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Abstract

Multimedia streaming applications consume a significant amount of server and network resources due to
the high bandwidth and long duration of audio and video clips. Patching and periodic broadcast schemes use
multicast transmission and client buffering in innovative ways to reduce server and network resource use. Current
research in this area has focussed on the theoretical aspects of these approaches, rather than on the challenges
involved in implementing and deploying such scalable video transmission services.

In this paper, we first describe the design and implementation of a flexible streaming video server and client
testbed that can support emerging streaming services such as periodic broadcast and patching. We explore and
present solutions to the system and network issues involved in actually implementing these services. Using this
testbed, we conduct extensive experimental evaluations, measuring performance both at the server as well as end-
end performance at the client, over the local network as well as over VBNS, and present key insights gained from
our implementation and experimental evaluations.

I. INTRODUCTION

The emergence of the Internet as a pervasive communication medium has fueled a dramatic convergence of
voice, video and data on this new digital information infrastructure. A broad range of multimedia applications,
including entertainment and information services, distance learning, corporate telecasts, and narrowcasts will be
enabled by the ability to stream continuous media data from servers to clients across a high-speed network.

Several challenges must still be met, however, before high quality multimedia streaming becomes a widespread
reality. Many of these challenges arise from the high bandwidth requirements (4 —6 Mbps for full motion MPEG-
2) and the long-lived nature (tens of minutes to 1 — 2 hours) of a number of video applications. These charac-
teristics place significant load on both network and server resources. The scenario is further complicated by the
fact that the client population is likely to be both large and heterogeneous, with different clients asynchronously
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issuing requests to control their received media streams. Because of these concerns, there has been tremendous
interest in developing algorithms for efficient distribution of network video to such a client population. Periodic
broadcast and patching [5-9], described in more detail in section 2, are two such approaches that have received
considerable recent attention. They exploit the use of multiple multicast channels to reduce network and server
resource use over the case of multiple unicast transmissions, while at the same time satisfying the asynchronous
requests of individual clients and providing a guaranteed bound on playback startup latency.

To date, existing research on periodic broadcast and patching has been algorithmic in nature, with performance
studied either analytically or through simulation. In either case, simplifying assumptions are necessarily made
(e.g., abstracting out control and signaling overhead, operating system issues such as the interaction between disk
and CPU scheduling, multicast group join and leave times, and more) in order to evaluate performance.

In this paper we report on the implementation, measurement, and analysis of a working video server testbed im-
plementing both periodic broadcast and patching algorithms. Our testbed consists of a Linux-based, application-
level video server and a collection of both Linux- and Windows-based clients; we conduct both LAN and WAN
evaluations. While there are a number of existing production (e.g., Apple Darwin server, RealServer, Windows
Media Server, Oracle Video Server) and experimental [3,4] video server efforts, these use either unicast stream-
ing to clients, or a single IP multicast stream; no empirical evaluations of either periodic broadcasting or patching
algorithms have been made. The goal of this paper is thus to investigate the underlying system issues that arise
when putting such idealized algorithms intro practice.

Our results show that network bandwidth, rather than server resources, is likely to be the bottleneck - under pe-
riodic broadcast, our server can easily process a client request rate of 600 requests per minute (returning periodic
broadcast schedule information to each client), while at the same time streaming video segments over multiple
multicast groups and missing few data transmission deadlines. Under patching, our server can come close to
fully loading a 100Mb network connection with patched-in clients, again while missing few data transmission
deadlines. Our measurements also show that in a loaded LAN environment, an initial client startup delay of less
than 1.5 seconds is sufficient to handle startup signaling and absorb data jitter induced at either the client or the
server. Finally, our results show that dramatic performance improvements can be gained via application-level
data caching and that further gains can be realized under an optimal data caching policy. More generally, our
results highlight the importance of combining theoretical work with implementation and empirical evaluation to
fully understand systems issues.

The remainder of the paper is organized as follows. Section II discusses periodic broadcast and patching
algorithms, identifies the system issues we face in implementing periodic broadcast and patching, and gives a high
level overview of the platform architecture. Section III describes the salient features of the server architecture,
and Section IV describes the signaling protocol. Our experimental measurements, analysis and evaluation are
presented in Section V. Section VII reflects on the important lessons learned and describes ongoing work. Finally,

Section VIII concludes the paper.



II. DESIGN OVERVIEW

In this section we present background material, identify key design principles of our streaming media testbed,

and then present an overview of the server and client architectures.

A. Streaming multimedia, multicast, periodic broadcast, and patching

Many Internet multimedia applications have asynchronous clients that may request the same video stream
at different times. Making high-volume video services economically viable requires effective techniques that
minimize the incremental cost of serving a new client, while also limiting client start-up latency and the likelihood
of rejecting requests due to resource constraints. For popular video streams, server and network resources can be
significantly reduced by allowing multiple clients to receive all, or part of, a single transmission [1,2,5-8]. For
example, the server could batch requests that arrive close together in time [1], and multicast the stream to the set
of batched clients. A drawback of batching, however, is that client playback latency increases with an increasing
amount of client request aggregation. Several recently proposed techniques, such as periodic broadcast and
patching [5-9], overcome this drawback by exploiting client buffer space and the existence of sufficient client
network bandwidth to listen to multiple simultaneous transmissions. These capabilities can be used to reduce
server and network transmission bandwidth requirements, while still guaranteeing a bounded playback startup
latency.

Periodic broadcast schemes [1,5-8] exploit the fact that clients play back a video sequentially, allowing data
for a later portion of the video to be received later than that for an earlier portion. A period broadcast server
divides a video object into multiple segments, and continuously broadcasts these segments over a set of multicast
channels. To limit playback startup latency, earlier portions of the video are broadcast more frequently than later
ones. Clients simultaneously listen to multiple channels, storing future segments for later playback.

