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Abstract

Considerable attention has recently focussed on the characteristics of network traffic and
related issues. In particular, the observation that data traffic in networks exhibits long range
dependence or self-similarity has led to a myriad of research efforts in this area. In this paper
we show that the TCP protocol can generate traffic with correlation structures over a finite
range of timescales that are similar to characteristics observed in Internet traffic. This is
independent of application-level characteristics and takes effect under a wide range of network
conditions. We point out and analyze two of the mechanisms inside TCP that contribute to
this: the exponential timeout back-off and the congestion avoidance. We support our claim
using Markovian models that can be numerically analyzed. The models are validated against
simulation results and measurements obtained in the Internet.
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1 Introduction

The existence of non-degenerate correlation structures over a range of timescales in network
traffic has been observed in a variety of network environments, such as Ethernet traffic [1],
Wide Area Networks traffic [2], and World Wide Web traffic [3]. There have been recently
many research efforts to investigate various aspects of this characteristics, for example, modeling
techniques ([4, 5, 6, 7]), impact on network performance ([8, 9, 10]), and explanations for the
presence of such correlation structures ([3, 11, 12, 13]).

Several efforts to explain this correlation structure of the network traffic have been made
from different perspectives. Crovella et al. [3] conjectured that the strong correlated behavior
in network traffic is caused by the heavy-tailed distribution of WWW documents sizes, the
effect of caching, and human thinking time. All these causes come from the application or user
level perspectives and can generate self-similar data traffic through the underlying transport
protocols. In [11], the authors studied the chaotic behavior of TCP congestion control and
concluded that the assumptions in [3] are not necessary to explain the origin of self-similarity in
TCP data traffic. The authors argue that the “chaos” created by the TCP congestion control
alone can generate self-similarity. The conclusions reached by the authors of [11] are puzzling
as they report on TCP behavior that is periodic in nature, as the authors themselves point out
(albeit with a possibly long period), and thus, not chaotic. Consequently, this behavior cannot
generate self-similarity in network traffic. The work also raises the question as to how and why
TCP congestion control exhibits the long term temporal correlations that they report.

In this paper we provide another possible explanation for the non-degenerate correlation
structure in network traffic. In particular, we analyze the TCP protocol and show how its
mechanisms can generate such traffic patterns. These mechanisms do not by themselves give
rise to self-similar traffic. However, we show that the traffic induced by these mechanisms has
a similar correlation structure within similar timescales to that of measured Internet traffic of
previous studies. Since most applications use TCP as their data transport protocol and the
majority of the network traffic is carried by TCP, one can easily misinterpret the origin of
these correlation structures. The efforts that have tried to explain self-similarity from an upper
level perspective can just as well be explained by TCP itself. They are not necessary in order
to generate the correlation structures in the network traffic if TCP is used as the transport
protocol. As a result, we point out that one should be careful when claiming to identify the
cause of correlation structures observed in network traffic.

We now describe two different related works as follows. In a pioneering paper [12], Man-
thorpe, et al. point out that real network traffic is not strictly self-similar, but exhibits a cor-
relation structure only over a finite range of timescales. They then introduce the terms pseudo
self-similarity and local Hurst parameter to describe the correlation structure of data traffic over
a this range of timescales instead. A process is pseudo self-similar if the variance of the aggre-
gated process over a finite range of timescales decays linearly in a log-log plot. The local Hurst
parameter is defined to be a simple function of the slope in this range of timescales. Formal and
precise definitions of a pseudo self-similarity and local Hurst parameter are given in [6] and [12],
respectively. In this paper, we will adopt these terminologies to refer to the correlation structure
of the network traffic. This will allow a comparison between the local Hurst parameter and the
Hurst parameter previously used in the literature. Also in [12], the authors discover through
simulation that under certain conditions, TCP protocol can generate pseudo self-similar traffic.
They claim that the combination of TCP with the heavy-tailed distribution of round trip delays
and the wide range of transmission rates seen in real networks are responsible for introducing
pseudo self-similarity in data traffic.



In another related work [13], Guo et al. claim that the TCP congestion control mechanism
generates heavy-tailed off periods in the traffic transmission pattern, which then introduces long-
range dependence in the overall traffic. The authors try to explain the self-similarity of TCP
using the framework of multiplexing ON/OFF processes with heavy-tailed ON or OFF period,
and also in terms of its chaotic behavior. We note that formally, the off periods in the TCP
congestion control mechanism are not heavy-tailed, since the maximum off period is bounded by
the maximum timeout value. Hence it is erroneous to conclude that the TCP congestion control
mechanism produces self-similar traffic in the absence of other mechanisms. A limitation of their
analysis is that the pseudo self-similarity only occurs when the loss probability is between 1/8
and 1/4. This is not consistent with observations of pseudo self-similarity in TCP traffic under
lower loss probabilities, as was also observed by the authors.

