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Abstract

!ultimedia streaming applications consume a signi!cant amount of serHer and networE resources due to
the high bandwidth and long duration of audio and Hideo clips. Patching and periodic broadcast schemes use
multicast transmission and client buffering in innoHatiHe ways to reduce serHer and networE resource use. Current
research in this area has focussed on the theoretical aspects of these approaches/ rather than on the challenges
inHolHed in implementing and deploying such scalable Hideo transmission serHices.

In this paper/ we !rst describe the design and implementation of a "e8ible streaming Hideo serHer and client
testbed that can support emerging streaming serHices such as periodic broadcast and patching. 2e e8plore and
present solutions to the system and networE issues inHolHed in actually implementing these serHices. Gsing this
testbed/ we conduct e8tensiHe e8perimental eHaluations/ measuring performance both at the serHer as well as endO
end performance at the client/ oHer the local networE as well as oHer S*TS/ and present Eey insights gained from
our implementation and e8perimental eHaluations.

I. ITTMU?GCTIUT

The emergence of the Internet as a perHasiHe communication medium has fueled a dramatic conHergence of
Hoice/ Hideo and data on this new digital information infrastructure. A broad range of multimedia applications/
including entertainment and information serHices/ distance learning/ corporate telecasts/ and narrowcasts will be
enabled by the ability to stream continuous media data from serHers to clients across a highOspeed networE.

SeHeral challenges must still be met/ howeHer/ before high Vuality multimedia streaming becomes a widespread
reality. !any of these challenges arise from the high bandwidth reVuirements W !bps for full motion !PE9O
NX and the longOliHed nature Wtens of minutes to hoursX of a number of Hideo applications. These characO
teristics place signi!cant load on both networE and serHer resources. The scenario is further complicated by the
fact that the client population is liEely to be both large and heterogeneous/ with different clients asynchronously
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issuing reVuests to control their receiHed media streams. *ecause of these concerns/ there has been tremendous
interest in deHeloping algorithms for ef!cient distribution of networE Hideo to such a client population. Periodic
broadcast and patching ^P_Z`/ described in more detail in section N/ are two such approaches that haHe receiHed
considerable recent attention. They e8ploit the use of multiple multicast channels to reduce networE and serHer
resource use oHer the case of multiple unicast transmissions/ while at the same time satisfying the asynchronous
reVuests of indiHidual clients and proHiding a guaranteed bound on playbacE startup latency.

To date/ e8isting research on periodic broadcast and patching has been algorithmic in nature/ with performance
studied either analytically or through simulation. In either case/ simplifying assumptions are necessarily made
We.g./ abstracting out control and signaling oHerhead/ operating system issues such as the interaction between disE
and CPG scheduling/ multicast group aoin and leaHe times/ and moreX in order to eHaluate performance.
In this paper we report on the implementation, measurement, and analysis of a working video server testbed im-

plementing both periodic broadcast and patching algorithms. Uur testbed consists of a 7inu8Obased/ applicationO
leHel Hideo serHer and a collection of both 7inu8O and 2indowsObased clientsb we conduct both 7AT and 2AT
eHaluations. 2hile there are a number of e8isting production We.g./ Apple ?arwin serHer/ MealSerHer/ 2indows
!edia SerHer/ Uracle Sideo SerHerX and e8perimental ^L/ ]` Hideo serHer efforts/ these use either unicast streamO
ing to clients/ or a single IP multicast streamb no empirical eHaluations of either periodic broadcasting or patching
algorithms haHe been made. The goal of this paper is thus to inHestigate the underlying system issues that arise
when putting such idealiced algorithms intro practice.

Uur results show that networE bandwidth/ rather than serHer resources/ is liEely to be the bottlenecE O under peO
riodic broadcast/ our serHer can easily process a client reVuest rate of QJJ reVuests per minute Wreturning periodic
broadcast schedule information to each clientX/ while at the same time streaming Hideo segments oHer multiple
multicast groups and missing few data transmission deadlines. Gnder patching/ our serHer can come close to
fully loading a 1JJ!b networE connection with patchedOin clients/ again while missing few data transmission
deadlines. Uur measurements also show that in a loaded 7AT enHironment/ an initial client startup delay of less
than 1.P seconds is suf!cient to handle startup signaling and absorb data aitter induced at either the client or the
serHer. Yinally/ our results show that dramatic performance improHements can be gained Hia applicationOleHel
data caching and that further gains can be realiced under an optimal data caching policy. !ore generally/ our
results highlight the importance of combining theoretical worE with implementation and empirical eHaluation to
fully understand systems issues.

The remainder of the paper is organiced as follows. Section II discusses periodic broadcast and patching
algorithms/ identi!es the system issues we face in implementing periodic broadcast and patching/ and giHes a high
leHel oHerHiew of the platform architecture. Section III describes the salient features of the serHer architecture/
and Section IS describes the signaling protocol. Uur e8perimental measurements/ analysis and eHaluation are
presented in Section S. Section SII re"ects on the important lessons learned and describes ongoing worE. Yinally/
Section SIII concludes the paper.
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II. ?ESI9T USEMSIE2

In this section we present bacEground material/ identify Eey design principles of our streaming media testbed/
and then present an oHerHiew of the serHer and client architectures.