In patching or stream tapping [6,9-11], the patching server streams the entire video sequentially to the very
first client. Client-side workahead buffering is used to allow a later-arriving client to receive (part of) its future
playback data by listening to an existing ongoing transmission of the same video; the server need only transmit
afresh those earlier frames that were missed by the later-arriving client. As a result, server and network resources
can be saved. Unlike batching, patching allows a client to begin playback immediately by receiving the initial
video frames directly from the server. Similar to periodic broadcast, patching exploits client buffer space to store
future video frames. Unlike periodic broadcast, a patching server transmits video data only on-demand, when
new clients arrive. For a detailed description of periodic broadcast and patching, the reader is referred to the

references cited above.

B. Design Principles

The design and implementation of our video server testbed is based on the following principles.



e Modular, extensible architecture: Since we envisage using our testbed for evaluating various streaming media
techniques, the architecture of our server and end-client is designed in a modular and extensible manner. This
facilitates easy addition of new streaming techniques and modifications of existing techniques in the server
or client. The addition of a new technique such as patching, for instance, involves writing a new module that
“plugs” into the existing server architecture and requires minimal changes to other server code.

e Separation of control and data functionality: Both server and client implementations separate control and
data functionalities. Since the control and data path impose significantly different demands on the underlying
system, such separation allows us to independently optimize each component. A clean separation of control
and data paths also allows us to experiment with different server architectures.

o Standards-based architecture: Our server and client implementations are based on existing streaming media
standards such as RTP [14, 15], RTSP [16] and SDP [13]. The advantages of a standards-based architecture
are two-fold. First, it allows us explore how various streaming media techniques such as periodic broadcast
and patching can be implemented in the context of these standards. Second, it helps us identify potential
limitations of these standards in supporting such techniques.

o Support for IP Multicast: Our server and client implementations are designed to take advantage of IP multi-
cast where available (unicast can used in environments where IP multicast is not yet deployed). The use of
IP multicast facilitates more efficient use of server and network resources. Of particular interest to us in this
paper are practical considerations that arise in the use of IP multicast (e.g., multiplexing a finite number of
multicast channels among users, join/leave latencies for users and techniques to hide such latencies).

e Scalability and resilience to network impairments: A key goal of our server design has been to keep system
overhead low. This allows our server to scale to a large number of concurrent users and handle large volumes
of streaming media data with timeliness requirements. Our end-clients, on the other hand, are designed to
be resilient to packet losses and delays in the network.

o Use of off-the-shelf components: Our server and client are designed to run on vanilla operating systems such
as Linux and Windows. The limitation of using a generic best-effort operating system platform, however, is
that we do not benefit from the numerous special-purpose resource management techniques (e.g., rate-based

scheduling) that have been proposed recently.

C. Client and Server Overview

Figure 1 provides a high-level view of our video server testbed, showing the server and one of several clients.
We close this section with a high-level overview of the

server and client architecture; subsequent sections then describe the server and signaling components in more
detail.

As shown in Fig. 1, our server consists of two main modules, a Server Control Engine (SCE) and a Server Data
Engine (SDE), embodying our principle of of separating control and data functionalities.

o Server Control Engine (SCE): The control engine is primarily responsible for handling (control) interac-
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Fig. 1. Architecture of Streaming server and client testbed

tions between the server and end-clients. These interactions are based on the Real Time Streaming Protocol
(RTSP) and the Session Description Protocol (SDP). The control engine listens for RTSP client requests
on a well-known port. For each such request, it computes: (i) a transmission schedule that specifies how
each video segment should be retrieved from disk and transmitted to the client over the network, and (ii) a
reception schedule that specifies the order in which the end-client should receive this data. The transmission
schedule is then handed over to the server data engine, which then retrieves and transmits data based on this
schedule. The reception schedule is formatted as an SDP message and sent to the client in an RTSP response;
the client then uses this schedule to receive data on the specified multicast channels.

o Server Data Engine (SDE): The server data engine uses directives from the control engine to coordinate
the retrieval of video data from disk, and transmit data to end-clients using the Real-time Transport Protocol
(RTP). Conceptually, the data engine is an efficient data pump that is designed to handle a high volume of
data at low overhead (for instance, by storing pre-packetized RTP streams on disk, which lowers packetiza-
tion overheads at transmission time). Efficiency is an especially important consideration in our design, since
the data engine will typically need to simultaneously retrieve and transmit multiple portions (segments) of
video.

An end-client interacts with the server via signalling and receives data transmitted by the server; it supports

a number of streaming techniques such as sequential unicast, periodic broadcast and patching. Conceptually,
our client acts as middleware between the server and the actual video player—it receives data from multiple
video segments, possibly in out-of-playback order, and presents the illusion of a logically sequential stream to
the player. This clean separation of functionality between the end-client (which is responsible for signalling
and receipt of data) and the video player (which is responsible for decoding and display) allows a great deal
of flexibility. For instance, it allows our end-client software to interoperate with several widely used players,
including mpeg2dec (in public domain [18]), the Real player and the Windows media player!

Like the server, our end-client consists of two key components that separate the data and control functionalities:

1We have successfully integrated our end-client software with the mpeg2dec and the Real player; a port of our end-client software with

the Windows Media player is currently in progress.



the client control engine (“Client CE” in Figure 1) and the data engine (“Client DE”). The client control engine
is responsible for signalling with the server. It obtains user requests using a GUI interface and communicates
them to the server using RTSP messages. Our client currently supports user interactions such as play, stop,
pause, resume and indexed jump; other interactive operations such as fast forward and rewind are currently
under implementation. The client data engine is responsible for receiving RTP packetized data transmitted by the
server; the reception schedule sent by the server indicates the timing and amounts of data that will be received
from each multicast channel. The received data is then presented to the player software in playback order for

decoding and display. We next describe the server architecture and client-server interactions in further detail.