In this paper we show that TCP protocol itself, in particular, its exponential back-off and con-
gestion avoidance mechanisms, gives rise to pseudo self-similar traffic over a range of timescales.
We construct separate Markovian models for each of these mechanisms and present analytical
results that support our claim. Simulation is also used to support our claim and validate the
models. We show that the local Hurst parameter predicted by the models for typical network
packet loss probabilities lies in the same range as the values obtained from previous measure-
ments, for example [1, 3, 14]. Our analysis applies to a wide range of loss probabilities, including
very low loss probabilities. We further demonstrate that the analysis of real TCP traces agrees
with the range of timescales predicted by the analytical models. Moreover, under certain net-
work conditions, we show that the local Hurst parameters obtained from the model are similar
to the ones calculated from real traces. We relate the parameters of the timeout and congestion
avoidance mechanisms to the local Hurst parameter and the timescales each mechanism exerts.
Finally we provide a possible argument for the pseudo self-similarity of the aggregate TCP flows
in real networks based on our model analysis.

The rest of the paper is organized as follows. Section 2 describes the TCP timeout and
congestion avoidance mechanisms and presents two Markov chains to model them. Section 3
presents the mathematical framework used to analyze the models, and demonstrates that both
models give rise to pseudo self-similar traffic over a certain range of timescales. Section 4 provides
simulation results to validate our models and support the analytical results. Discussions on
model parameters and remarks on the aggregation of TCP flows are given in Section 5. Finally,
in Section 6 we present our conclusions.

2 TCP Timeout and Congestion Avoidance Models

In this section we describe the behavior of TCP timeout and congestion avoidance mechanisms
via Markov chains. Our purpose here is not to provide a detailed or complete model of the
TCP protocol, but rather to highlight and investigate the timeout and congestion avoidance
mechanisms of TCP using different models to demonstrate that both features of TCP can lead
to strong correlation over a finite range of time scales.

TCP is a network transport protocol that provides reliable end-to-end data communication
[15]. It is a window based protocol and performs flow control and congestion control, by regu-
lating its sending window size through an additive increase/multiplicative decrease mechanism.
TCP includes different mechanisms inside its complex suite, among which Congestion Avoidance
and Timeout Back-off can have an important effect in the traffic pattern.



2.1 Timeout (TO) Model

TCP uses a timeout mechanism to achieve reliable transmission of data and to avoid conges-
tion collapse [15]. Each time a packet is sent out from the source, TCP starts a retransmission
timer and waits for the acknowledgement from the receiver. TCP keeps a run time average of
the round trip time (RTT) and sets the duration of its timer (RT'O) based on the average and
variance of the RTT estimate. If the packet is lost, the sender will not receive the acknowl-
edgement for that packet and the timer will eventually expire, if no triple duplicate acks are
received. Upon a timeout the packet is retransmitted and the sending window is set to one.
This reduces the sending rate and hopefully relieves the network congestion. If the congestion
continues and the retransmission is lost, TCP doubles the current timeout value of the next
retransmission to further reduce the sending rate and adapt to the congested network. This
exponential back-off continues for each potential retransmission after the first timeout occurs.
When the subsequent segment of data is successfully transmitted, TCP recomputes the RTT
estimate, resets the timeout value accordingly and resumes the normal mode of operation. In
most TCP implementations, the timeout is backed off to a maximum of 6 times, giving time-
out values that are equal to 64 times the original timeout. After the timeout value reaches its
maximum, it does not further increase and remains the same if loss continues.

Figure 1: TCP timeout model

For both the TO model and the following congestion avoidance (CA) model, we assume the
packet loss is described by a Bernoulli process with parameter p and that acknowledgement
packets are never lost in the network. Based on the TCP timeout mechanism, we can construct
a discrete time Markov chain illustrated in Figure 1 to model the timeout behavior. The single
parameter of the model is the packet loss probability p (¢ = 1 — p). The detailed explanation of
the chain is given as follows.

e Definition of the States: A state in the Markov chain is represented by the tuple
(T, E,R), where T indicates the time (RTT % 2T) until the next packet transmission; E
indicates the current value of the back-off exponent; and R indicates if the packet being
sent is a retransmission (R = 1) or a new packet (R = 0). Note that both 7" and E range
from 0 to 6, and that the time spent in each state is always a multiple of the RTT.

e Transition probability matrix: Once TCP enters the back-off mode of operation, if
a retransmitted packet is lost, then the time until the next transmission is given by the
current timeout value. If a packet is successfully transmitted, then the time until the next
transmission is given by a single RT'T. Note that it takes two consecutive successful packet
transmissions in order for TCP to resume its normal mode of operation and reset its back-
off exponent. Moreover, every time a packet is lost, the back-off exponent is increased by
one to double the timeout value. Figure 1 illustrates all the possible transitions in the
model.



