 1997.

[10] K. Yano and S. McCanne. The breadcrumb forwarding service: A synthesis of pgm and

express to improve and simplify global ip multicast. ACM Computer Communication

Review, Vol.30(No.2), 2000.

A Revised GMTS Packet Formats

GMTS Header

31

Source IP Address

Group IP Address

Next Hop GMTS Address

GMTS Packet Type

Checksum

Figure 8: The GMTS packet header shared by both SSP and MIP packet types

25

State Setup Packet (SSP)

31

GMTS Header

SSP Options

Number of Objects

Object #1 Identifier

Object #1 Type

Sequence Number

Object #1 Timeout

Obj #1 Options

Number of Methods

Number of Variables Method #1 ID Method #1 Options
Method #2 ID Method #2 Options Method #3 ID Method #3 Options
Variable #1 ID Variable #1 Data...
Variable #1 Data
Variable #2 ID Variable #2 Data...

Variable #2 Data

Object #2

Figure 9: Revised State Setup Packet (SSP) format. The main revision is the introduction
of a variable intialization block in the SSP. An object sequence number has been added to
the object declaration in the SSP to tag SSPs that explicitly modify variables or options of

existing objects.

Method Invocation Packet (MIP)

31

GMTS Header

MIP Options

Number of Entries

Object #1 Identifier

Method ID

Params Length

Parameter L

ist (variable length)

Object #1 Identifier

Method ID

Params Length

Parameter L

ist (variable length)

Figure 10: Method Invocation Packet (MIP) format.

26

B Selected GMTS Daemon Data Structures

B.1 Function Table for GMTS Object Types

/*GMTS Object Function Prototypes*/

typedef int (*GMTSObjAllocSizeProc) Q);

typedef int (*GMTSObjAddMethodsProc) (GMTSObj *);

typedef int (*GMTSObjDfltProc) (GMTSObj *);

typedef int (*GMTSObjInitProc) (GMTSObj *, struct _GMTSPktSspObj *);

typedef void (*GMTSObjCleanupProc) (GMTSObj *);

typedef int (*GMTSObjMethodProc) (GMTSObj *, u_char, char *, unsigned int, RequestHandl
typedef int (*GMTSObjValueProc) (GMTSObj *, u_short, char *, unsigned int);

typedef void (*GMTSObjPrintProc) (GMTSObj *);

/*’Virtual Function Table’ for a GMTS objectx*/

typedef struct _GMTSTypeEntry {
u_short typeld;
GMTSObjAllocSizeProc getSize;
GMTSObjAddMethodsProc addMethods;
GMTSObjInitProc init;
GMTSObjDfltProc setDefaults;
GMTSObjCleanupProc cleanup;
GMTSOb jMethodProc invoke;
GMTSObjValueProc setValue;
GMTSObjPrintProc dump;

} GMTSTypeEntry;

B.2 In-Memory Object Representation

/*GMTS Method*/
typedef struct _GMTSMethod {
u_char mthdId;
int rcvrCallable;
int sndrCallable;
int reliable;
} GMTSMethod;

/*GMTS object ’base class’*/

typedef struct _GMTSObj {
unsigned int src;
unsigned int grp;
unsigned short objId;

27

unsigned int gmtsOpt;

unsigned int typeld;

unsigned int nextHop;

EventHandle timeout;

HASH_TABLE *methods; /*Contains GMTSMethod structuresx*/
} GMTSObj;

/*GMTS general puropose object*/
typedef struct _GPO {
GMTSObj gmts;
unsigned int opt;
unsigned int startRange;
unsigned int endRange;
unsigned int dfltSeqState;
unsigned int dfltIfState;
unsigned short dfltSeqStateTimeout;
LINKED_LIST *seqState;
} GPO;

/*Sequence number statex/
typedef struct _GPOSeqState {
unsigned int seq;
unsigned int state;
unsigned int numIfs;
GPOInterfaceState *ifs;
int *arrivalVec; /*Temporary storage of arrival vector*/
EventHandle timeout;
} GP0OSeqState;

typedef struct _IfInfo {
char name [IFNAMSIZ];
struct sockaddr_in sin;
} IfInfo;

/*Interface statex*/

typedef struct _GPOInterfaceState {
struct _IfInfo *pIf;
unsigned int state;

} GPOInterfaceState;

B.3 Timer-Related Data Structures

/*Timer Event ‘‘base class’’*/
typedef struct _Event {

28

struct timeval timeout;

char errorString[EVT_ERROR_STRING_LEN];

EvtExecuteProc exec;
} Event;

/*0bject Timeout Event*/

typedef struct _GMTSObjTimeoutEvt {
Event evt;
GMTSObj *obj;

} GMTSObjTimeoutEvt;

/*Sequence Number State Timeout Eventx*/
typedef struct _GPOSeqStateTimeoutEvt {
Event x*xevt;
GPOSeqState *state;
GPO *obj;
} GP0OSeqStateTimeoutEvt;

29