III. SERVER

As noted above, the two main server components are the server control engine (SCE) and the server data engine

(SDE). We consider each of these in turn.

A. Server Control Engine (SCE)

The SCE is responsible for (i) receiving client requests, and exchanging control information with the requesting
clients, (ii) determining the server transmission schedule for each video and communicating this to the Server
Data Engine, and (c) computing the video reception schedule for each requesting client and communicating this
to a client. The SCE and SDE communicate with each other over a TCP connection.

The SCE is implemented as a multithreaded single process system. A single listener thread listens on a well
known port for incoming client requests, and places an incoming request on a message queue. A pool of free
scheduler threads wait to serve requests on the message queue. One thread from the pool will wake up and
retrieve an incoming request. This scheduler thread is then responsible for (i) subsequent communications with
the client, (iii) generating an abstract transmission schedule for the server data engine, and (iii) generating and
transmitting a reception schedule to the client.

The scheduler thread determines whether there is an already-scheduled transmission for that video that can be
used to satisfy this client, or whether an additional transmission of the video (or part of it) is needed. In the latter
case, the scheduler will be responsible for updating the data engine’s transmission schedule, which is used by
the SDE to determine what parts of the stream are to be sent out, and when. Based on the server transmission
scheme, the scheduler thread computes a reception schedule for this client and transmit this schedule back to the
client.

The data structure for the transmission schedule must be carefully designed in order to be sufficiently general
to express a transmission schedule for different video delivery schemes (e.g., batching, patching, and periodic
broadcast). Figure 2 illustrates this structure. For each media stream being currently transmitted, there is a data
structure named Media, containing stream-specific information such as the file location, length, and type of the
stream.

The Media data structure also contains a list of structures, with each element corresponding to a multicast or

unicast channel on which some part of the video is to be transmitted. Since a video can be transmitted on multiple
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channels simultaneously, a list of channels is needed. Each channel structure contains information identifying
the corresponding channel, type of transmission (multicast or unicast), and a linked list of structures known as
“work requests.” The work request list contains information that determines what data will be transmitted on that
channel, and when.

Each work request element corresponds to a sequence of consecutive frames in the media stream, and contains
schedule information used by the SDE to determine when this sequence of frames is to be transmitted. Each
work request contains the following items:

o Beginning and end frames numbers of the sequence.

« Time to initiate transmission of the sequence.

e Repeat Count : Number of times the current work request should be repeatedly serviced, before moving to

the next work request.

e Pause Time: Amount of time to pause after a work request finishes before repeating it.

We note that an important advantage of specifying the transmission schedule at the frame level is that this allows
uniform handling of different video file formats, e.g., MPEG, AV], etc., at the SCE.

Let us illustrate the representation of a transmission schedule via a simple example. Suppose the server must
deliver a 45 sec (1350 frame) video according to the following transmission schedule : (i) initiate transmission
of the frames 0 — 100 on some address at time ¢. (ii) initiate transmission of frames 100 — 1350 on the same
connection at some later time #;. The work request list associated with channel 1 in Fig. 2 shows the abstract
representation for this schedule. Channel 1 in the video structure is initialized with the outgoing address of this
stream. The linked list of work requests indicates that at time # frames 0 — 100 will be played and frames
100 — 1350 will be played at time to.

Many scheduling schemes such as periodic broadcast require the repeated transmission of a sequence of frames.
Suppose we also wish to transmit the above video on a second connection, once every minute starting at time §,
for a total of five transmissions. We allocate a new channel (Channel K in Fig. 2) and fill out the appropriate
address. We associate a single work request with this channel, with Start Frame=0, End Frame=1350. There is a

15 sec gap after each complete transmission of the video, and so the Pause field is set to 15 sec. The Repeat field



State of Channel at time t Last time free

C free |used | free | used C t=10

H H

A free used A t=23

N used N t=2

N used | free | used N t=5

E free | used | free E t=0

L L

S free | used | free S t=89
Extensive Scheduling Method Horizon Scheduling

Fig. 3. Possible Schemes to Schedule Multicast requests

is set to 4, indicating the video transmission will be repeated four additional times after the first run.

The final important piece of the SCE is the channel pool. Since multicast addresses are a finite resource, the
server will need to perform some level of scheduling to allow for address/channel reuse; this is done via the
channel pool.

Since work is scheduled out in time, there are two naive ways to represent the schedules of a multicast channel.
For a continuous-valued time, a set of linked lists could be used to represent free intervals; leading to a search
across the multicast channels for an interval of time in which nothing else is being sent. This problem can
be reduced into a discrete case by selecting only intervals of time, leading to a bitmap operation to search for
intervals of free time (Fig. 3). However, this operation is also computationally expensive.

Instead we use a technique called Horizon Scheduling (HS) [19]. HS allows us to store the last free time for
each multicast channel. When a channel is needed for an interval of time, the server will do a linear search across
the multicast channels(Fig. 3). It will look for the multicast channel with the latest free time that is before the
beginning of the new interval. Once found, the server will update the multicast channels free time to be the end

of the interval.

B. Server Data Engine (SDE)

The SDE is responsible for retrieving video streams from disk and then transmitting them on one or more
network connections in accordance with the abstract transmission schedule received from the Server Control
Engine. The SDE must therefore handle large volumes of video data and with real-time deadlines. Since the
SDE runs on top of Linux, which offers no real-time streaming support, the SDE is exposed to the occasional
unpredictable timing behavior characteristic of non-realtime OSs.