2.2 Congestion Avoidance (CA) Model

We now focus on the congestion avoidance mechanism and ignore the presence of timeouts to
better capture the behavior of the additive increase/multiplicative decrease mechanism of the
window size. By changing the congestion control window size, TCP regulates the amount of
data it injects into the network and, thus, adapts to different network conditions. TCP exits
the slow start phase and enters congestion avoidance after the window size exceeds a certain
threshold, which is set to one half of the maximal window size value that was reached before the
previous congestion. In the congestion avoidance phase, the window size increases by one packet
when all packets in the current window are successfully acknowledged. Hence, the window size
grows linearly during the congestion avoidance phase. When a packet is lost, TCP decreases the
size of the current congestion window to reduce the amount of traffic it injects into the network.
In most versions of TCP that are currently deployed, such as TCP Reno and TCP Sack, the
window size is reduced by half if three duplicate acknowledges for the same packet are received.
If a timeout occurs, the window size is reduced to one and, after resuming from the timeout
mode of operation, TCP starts the window growth cycle again.
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Figure 2: TCP congestion avoidance model

In the CA model, we only consider window reduction events that are due to triple duplicate
ACKs, ignoring the timeout events and the slow start phase. Hence, the window grows linearly
when no loss occurs and is reduced to half upon congestion. We also make the common as-
sumption that the RTT is larger than the time required to send all packets in a window [16].
The model is very simple and has two parameters: the maximum window size (Wp,,;) and the
packet loss probability (p). The Markov chain for this model is illustrated in Figure 2 and is
explained as follows.

e Definition of the states: The state is represented by a single variable that indicates the
current window size of the TCP sender. This variable ranges from one to the maximum
window size (Wpqz). The initial state depends on the value of the CA threshold, and can
range from 1 to [Wines/2|. Note that the time spent in each state is equal to one RTT.

¢ Transition probability matrix: During the CA phase, the window size increases by
one packet when all packets in the current window have been successfully acknowledged,
provided that the current sender window lies below its maximum value. Thus, the transi-
tions occur after the window is fully transmitted. The probability that all w packets of the
current window are successfully acknowledged is (1 — p)”. Once the window size reaches
its maximum value, it remains at this value until a packet is lost. Whenever a packet is
lost, the TCP sender reduces the window size to half, causing a transition from state w to
state |w/2|. The probability that at least one packet is lost among the w packets in the
current window is just 1 — (1 — p)¥. Therefore,
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3 Model Analysis

In this section we first describe the mathematical framework used to analyze the correlation
structure of both the TO and CA models. We then demonstrate various analytical results
that support our claim of sustained correlation in TCP traffic over a finite range of timescales.
To construct and analyze both models, we use the TANGRAM-II modeling tool ! [17], which
allows us to easily obtain, among other measures, the autocorrelation function for each model
[18]. Using the autocorrelation function, we then perform the numerical procedure described
below to obtain the local Hurst parameter estimate plot. With this plot, we can visually inspect
the timescales over which the model generates pseudo self-similar traffic. For simplicity, we let
the value of the RTT be 1 in both the CA and TO models.

3.1 Estimation of local Hurst parameter

A crucial step in validating our model is demonstrating the fact that it generates pseudo self-
similarity. A technique frequently used in literature for estimating the (local) Hurst parameter is
that based on wavelet analysis. Wavelet based estimators [19] are computationally very efficient,
and robust in the presence of non-stationarities in extracting out the “self-similar” nature of a
given signal. The plot most frequently used to both demonstrate and estimate self-similarity in a
given trace or time series is the energy scale plot. In these plots, the logarithm of the variance of
the wavelet coefficients of the analyzed signal in a particular scale, is plotted vs that particular
scale. The z-axis in these plots is on a log, scale. Linear regions in these plots indicate “self-
similarities”, and the slope of the linear region gives an estimate of the (local) Hurst parameter.
The variance of the wavelet coefficients measures the “energy” in the signal in the given scale. If
we go back to the analysis presented in [20], [19], we see that this “energy” is really an estimate
of the power spectral density of the process about a frequency determined by the particular
scale. The frequency progression in scales is logarithmic, i.e. the j®* wavelet space, denoted by
the scale 277, represents a frequency 2 71g, where 14 is determined by the sampling rate of the
time series and the particular choice of the analyzing wavelet. The (local) Hurst parameter is
then estimated by first estimating the local polynomial decay coefficient of the power spectral
density (=~ 1/f%). Recall that in the energy scale plots the variance (“energy”) is plotted on a
log scale, and since the scales themselves represent a logarithmic progression of frequencies, the
variance scale plot is essentially a double log plot of the power spectral density. Linear regions in
such a plot represent polynomial decay of the power spectral density with a constant coefficient
a. This « is related to the local Hurst parameter via the relation H = (a + 1)/2. Thus, the
wavelet based estimators calculate the Hurst parameter implicitly, with the intermediate step
of estimating the slope of the power spectral density on a double log plot.