The SDE is a multithreaded, single-process entity. For each video that is currently being transmitted, the SDE
creates two new threads. A disk thread (DT) handles retrieval of the video data from disk into main memorys;
a separate network thread (NT) transmits the data from main memory to the network according to the server
transmission schedule. A global buffer cache manager is responsible for allocating the equal-sized free memory

blocks that form the buffer cache for this video. Both DT and NT operate in rounds. The disk round-length is &
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and the network round-length is 7. In each §-round, the disk thread wakes up, uses the abstract server transmission
schedule to determine which parts of the video need to be retrieved in that round, issues asynchronous read
requests for retrieving that data into main memory, and then sleeps until the next round. In each 7-round, the
network thread wakes up, determines (from the abstract server transmission schedule) the data that needs to be
transmitted on each channel in that round, transmits that data from the main memory buffer cache, and goes to
sleep.

The separation of disk retrieval and network transmission activities is motivated by the very different nature
of the disk and network subsystems. It is well-known that the disk subsystem can introduce significant unpre-
dictability in the timing and has high overheads. To prevent starvation due to high and variable disk access times,
data is prefetched from disk and temporarily staged in main memory. To reduce the impact of disk overheads, we
(i) employ asynchronous read requests, and (ii) issue read requests for large chunks of data at a time. Therefore
the disk round, 4, should be relatively large, and is currently set to 1 sec. For the network, it is desirable to avoid
injecting bursts of traffic. Therefore the network round length, 7, is typically much smaller than §, so the NT has
to transmit only a small amount on any channel at a time.

Since the DT acts as the producer and the NT as the consumer of data in the main memory buffer cache, a
mechanism is necessary to ensure that the NT does not attempt to go ahead of the DT or access the part of the
buffer cache that the DT is simultaneously modifying. We outline below a method of synchronizing the NT and
DT using only three locks(Fig. 4).

Let us define m = g, the ratio of d-to-7. Initially the disk and network thread each take a lock. For each
completed loop of the disk thread, the disk thread attempts to grab the next lock. The three locks should be
considered as a loop where the next lock moves along one direction. Once the disk thread gets the next lock it
unlocks its previous lock and increments the & counter to show how many times the disk thread has ran the loop.
For the network thread, the current value of the 7 is multiplied by m. If the product is greater than or equal to the
current ¢ counter then the next lock is acquired.

Note that the disk thread must guarantee that the data will be in position before it moves to the next lock, and
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the disk thread will not erase a block of data that has been called up less than 2§ rounds ago. As a consequence
this places a lower bound of § for start up latencies in the data engine. Note also that a key advantage of this
novel 3-lock arrangement is that in each §-round, the DT or NT needs to access only a single lock. This is a much
more lightweight mechanism than conventional approaches which would have associated locks with each buffer
cache block, and would require the DT or NT to access a potentially large number of locks in each round.

At the end of a DT or a NT’s round, the thread must give up the CPU and wait for the next round. The SDE
is running in a Linux-based non-real-time environment, with a very coarse (10ms) scheduling granularity. This
means that sleeping threads are rescheduled as much as 10ms apart. Therefore is no guarantee that the thread
will wake up at its designated wakeup time. Even if it wakes up on time, it is not guaranteed to get the CPU
immediately. A mechanism is thus required to prevent these delays from accumulating and adversely impacting
system performance. In our design, when a thread completes its activities for a round, it checks to see if it has
fallen behind, i.e., if the start time the next round has passed. If so, the thread starts servicing the next round

instead of going to sleep.

IV. SIGNALING PROTOCOL

Client-server communication in our testbed is based on the Real Time Streaming Protocol (RTSP) [16] and
occurs over a separate TCP connection. The steps from when a client issues a request to when it receives a
Response message (see Figure 5) are as follows:

1. At time t., the client sends a PROBE message to the server. The server receives the message at time # and

immediately returns an ACK message.

2. The ACK message reaches the client at time 2. The client calculates the RTT as #2 — ¢.. Based on the RTT,
the client estimates the one-way-delay from the server to the client. Exact estimation of this one-way-delay
is not trivial, because the route from server to client and from client to server are not necessarily the same.
Also routes followed by multicast and unicast sessions may be different. As an initial estimate, we choose
half of the RTT as the one-way-delay.

3. The client composes an RTSP DESCRIBE message and piggybacks with it additional information (using



Video Format Length(min) | Frame rate | Bandwidth(Mbps) | File size(MB) | # of RTP pkts
Leno | RealMedia 8.4 13 0.196 12.74 25180
Hacker | MPEG-1 18.6 11 0.998 153.69 131939
Bladel | MPEG-1 12 30 1.99 180.1 155146
Blade2 | MPEG-1 15 30 3 337 296706
TABLE I

SAMPLE VIDEOS FOR THE EXPERIMENTS.

the SDP description language) such as its estimates of the one-way-delay and initial setup time. The setup
time includes time for creating sockets, setting initial parameters, etc. This is obtained based on off-line
profiling of the client code.

4. The server receives the RTSP DESCRIBE message at time 2. It calculates a reception schedule for this
client and piggybacks the Reception Schedule (in SDP format) on the RTSP RESPONSE message to the

client. The client receives the RS at time #.

V. EXPERIMENTAL SETTINGS

In this section, we describe the evaluation of the platform. The measurements are divided into two sets. One
set is carried out locally. It is used to show the system’s ability to run broadcast schemes in an ideal local area
network. In particular, we explore the end-end performance and the caching effect. The other set is carried out
over vBNS. This initial study of a wide area network focuses on the server’s performance at delivering streams
across the network in preparation for our future work.

The videos used for the experiments are listed in Table I. The bandwidth of the videos varies from 196.8Kbps
to 3Mbps. The length of the video is in the order of several minutes. The number of RTP packets refers to the
total number of packets after RTP packetization based on RFC2250 [15]. The maximum size of each packet is
1500 Bytes. In all experiments, the server transmits each stream at the playback rate on each channel. That is, if a
video is to be played at 30 frames per second, the server transmits the video at 30 frames per second. Due to lack
of space, we do not demonstrate here the tuning experiments on § and 7. The experiments show that improper
setting of 6 and 7 lowers the server performance and the settings of § to 1 sec and 7 to 33 msec leads to good

server performance. Throughout the experiment, we use this setting for § and 7.

A. Local Area Configurations

The configurations for end-end measurement in the local environment is shown in Fig. 6. Both configurations
contain a server, a client, and a client simulator. All three machines are 400 MHz Pentium II with 400MB RAM
running a Linux OS. The server sends out three separate copies of the Blade2 video listed in Table I using a
selected broadcast scheme. The client simulator generates a background load of client requests to the server in a

Poisson manner choosing one of the three videos with equal probability. The server sends the video to the client
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simulator according to the request sent. The client simulator does not actually collect video data from the server.
Once the background load reaches a steady state, we run a real client to request the full stream and monitor the
statistics on the stream arrival data.

The differences between the two configurations is where the background load is directed to. In Configuration
I, the background load is sent out to the switch where it will interfere with the data being sent to the real client.
In this configuration it is noticed that the 100Mbit link will become a bottleneck in the system. In Configuration
II the background traffic is sent on a private link to the client simulator so that results collected at the client can

be determined to be caused by bottlenecks of the server other than the network link.

B. vBNS Configuration

Our vBNS tests include four sites. EC1 and EC2 are located on east coast and connected to vVBNS. Similarly,
MW1 and WCI1 are located in the midwest and west coast respectively. All sites use Linux based servers and

clients to make measurements on the stream quality sent from other sites.

C. Broadcast Algorithms

We chose a representative algorithm from the periodic broadcast family and the patching family of broadcast
algorithms. In both cases we assume that the client has enough buffer to store the length of the video.
e Periodic Broadcast: For periodic broadcast, we use the GDB [6] segmentation scheme. In GDB we divide

the stream into segments. The length of the first stream is denoted by /. The interior segments are of size

2i=1] where 1 < i < |log, L|. The length of the last segment is denoted as L —Z}lzolgz LT 9i-17 1t should be
noted that the length of the first segment determines the maximum client startup delay under ideal system and
network conditions. A smaller value of [ reduces this delay, but may increase the number of segments and
hence the transmission bandwidth requirements. For the results reported, we use three values of I: 3 seconds,
10 seconds, and 30 seconds. Throughout the experimental section we use [-GDB to indicate a GDB scheme
where the initial length is of size I. The lengths of the resulting segmentation schemes for the 900 sec video

Blade? are reported in Table II. In each case the actual length of the last segment is less than the length



Scheme | Number of segments Segment Lengths(sec)

3-GDB 9 3,6,12,24,48,96,192, 384,134.5(768)

10-GDB 7 10, 20, 40, 80, 160, 320, 270.9(640)

30-GDB 5 30, 60, 120, 240, 450.9(480)
TABLE II

ATTRIBUTES FOR 2 DIFFERENT GDB SEGMENTATIONS FOR THE 3 MBPS, 15 MIN MPEG-1 BLADE USING FIRST
SEGMENT LENGTHS OF 3 AND 10 SEC RESPECTIVELY.

specified by GDB (shown in brackets) for that segment, due to the finite video length. Note that segment ¢
will be transmitted once every 21/ seconds. For example in 30-GDB the first 30 seconds of the video are
sent out every 30 seconds, the next 60 seconds of the video are sent out every 60 seconds and so on until the
last 450.9 seconds are sent out every 480 seconds.

e Patching: For patching, we consider the threshold based Controlled Multicast scheme proposed in [17]. In
this scheme, a threshold 7" is used to control the frequency at which a complete stream of video is transmitted.
The first request for the video is served using a complete transmission. Subsequent requests that arrive within
T time units of beginning transmission of the previous complete stream will share the complete stream and
obtain only a prefix of the video from the server. A request arriving after 7" time units have elapsed is served
by initiating a new complete transmission for the video . Under this scheme, when the client arrival rate for
a video is ), the length of the video is L seconds, the threshold is chosen to be (/2L + 1 — 1)/ seconds

to the minimize the average transmission required to serve a client [17].

D. Metrics

We focus on the the following key performance metrics in our experimental evaluations.

D.1 Server Metrics

o System Read Load (SRL) : This is the volume of video data requested per unit time by the application from
the underlying operating system. A read request is initiated only if a required data block is not present in the
application-level cache. SRL therefore presents a measure of the workload associated with the data path that
is imposed on the underlying system by the application. The system may satisfy the request from the kernel
buffer cache if possible, and otherwise fetch the block from disk. Therefore, this metric also acts as an upper
bound on the read workload experienced by the disk subsystem.

o Server Network Throughput (SNT) : This is the volume of video data transmitted per unit time by the applica-
tion, and measures the load imposed on the network protocol stack, network interface card and the outgoing
network connection. This is equal to the SRL in the absence of any application level buffering.

o Deadline Conformance Percentage (DCP) : Given a transmission schedule, this is the percentage of frames
that the server was able to transmit to the network by scheduled deadlines created by the server control

engine. This measures how well the server was able to keep up with the schedule.
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Fig. 7. Client Frame Interarrival Time under different segmentation schemes and request rate for periodic broadcast.