The power spectral density of a (stationary) stochastic process is defined as the Fourier
transform of its autocorrelation function. Since we have a technique of calculating the auto-
correlation functions of our Markovian models numerically, we can compute the power spectral

'TANGRAM-II is publicly available at http://www.land.ufrj.br
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Figure 3: Relating the variance scale plot to the double log plot of power spectral density

density of the process by taking a discrete time Fourier transform of the autocorrelation func-
tion. We can then plot the resultant power spectral density on a double log plot, revealing
pseudo self-similarities and we can identify local Hurst parameters by calculating the slopes
of the linear regions of those plots. We use wavelet based estimators later on in the paper to
estimate local Hurst parameters of time series obtained from experiments and simulations, and
to maintain consistency of presentation we plot the analytically obtained power spectral density
using similar axes. That is, the z-axis is plotted using a log, scale of decreasing frequencies
(recall that a wavelet space j corresponds to a frequency of 2 7ug, and the energy scale plots
have wavelet spaces and thus timescales increasing along the z-axis), and the y-axis plots logy,
of the power spectral density (the energy scale plots use log;, of the energies, which in turn are
estimates of the power spectral density). We label the z-axis in the power spectral density plots
by timescales rather than frequency, to both maintain consistency with the wavelet plots as well
as to retain the intuitive nature of plots, in which quantities increase from left to right (timescale
is the inverse of frequency, hence decreasing frequencies represent increasing timescales). Thus,
the reader should visually interpret these plots the same way as the energy-scale plots commonly
used in literature and elsewhere in this paper. An illustration is shown in Figure 3. Interpreting
the left and bottom labelling as the y and = axes, the energy-scale plot is drawn by connecting
the discrete points corresponding to the logarithm of the energies in scales 277 by straight lines.
Those energies and scales map on to power spectral densities and frequencies (timescales) and
interpreting the right and top labelling as the axes, we obtain a smooth curve which goes along
the points plotted in the energy-scale plot.

3.2 Analysis of the TO model

We begin by presenting the results of the TO model. Figure 4 illustrates the local Hurst estimates
obtained under different loss probabilities. The z-axis represents the timescales in units of RT'T
and in logs scale (i.e., RT'T % 2%). The y-axis represents the log of the power spectral density
as discussed in the previous section. From the plot, we observe that all curves have a linear
increasing part and then gradually become a flat horizontal line. As described in the previous
subsection, the local Hurst parameter can be related to the slope of the linear increasing part of
the curve by H = (a+1)/2, where « is the slope of the linear part. The values of H for different
packet loss probabilities can be observed in Figure 4, and they range from 0.5 to 0.8. These



values are consistent with the results obtained from previous studies of real network traffic [1, 3],
where the value of H (greater than 0.5) is used to indicate the degree of self-similarity in traffic.
Note that as the loss probability increases, the local Hurst parameter also increases, provided
the loss probability is kept under 30%. An intuitive explanation for the behavior is that, as
the loss probability increases, the system is more likely to move to higher values of the back-off
exponent (right-hand side of the model), instead of mostly staying in the first few states when
the probability is low. This is likely to introduce more correlation in the generated traffic. From
the results in Figure 4, we also observe that, as the loss probability increases, the timescales at
which the process exhibits pseudo self-similarity increases. For low loss probabilities the model
exhibits little correlation structure, which can be observed by the presence of a flat horizontal
line in the local Hurst parameter plot.

0 T T T T T

Logi9(PSD)

Timescale (27)

Figure 4: Analysis of the Timeout model
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Figure 5: Analysis of the Timeout model under high loss probability

One could ask what would happen if the model was exposed to severe packet loss conditions
and conjecture that the correlation structure would be more pronounced. Figure 5 illustrates
this situation and presents the results seen by the model subjected to high loss rates. Note that
as the loss probability increases past 30%, the time scales over which the model generates pseudo
self-similarity decreases slowly. However, the local Hurst parameter obtained from the slope of
the linear rise of the curves remain around 0.75. Intuitively, when the loss probability is high,
the dynamics of our model drift to the states with high inter-packet delay. However, due to the



finite state space of the model, the largest inter-packet delay is RT'T * 26. The peaks in the
linear rise of the local Hurst parameter curves are due to periodic behavior of the autocorrelation
function. The autocorrelation function has periodic oscillations with period of 64 RTT, which
is caused by the structure of the Markov chain. The reason that these peaks do not appear in
wavelet analysis of measured traces is that wavelet analysis uses an average value of the energy
around each octave.