Arrival Rate(per min) | Scheme Used | Server Network Throughput(Mbps) | Deadline conformance Percentage
1 30-GDB 14.81 99.9%
1 10-GDB 19.27 98.3%
600 10-GDB 19.27 97.9%
TABLE III

D.2 Client Metrics

SERVER STATISTICS FOR PERIODIC BROADCAST.

o Network Jitter: Suppose S; is the time that the ¢th packet is sent at the server, and F; is the time that the

tth packet is received at the receiver. In [14], the difference in packet spacing at the receiver compared to

the sender for a pair of packets is defined as: D(7,j) = (R; — R;) — (S; — S;). We define the average of

{|D(%,7 + 1)|}s over a certain period of time as the network jitter in this period.

e Client Frame Interarrival Time (CFIT): Suppose r; is the time that the last packet of frame ¢ reaches the

client. The difference of ;1 and r; is the client frame interarrival time. For a smooth transmission, the

frame interarrival time should be near to a constant. The variability of CFITs reflects the jitter caused by

both the server and the network.

o Reception Schedule Latency: The Reception Schedule Latency is the time from when the client requests the

video at t2 to when it receives the RS at 3 (see Fig. 5).

o Stream Latency: The stream latency is the time from when the client requests the video at £ to when the first

frame of the video reaches the client (see Fig. 5).



VI. PERFORMANCE EVALUATION
A. End to end performance
A.1 Periodic Broadcast

In [-GDB the data are sent out regardless of the number of clients that request the video. This allows us to
test two dimensions of load on the server. We can inspect loads where the server is sending varying numbers of
streams onto the network along one axis and vary the number of requests for that video along another axis. For
these experiments we used local configuration II (see Fig. 6) to minimize the impact of the network bottleneck.
We used 10-GDB and 30-GDB with arrival rates of one request per minute generated by the client simulator to
test the effects of server network throughput on the system. The results are in Table III. From these results we
can view the deadline conformance of each of these runs. We use the deadline conformance percentage to show
the percentage of the frames that are sent out by their deadline. Since the server only reports 15% of its processor
being utilized (all of it in system time), DCP proves to be a good indicator of stress seen at the server. As the
SNT at the server increases for these schemes, the deadline conformance decreases. However, most deadlines
missed were less than 100m:s.

The client sees very few problems for both 30-GDB and 10-GDB schemes. Figure 7 plots the client frame
interarrival time for the transmission experienced by the client. For this video, the frames should arrive every
33ms from each other. By examining Fig. 7(a) we notice a strange effect. The plot of times is divided into two
layers, 30ms and 40ms. This is due to the 10ms granularity of scheduling on Linux. As would be expected two
thirds of the mass lies at 30ms and one third lies at 40ms. This shows that the server is able to deliver frames with
little jitter for 30-GDB. In Fig. 7(b) we can see differences when load is increased at the server running 10-GDB.
We notice that several frames fall well away from 33ms interarrival times. As a result the difference of time till
the next frame is very low and explains the line of points that form of the bottom of the graph. In most cases, the
client can expect to receive the next frame in less than 100ms. In this LAN setting, we can see that the server is
easily able to handle these loads and provide the client with high quality video.

Next, we examine the effects of the number of clients requesting videos. For this we examine 10-GDB with
request rates of 1 and 600 per minute generated by the client simulator. This measurement is very important
for these schemes. In theory, segmented delivery should scale up to an infinite number of clients since for each
new client the server will not have to transmit any more data. However, as we can see in Table III increasing
the request rate causes the DCP to decrease. By examining Fig. 7(b) and Fig. 7(c) we can see that the client
experiences higher variation in the CFIT plot between frames. However, this rate is still well behaved.

The end result of this experiment shows us two things. First, the server sees little difficulty in working with
the large number of streams sent out and the client is similarly able to listen to 5-7 streams with little difficulty.
Secondly, high client requests do affect the ability of the server to deliver the stream. This could eventually lead

to scaling problems or at least considerations in the implementation of future systems.



Arrival Rate(per min) | Threshold (minute) | SNT (Mbps) | DCP

1 7.39 20.25 99.9%
5 4.05 57.7 99.9%
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Fig. 8. Synchronization between transmission schedules could lead to bursty behaviors

A.2 Patching

For patching algorithms the number of streams sent out is a function of the client arrivals. This means that
the streams a client must receive (i.e. from multicast groups) is a function of when clients arrived before it. We
are forced to use local configuration II (see Fig. 6) so that the real client can interact with the requests of the
simulated clients. Since the arrival rate and the SNT are related, we increase the client arrival rate from 1 to 5
requests per minute and record the performance. (For higher arrival rates the network link becomes a bottleneck.)
Table IV shows the parameters of the experiment. The server’s DCP is remains steady at 99.9%.

On the client side, we see similar CFIT distribution as in periodic broadcast. We observed that if the client
starts playback around 1.5 seconds after sending the request, it is able to receive all the frames before the playback
time. This 1.5 seconds includes stream latency and some delay after that to accommodate the packets that come
later than the supposed playback time. We can conclude that the network becomes the bottleneck in LAN settings

since the server is able to send at the bandwidth of the link without experiencing poor quality video at the client.

B. Scheduling Among Videos

When running 3 copies of the video Blade2, we find an unexpected effect. The amount of data placed on the
network seen in Fig. 8(a), showed spiking effects. To understand this we looked back to the way that [-GDB
works. The [-GDB algorithm periodically repeats each segment of the video at a certain rate. The last segment
might be smaller than the repetition rate. Therefore, the server will send the segment and then send nothing until

the next repetion. After realizing that the server was seeing three extra channels of information, we examined
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Fig. 9. Caching effects on Periodic Broadcast: plots the experimental and analytic values of the read overhead under LRU.

what happened when the schedules were started separately at an interval of three minutes apart. Figure 8(b),
shows three 3-GDB staggered broadcasts to prevent them from synchronizing the retrieval of the last segment,
and find that the sustained bursts disappear. This is clearly useful as it removes the necessity to provision high
peak SNT. This example illustrates the benefit of using techniques for smoothing out the offered load, especially
for high loads.