3.3 Analysis of the CA model

We now focus on the analysis of the CA model. Figure 6 illustrates the results obtained with
the model under different loss probabilities. Here the maximum window size, W4, was set to
30. This is a typical value in TCP connections in real networks.

From the results, we observe that all local Hurst estimate curves have a linear increasing
part, similar to the previous model. Again, the slope of this linear part can be related to the
local Hurst parameter. For all loss probabilities analyzed, the values for H range from 0.5 to
0.8, and are larger for smaller loss probabilities. It’s worth noting that in all of the measures
obtained, the local Hurst estimate plot stops increasing at a given timescale, and becomes a flat
horizontal line. This illustrates that the process is pseudo self-similar only over a certain range
of timescales. This range of timescales also increases as the loss probability decreases.
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Figure 6: Analysis of the Congestion Avoidance model

An interesting question is what happens to the range of timescales and the local Hurst
parameter when the model is exposed to very low loss probabilities. Figure 7 illustrates the
results of models with different low loss probabilities and different values of Wiy,,,. We start by
inspecting the results when the loss probability is 1%. In this case, the Wy,,,; parameter has
very little impact, for values of 30, 60 or 120. All three values exhibit exactly the same local
Hurst estimate curve, as shown in Figure 7. As the loss probability decreases to 0.5%, we notice
that the values for Wi,4, of 60 and 120 are indistinguishable, but the value of 30 cannot achieve
that larger timescale, over which the traffic exhibits pseudo self-similarity. Decreasing the loss
probability even further to 0.1%, we see that the timescales for W, of 60 and 120 differ, and
that the latter has a longer range of timescales at which pseudo self-similarity exists.

Intuitively, this behavior arises from the fact that model tends to drift to states with a larger



window size when the loss probability is low. But since the chain is finite, this drift is inherently
limited. Thus, larger values of Wy, allows the model to perform this drift to rightmost states
of the chain. However, this drift only occurs with very low loss probabilities, since in this case
the probability that the window increases past some large value is not negligible.
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Figure 7: Analysis of the Congestion Avoidance model under very low loss probability

We finish this section by outlining the behavior of both models under different loss probabil-
ities. The local Hurst parameter and the range of timescales over which the TO model exhibits
pseudo self-similarity increases as the loss probability increases. In contrast, the CA model pre-
dicts that the local Hurst parameter and the range of timescales increases as the loss probability
decreases. A final comment is that in the general case (i.e., W4z = 30), the range of timescales
of the TO model is much larger than the range of timescales of the CA model. Thus, these two
mechanisms combined play important roles at different timescales in the TCP protocol.

4 Simulation Scenario

In this section we use simulation to support our claim that the TCP internal mechanisms can
generate pseudo self-similar data traffic over a finite range of timescales. We also validate both
TO and CA models with results obtained from simulation.
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Figure 8: Simulation scenario

All simulations in this work were performed using the NS-2 simulator [21]. A simple network
topology, consisting of a single source, a queue and a receiver, was simulated to investigate the
traffic correlation structure generated by a single TCP session over a lossy link. A single TCP
session allows us to easily control the loss rate of the packet flow. We note that in a multiple
session scenario, a specific TCP flow will have similar behavior to the single session case. This
holds if the loss process applied to both flows is the same. Thus, it suffices to investigate the
single session case.
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Figure 8 illustrates the model being simulated. The sender object acts as an infinite source;
thus it always wants to send as much data as possible. The queue object stores packets from the
source and forwards them to the receiver. We assume that the queue has an infinite buffer space
to minimize the correlation of packet losses. The loss agent is attached to the queue and drops
packets randomly at the time of their arrival according to a Bernoulli process with parameter
p. The receiver simply collects the data packets sent. The data transfer between sender and
receiver is done using the SACK version of the TCP transport protocol [22]. We assume that the
ack packets sent by the receiver are never lost. The parameters varied during our experiments
are the loss probability, the link propagation delay (which is important to determine the RTT),
and W4z, the maximum window size of the TCP protocol. All other parameters were kept
constant throughout the experiments.

In all our simulation experiments, a single TCP flow is investigated and there is no back-
ground traffic. All packets traversing the queue belong to the TCP session. In our experiments,
the simulations were usually executed for 1 or 2 hours of simulation time, corresponding roughly
to the transmission of 10000 to 300000 packets, but this strongly depends on the loss probability.

After a simulation run, two time series of packet versus time can be collected from the traces.
One time series corresponds to the link between the sender and the queue (before the loss agent),
and the other between the queue and the receiver (after the loss agent). In all results presented,
we analyze the first time series. For purposes of our study, we verified that both time series
have very similar behavior, thus our conclusions also hold for the latter time series.