C. Caching Implications for Periodic Broadcast and Patching

Earlier research on periodic broadcast and patching has focussed on the server network throughput require-
ments of these schemes. We now focus on the server read load imposed by such schemes. Server end-systems
today possess significant high speed memory. Caching effects (at the application and system level) would impact
the full demand of the server. In this study, we investigate the use of application-level caching and application-
specific caching policies for reducing the bandwidth demand on the underlying server operating system. We
consider Least Recently Used (LRU) cache replacement as a baseline. The choice was motivated by the fact
that this is widely used in literature and many conventional operating systems implement this policy in their

underlying kernel buffer caches.

C.1 Periodic Broadcast

We first consider two GDB segmentation schemes 3-GDB and 10-GDB. Our application locks a tunable
amount of main memory for application-level caching for a video. The video uses a local caching policy to
reduce the load on the system. A read is generated only if a block is not present in the application-level cache.
The metric of interest is the system read load.

Fig. 9 plots the read load for a single video as a function of the application level buffer cache size available
for that video. We consider both actual measurements from our testbed and analytical computations of LRU
performance for the same cache size. The small deviations between the analytic and experimental values are due
to the large application level memory blocks (100 KB) used for these experiments. This graph demonstrates the

role of caching in reducing the read load. As expected the SRL is a non-increasing function of increasing buffer
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size. In addition, larger and larger increases in buffer size yield lower and lower returns.

In the absence of any caching, the read loads for the 3-GDB and 10-GDB segmentation schemes would be :
24.53 Mbps and 19.27 Mbps respectively. Even with a relatively small 32 MB buffer which is 9% of the size of
the video, the load under LRU reduces by 23% and 14%.

Periodic broadcast exhibits some interesting qualities under LRU caching. In order for caching gains to be
realized the buffer must be large enough to allows for an entire segment to be cached. Otherwise the LRU
will choose to replace the blocks that are actually needed next. This explains the step-like behavior. A step
corresponds to the region where LRU has buffer to cache another segment. Hence the step sizes are 3Mbps, which
corresponds to the bandwidth for one segment. This is followed by a horizontal portion where the additional
buffer is not sufficient to fully cache the next segment.

Network-centric studies of periodic broadcast trade off larger stream latency for reducing the SNT for a partic-
ular periodic broadcast scheme. Under this approach, 10-GDB should require less SNT than 3-GDB. However,
this does not necessarily hold in the context of the SRL, as caching effects may cause 3-GDB to impose a lower
SRL than a 10-GDB (See Fig. 9). For example, with 27 MB of buffer, the 10-GDB induces a read load of
19.27 Mbps, while the 3-GDB results in a load of 18.88 Mbps. The graphs suggest that instead of increasing the

length of the first segment, a better approach may be to use caching to reduce the read load on the server.

C.2 Patching

We next consider the impact of application-level caching on patching. For a given arrival rate of 1.33 client per
minute, we examine the changes in the SRL. In the absence of caching, the expected SRL is 15.90 Mbps. As can
be expected, the resultant SRL is lower to 13.69 Mbps with 43MB of buffer. Fig. 10 shows the distribution of
read loads across a five hour run, for no buffer and 43 MB of buffer. The graph illustrates that for a given buffer
size, the instantaneous read load can be much higher than the mean, and that LRU caching with even a modest

amount of buffer can significantly reduce the instantaneous read load.



Trace | Server-client Time RS lat.(ms) | Stream lat.(s) | Pkt. Loss | Fraction of frames without loss
L1 EC1-EC2 9/09 21:00 242 2.16 0.2% 99.5%
L2 EC2-EC1 9/09 21:30 87 2.40 2.00% 92.7%
H1 EC1-EC2 9/09 16:00 226 1.63 0.1% 98.9%
H2 EC2-ECI 9/09 16:30 162 1.70 17.4% 14.6%
H3 EC1I-MW1 | 7/26 15:00 198 1.70 1.12% 91.9%
Bl EC1-EC2 10/16 16:00 85 0.81 0.13% 99.2%
B2 EC2-ECl1 10/16 16:30 24 1.37 31.9% 6.3%
B3 EC1-WC1 | 10/03 20:00 183 0.90 5.3% 93.2%
B4 WCI-EC1 | 10/06 20:00 178 1.32 24.9% 12.7%

TABLE V

EXPERIMENTAL DATA OVER vBNS.

D. Network Evaluation

Ideally, we could evaluate the platform using multicast over vBNS. Unfortunately, the sites for our WAN exper-
iment do not have multicast interconnectivity. Given this, our preliminary experiment is testing the simplest case,
that is, transmitting the video in one channel using unicast. Clark, etc. carried out application-level measurement
of performance on the VBNS based on simulated video data [12]. In our experiment, the server transmits videos
with bandwidth ranging from 196.8Kbps to 2Mbps over vBNS and the goal is to measure the resultant loss, jitter
and latencies. We disable the decoding and playback at the client to remove their load on the processor.

Table V summarizes some of the experiment results. Traces L1 and L2 are collected using the video Leno.
Traces H1, H2 and H3 are collected using the video Hacker. Traces B1, B2, B3 and B4 are collected using the
video Bladel. All the data in the table are measured at the client site. The packet loss ratio is the number of
packets lost over the total number of packets transmitted. We assume all the losses occur in the network because
our local experiments shows that there is no loss caused by the deficiency of the server or the client. To confirm
this, we use tcpdump to collect traces at the server and the client network interface. The comparison of the
tcpdump traces with the log data recorded by the server and client confirmed our assumption.