We used the Wavelet Analysis Method to analyze the time series generated by the simula-
tion. Before performing the wavelet analysis, the time series was aggregated into bins with size
smaller than one RTT. The aggregated time series was analyzed using the publicly available
tool developed by Veitch and Abry [19]. It’s important to note that the tool generates a wavelet
graph where the z-axis represents timescales (AGR * 2%, where AGR is the aggregation level of
the time series), and the y-axis represents the "energy” at that timescale with a 95% confidence
interval.

4.1 Observations from Simulation

Figure 9 shows the results of the wavelet estimator for the single TCP session model shown in
Figure 8 with different loss probabilities. The link propagation delay was set to 80ms, the link
bandwidth to 1000 packets/sec and Wi,., was set to 30. Notice that the time to transmit the
maximum window (30ms) is smaller than the RTT (around 160ms), which agrees with previous
assumption. The results shown are for TCP SACK, which is the deployment trend of TCP in
the Internet []. However, we also simulated and analyzed TCP Tahoe, which generated results
very similar to the ones shown here. Note that as the loss probability increases, the timescales
over which pseudo self-similar traffic is present increases. We also note that even for a low loss
probability, the simulation results still exhibit some correlation structure for a small range of
timescales. These two observations will be further discussed in the next section.

Our first observation is that a single TCP flow can exhibit pseudo self-similarity on the
traffic over a finite range of timescales. This is observed in Figure 9. The same observation
was also made in [12] where the authors use a different simulator and a more complex network
model (i.e., more protocol layers). In [13], the authors also made similar observation through
NS simulations, using a sequence of short-lived (15 packets) TCP flows. We point out that the
TCP TO and CA mechanisms are responsible for this pseudo self-similarity in the data traffic

11
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Figure 9: Wavelet analysis of the simulation traces

over some range of timescales.

4.2 Model Validation

In order to verify that the models proposed in section 2 actually capture the general behavior
of the TO and CA mechanism, we validate some measures obtained from the models with sim-

ulation results. We start by validating the TO model and subsequently we present a validation
for the CA model.

Using the TO model, we can compute the limiting probabilities of the value of the timeout
back-off exponent just before a packet is transmitted. Let B be a a random variable denoting
this value. The probability density function, P[B = k] k = 0,...,6 can be obtained by solving
the model numerically and analyzing the traces from the simulation. The values for B can be
easily obtained in the simulation since TCP maintains this variable as part of its current state.
Note that the timeout mechanism is well captured by the random variable B, and its value is
independent of other internal mechanisms.

Figure 10 presents the results obtained for the model and the simulation with a 95% confi-
dence interval. The simulation setting had Wy,,, = 30, and propagation delay equal to 80ms. A
total of 10 simulation runs were executed, each run lasting a few hours in simulation time, in or-
der to obtain accurate estimates. The results from the model match the simulation results quite
well for higher values of loss probability. But as the loss probability decreases, the simulation
results starts to starts to deviate from the model.

An explanation for this small discrepancy is that for low packet loss probabilities, it is likely

12



Figure 10: Comparison between TO model and simulation results
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Loss probability | E[W], Wiae = 30 | E[W], Winae = 60 | E[W], Wiee = 120 | E[W], classical formula
30% 1.9 1.9 1.9 2.2
20% 2.4 2.4 2.4 2.7
1% 12.4 124 124 12.2
0.1% 26.6 38.6 40.8 38.7

Table 1: Expected value for window sizes in the CA model

that a lost packet will not lead to a timeout in the simulation, while in the model every packet
loss leads to a timeout. Note that in the simulation (as in the real TCP protocol) packets
can be retransmitted due to triple duplicate acks, which occur more frequently under low loss
probability. Thus, the model overestimates the limiting probabilities for values of B greater than
zero. The discontinuity and the large confidence intervals for the low packet loss probability are
due to the fact that for low loss probabilities, the probability that B assumes a larger value is
very small (i.e., 1079), and cannot be easily obtained through traditional simulation techniques.

The validation of the CA model with simulation results is more subtle, since the inner
mechanisms of the TCP protocol that affect the window size cannot be easily isolated (i.e.,
slow start, TO mechanism, fast retransmit). Therefore, the validation with NS simulation is
difficult and not meaningful, since many functionalities of TCP would have to be disabled in
order to obtain a correct and fair estimate of the window size. To cope with this problem, we
investigate the expected window size when the model is in steady state, namely, E[W]. This
result can be compared with the classical TCP formulas for throughput and expected window
size: E[W] = k/,/p, where p is the packet loss probability and & is a constant between 1 and
1.5 [23, 24]. We use the traditional value of k = 1/3/2 = 1.22. Note that this classical result
models solely the CA phase of the TCP protocol and ignores the presence of slow start, timeouts
and other enhanced features. The formula also assumes that W,,,, will be large enough not
to interfere or limit the expected value. Since the model isolates the CA mechanism from the
complete protocol, we expect the model to agree with the classical formula.

In Table 1 we present the values of E[W] obtained from our CA model under different
loss probabilities and with different values for Wi, 4;, together with the results from the classical
formula above. Note that the model and the classical formula yields similar results (W4, = 30)
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for various loss probabilities. However, for very small loss probabilities, W,q; parameter has a
significant impact, since it establishes an upper bound for the window size. But by increasing
the Wiae parameter, out model is able to capture the value of E[W] as predicted by the classical
formula. In all cases where the maximum window size was large enough, the model presented
results very similar to the classical E[W] formula.

The expected window size will also have a significant impact on the range of timescales over
which the model generate pseudo self-similar traffic. This will be discussed in detail in the
next section. For now, note that for very low loss probabilities, E[W] depends on the value of
Wnaz parameter, and that decreasing the loss probability increases the E[W]. This behavior is
expected and can be observed both from the model and the classical formula results.

5 Discussions

In this section we first investigate different aspects of the models contributing to the shape of the
local Hurst estimate curve. In particular, we identify the timescales at which the models produce
pseudo self-similar traffic. We then provide a possible explanation for the pseudo self-similarity
observed in real network traffic based on our results for a single TCP flow.

We start by revisiting the CA model and relate the knee of the local Hurst estimate curve
where the linear increase starts to flatten to a horizontal line. Figure 11 presents the same results
obtained in Section 3 but with a cross at the end of the range of timescales over which the local
Hurst estimate curve shows linear growth. These points were approximated by loga(RT'T *
E[W]), with RTT equal to 1. We observe that these cross points do establish a timescale
beyond which the traffic correlation structure disappears. This observation holds true for all
the results obtained from our model. Since E[W] from the model agrees with the classical TCP
formula, as shown in Section 4, the classical formula can be used to predict the timescales at
which one expects to see pseudo self-similar traffic, provided that Wiy,,, is large enough not to
limit the TCP window growth.

Interestingly, in [25], the authors analyze the congestion avoidance behavior of TCP from a
control theoretic standpoint. One of their findings is that the characteristic timescale 2 of TCP
is directly proportional to E[W]. Our observations are consistent with that result and could
very well be explained by it.

A similar observation can be drawn from the TO model. Revisiting the results presented in
section 3, we would like to identify the range of timescales that the local Hurst estimate curves
grows linearly, and relate this to the parameters of the model. From observation, we notice that
for high loss probabilities, this value is RT'T % 25, which is the largest timescale associated with
the model. Note that the probability of an inter-packet delay being greater than RTT x 25 is
zero. Thus, all events in the model occur within this timescale, and this value can be seen as an
upper bound. However, in the TCP protocol, the exponential back-off uses the RTO value as
its basic unit, instead of the RTT value as used in our model. Therefore, the largest timescale
associated with the pseudo self-similarity behavior is RT'O x 26. It has been observed [16] that
the RTO value ranges from 2.5 to 10 times the RTT value. We are still trying to obtain a
simple relationship between the parameters (i.e., loss probability) and the range of timescales
over which the pseudo self-similarity is present in the data traffic. Until we do so, we use this
intuitive upper bound for the range of timescales that the TO mechanism generates pseudo

2they refer to it as the ”pole of TCP dynamics”
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Figure 11: Range of timescales of the CA model

self-similar traffic.

In previous sections, we show that the exponential back-off and congestion avoidance mech-
anisms in TCP protocol lead to pseudo self-similarity in a single TCP flow. However, real
Internet TCP traffic can contain many TCP flows, each with different source-destination pairs.
Our analysis does not immediately explain why aggregated TCP flows could exhibit pseudo
self-similarity. Thus, we provide a plausible argument for the pseudo self-similarity of real ag-
gregated TCP traffic in Internet. If different TCP flows experiences different bottleneck links,
the traffic pattern of the TCP flows will then independent of each other and exhibit pseudo
self-similarity. The assumption of independent bottleneck links is reasonable in the backbone
traffic, since most congestion occur at the edges of the network and the backbone links are usu-
ally underutilized. Intuitively, it is expected that pseudo self-similarity will be preserved when
the independent flows are aggregated together. It has been shown that the aggregation of exact
(asymptotic) self-similar processes is still an exact (asymptotic) self-similar process with Hurst
parameter equal to the maximum among those of the individual processes [26]. We think this
is one of the factors that contributes to the pseudo self-similarity in the data traffic observed in
real networks.