The table shows that there is tremendous variability in terms of the packet loss ratio along different paths and
the bandwidth of the video. The packet loss ratio of the low bandwidth videos (e.g. Leno) is usually significantly
lower than that of the high bandwidth videos (e.g. Bladel). Most of the losses occur as single packets, this is
consistent with the result in [12]. However when transmitting the highbandwidth video Bladel, we see bursty
losses (over 10 packets loss in the row). The last column of the table shows the fraction of frames without any
loss. It is a rough measurement of the video playback quality assuming players can not tolerate any loss in a
frame. For more resillent players, we need more accurate measurements which take account of the importance
of the different frames and the dependence of the frames. Network jitter per second is measued as defined in

Section V-D.2. We compare the packet loss and jitter for every second and do not see correlation between them.
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Fig. 11. LFU characteristics for periodic broadcast and patching

The high loss rate on some paths implies that loss recovery scheme is needed to provide quality stream delivery.

VII. LESSONS LEARNED

We have gained several key insights from the development of this streaming media platform and subsequent

experimental evaluations. We discuss these insights in this section.

A. Caching Schemes

During the process of evaluating the performance of our periodic broadcast and patching schemes, we realized
that LRU is a poor caching scheme. Subsequently, we concluded that a new replacement policy, Least Frequently
Used (LFU) can provide better performance.

Definition. Among the set of cached blocks, LFU replaces the block that contains data that is least frequently
used. If there are multiple blocks with the same frequency, remove the block that is furthest from the beginning of
the video.

LFU can be shown to be optimal and provides a lower bound for theoretical server read loads. When we
compare the LFU with the LRU scheme used previously, we can see significant improvement (See Fig. 11(a)).
With the same buffer size, LFU reduces SRL much more effectively than LRU. For example, in 10-GDB, with a
32 MB buffer, the SRL drops from 16.27 Mbps under LRU to 10.14 Mbps under LFU, a reduction of 38%. Also,
under LFU, even a partially cached segment contributes to caching gains. This explains why LFU decreases SRL
more smoothly than LRU. We are in the process of implementing this simple yet remarkably promising scheme
in our server.

It has been shown in [20] that there exists a request arrival rate above which periodic broadcast is preferred
and below which controlled multicast is preferred. We will now examine the effect that LFU caching has on this
crossover point. In Fig. 11(b) we see LFU used for patching and periodic broadcast across an axis of request
arrival rates. (Note that previous graphs of SRL include overheads imposed by the system architecture. Here we

view the upper bounds for comparison.) The crossover point between patching and periodic broadcast occurs at
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an arrival rate of 0.046 requests per second (2.8 per minute). At this point the SRL imposed by both schemes is
equal to 24.53 Mbps. As the buffer cache increases, we find that the SRL decreases as expected for both schemes,
but 10-GDB sees more advantages. With increasing buffer size, the crossover point for these schemes shifts to
lower arrival rates. These studies demonstrate that the caching scheme and cache buffer size both impact the the

crossover point and need to be factored in its computation.

B. Inter-Scheduling Interactions

Most broadcast schemes have been examined in the context of a single video. It’s important to note that, pos-
sibly unwelcome, interactions can occur between schedules for different videos. In Section VI-B, we presented
a case where the lack of attention to this resulted the synchronizing the schedules of three video sessions. This
produced situations where the server generated request rates well above the average rate for short period of times.

These synchronizations can be reduced or eliminated through careful scheduling.

C. Server-Client Synchronization

One of the lessons we have learned which is not reported on in this paper is the difficulty of synchronizing the
server and the client. For previous RTSP interfaces, the client selects a port on which it will receive the stream.
With the broadcast schemes considered in this paper, the client must know not only where to listen to but also
when to listen. If the client listens too early to a multicast stream, that client will receive data that is not relevant.
Conversely, if the client listens too late, it will miss data. We presented an approach which uses relative timing
along with estimations of round trip time. However, the variability of multicast join latencies from site to site can

cause problems with scheduling.

D. The use of a non-real time operating system

In the design and implementation of our server, one of the main concerns was the use of a non-real time
system. Our experimental results show that, although the server runs on top of Linux, without any underlying
real-time support, with access to clocks with coarse time granularities of at least 10ms, the server is nonetheless
able to meet real time deadlines. For loads that nearly saturate a 100Mb network connection, the server misses
surprisingly few data transmission deadlines. Furthermore, we are able to show that with an initial startup delay
of less than 1.5 sec the client can absorb jitter and hide the startup signaling latency in a LAN environment. This

clearly justifies our design decisions.

VIII. CONCLUSIONS

The high transmission bandwidth requirements of streaming video, coupled with the best-effort service pro-
vided by today’s IP networks makes it a challenging problem to provision network resources for delivering such
media to remote clients. In this paper, we presented the design and implementation of an experimental streaming
media testbed for investigating scalable streaming solutions like periodic broadcast and patching. The testbed

consists of a distributed video server and client software running on top of off-the-shelf PCs executing commer-
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cial Linux and Windows operating systems. The platform uses the Real Time Protocol for data transmission and
Real Time Streaming Protocol for signaling. The platform has been designed to be flexible and extensible to
support a wide range of streaming delivery schemes.

Through measurement and analysis we find that the server is able to operate on a LAN setting with network
bandwidth as the main bottleneck. Jitter imposed by the non real time operating systems and the network can be
absorbed by a small amount of latency at the client. The use of caching in the server helps to reduce the load
on the systems without sacrificing the quality of services. Furthermore, we have shown that LFU allows us to
optimally cache the streams for periodic broadcast and patching schemes. Initial evaluations over the vBNS show
that error-recovery schemes are needed to handle the losses in the network.

We are implementing LFU caching policy in our system to further improve the performance of the server. Also
we are in the process of developing a network proxy server testbed that in conjunction with the current video
server will allow us to investigate how proxies can be used to deliver high quality streaming video to clients over

best-effort IP networks.
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