In [14], the authors show how T'CP congestion control can propagate pseudo self-similarity
between flows traversing the same bottleneck link. Basically, if one of the flows traversing the
link generates pseudo self-similar traffic, then pseudo self-similarity can be passed on to other
TCP flows sharing that common bottleneck. In their paper, they measured a long-lived TCP
flow over a trans-Atlantic link, and claim the TCP flow became pseudo self-similar by adapting
to the background traffic at the bottleneck link.

Using the values of their experiment setting and the formula (eq. 29) in [16], also assuming
the RTO to be in the range of 2.5 to 10 times the RT'T, which is a common range as noticed in
[16], we estimate the loss rate seen by the TCP flow to be in the range of 0.08 to 0.14. With this
loss probability range our TO model predicts a local Hurst parameter of 0.69 to 0.72, which is
comparable to the Hurst parameter reported by their trace analysis, 0.74. Moreover, our model
predicts that the timescale for pseudo self-similarity goes up to 26 RTO, which corresponds to
the range of 8 to 10 on the x-axis in Figure 1(c) in [14]. These timescales agree with the knee
point where the wavelet analysis curve starts to turn flat. It is surprising that the TO model
can predict the local Hurst parameter and its timescales quite well. Therefore, another equally
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plausible explanation for the pseudo self-similarity observed in their experiment is the TCP TO
mechanism itself.
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Figure 12: Wavelet analysis of traces between North and South America

We now investigate if our models are suitable in predicting the correlation structure of TCP
traffic in real networks. To accomplish this, we collect and analyze TCP traces from the Internet
and compare the traffic characteristics to the ones obtained from the models.

A set of one-hour long TCP traces from east coast to west coast over vBNS and from North
America to South America over international link were collected for seven consecutive days
using tcpdump 3. The packet loss probability observed in some of the traces from North to
South America is around 0.13. Figure 12 illustrates the wavelet analysis for two representative
traces with this loss probability. From the figure, we observe that the traces exhibits pseudo
self-similarity with a local Hurst parameter of around 0.77 and largest timescales of 27 and 28
RTT, which corresponds to 9 and 10 on the z-axis. For a loss probability of 0.12, our TO model
predicts a local Hurst parameter of 0.72 and largest timescale of RT'O %25, which corresponds to
27 to 2° RTT, assuming that RTO takes values from 2.5 to 10 RT'T. Note that the model again
gives a good estimate for the local Hurst parameter and the largest timescales with respect to
the trace analysis. The TO model is used here due to the high loss probability, under which the
congestion avoidance mechanism seldom takes effect.

As for the traces obtained between east and west coasts, many of them present a packet
loss probability of around 0.018. Wavelet analysis of the traces show a local Hurst parameter
around 0.86 and largest timescale about RTT %26, for traces with this loss probability. However,
our CA model predicts a local Hurst parameter of 0.75 and largest timescale of 2* RTT. This
discrepancy is not surprising since even under low loss probabilities, there are a considerable
number of timeouts occurring, which can impact the traffic correlation structure. Note that our
CA model only considers the congestion avoidance mechanism and ignores all other aspects of
TCP, including timeouts.

6 Conclusion

In this paper we demonstrate that the TCP protocol can generate traffic with pseudo self-
similarity over a certain range of timescales. In particular, we point out that the timeout

3tcpdump is publicly available at http://www-nrg.ee.lbl.gov
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exponential back-off and the congestion avoidance mechanisms are responsible for this correla-
tion structure. We show that under low loss probabilities the effect of the congestion avoidance
mechanism on the traffic correlation structure is more pronounced while the timeout mechanism
has minimal impact. In contrast, under high loss probability the timeout mechanism has larger
impact on the traffic correlation structure, while the effect of the congestion avoidance mech-
anism is minimal. Together, these two mechanisms can generate pseudo self-similar network
traffic under a wide range of packet loss probabilities.

The results obtained from the two analytical models presented in this paper support this
claim. We investigated the validity of our claim using simulation and analysis of real trace
measurements from the Internet. We show that the local Hurst parameter predicted by our
models is in the same range as observed in the Internet traffic and other related works. We also
identified the range of timescales that both mechanisms generate pseudo self-similarity. These
timescales are related to the parameters of our models.

We do not claim that the TCP protocol is the solely cause of pseudo self-similarity widely
observed in network traffic. Many other studies have also tried to explain the cause and the
conditions under which the network traffic can exhibit pseudo self-similarity. We believe that
some of those causes are plausible and can have impact on the correlation structure of the traffic.
But most likely, the origin of pseudo self-similarity is due to one or more factors, including the
TCP protocol. Hence, one should be careful when attributing the origin of traffic characteristics
to a specific cause.

As for future work, we plan to extend our work to a more thorough TCP model, that
combines the mechanisms of the protocol suite. We would also like to investigate how can the
TCP protocol be modified in order to reduce the correlation structure currently present in the
traffic it induces.
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