A. Streaming multimedia, multicast, periodic broadcast, and patching

!any Internet multimedia applications haHe asynchronous clients that may reVuest the same Hideo stream
at different times. !aEing highOHolume Hideo serHices economically Hiable reVuires effectiHe techniVues that
minimice the incremental cost of serHing a new client/ while also limiting client startOup latency and the liEelihood
of reaecting reVuests due to resource constraints. Yor popular Hideo streams/ serHer and networE resources can be
signi!cantly reduced by allowing multiple clients to receiHe all/ or part of/ a single transmission ^1/ N/ P_\`. Yor
e8ample/ the serHer could batch reVuests that arriHe close together in time ^1`/ and multicast the stream to the set
of batched clients. A drawbacE of batching/ howeHer/ is that client playbacE latency increases with an increasing
amount of client reVuest aggregation. SeHeral recently proposed techniVues/ such as periodic broadcast and
patching ^P_Z`/ oHercome this drawbacE by e8ploiting client buffer space and the e8istence of suf!cient client
networE bandwidth to listen to multiple simultaneous transmissions. These capabilities can be used to reduce
serHer and networE transmission bandwidth reVuirements/ while still guaranteeing a bounded playbacE startup
latency.

Periodic broadcast schemes ^1/ P_\` e8ploit the fact that clients play bacE a Hideo seVuentially/ allowing data
for a later portion of the Hideo to be receiHed later than that for an earlier portion. A period broadcast serHer
diHides a Hideo obaect into multiple segments/ and continuously broadcasts these segments oHer a set of multicast
channels. To limit playbacE startup latency/ earlier portions of the Hideo are broadcast more freVuently than later
ones. Clients simultaneously listen to multiple channels/ storing future segments for later playbacE.

In patching or stream tapping ^Q/ Z_11`/ the patching serHer streams the entire Hideo seVuentially to the Hery
!rst client. ClientOside worEahead buffering is used to allow a laterOarriHing client to receiHe Wpart ofX its future
playbacE data by listening to an existing ongoing transmission of the same Hideob the serHer need only transmit
afresh those earlier frames that were missed by the laterOarriHing client. As a result/ serHer and networE resources
can be saHed. GnliEe batching/ patching allows a client to begin playbacE immediately by receiHing the initial
Hideo frames directly from the serHer. Similar to periodic broadcast/ patching e8ploits client buffer space to store
future Hideo frames. GnliEe periodic broadcast/ a patching serHer transmits Hideo data only onOdemand/ when
new clients arriHe. Yor a detailed description of periodic broadcast and patching/ the reader is referred to the
references cited aboHe.

B. Design Principles

The design and implementation of our Hideo serHer testbed is based on the following principles.



]

Modular, extensible architecture: Since we enHisage using our testbed for eHaluating Harious streaming media
techniVues/ the architecture of our serHer and endOclient is designed in a modular and e8tensible manner. This
facilitates easy addition of new streaming techniVues and modi!cations of e8isting techniVues in the serHer
or client. The addition of a new techniVue such as patching/ for instance/ inHolHes writing a new module that
dplugse into the e8isting serHer architecture and reVuires minimal changes to other serHer code.
Separation of control and data functionality: *oth serHer and client implementations separate control and
data functionalities. Since the control and data path impose signi!cantly different demands on the underlying
system/ such separation allows us to independently optimice each component. A clean separation of control
and data paths also allows us to e8periment with different serHer architectures.
Standards-based architecture: Uur serHer and client implementations are based on e8isting streaming media
standards such as MTP ^1]/ 1P`/ MTSP ^1Q` and S?P ^1L`. The adHantages of a standardsObased architecture
are twoOfold. Yirst/ it allows us e8plore how Harious streaming media techniVues such as periodic broadcast
and patching can be implemented in the conte8t of these standards. Second/ it helps us identify potential
limitations of these standards in supporting such techniVues.
Support for IP Multicast: Uur serHer and client implementations are designed to taEe adHantage of IP multiO
cast where aHailable Wunicast can used in enHironments where IP multicast is not yet deployedX. The use of
IP multicast facilitates more ef!cient use of serHer and networE resources. Uf particular interest to us in this
paper are practical considerations that arise in the use of IP multicast We.g./ multiple8ing a !nite number of
multicast channels among users/ aoinfleaHe latencies for users and techniVues to hide such latenciesX.
Scalability and resilience to network impairments: A Eey goal of our serHer design has been to Eeep system
oHerhead low. This allows our serHer to scale to a large number of concurrent users and handle large Holumes
of streaming media data with timeliness reVuirements. Uur endOclients/ on the other hand/ are designed to
be resilient to pacEet losses and delays in the networE.
Use of off-the-shelf components: Uur serHer and client are designed to run on Hanilla operating systems such
as 7inu8 and 2indows. The limitation of using a generic bestOeffort operating system platform/ howeHer/ is
that we do not bene!t from the numerous specialOpurpose resource management techniVues We.g./ rateObased
schedulingX that haHe been proposed recently.

C. Client and Server Overview

Yigure 1 proHides a highOleHel Hiew of our Hideo serHer testbed/ showing the serHer and one of seHeral clients.
2e close this section with a highOleHel oHerHiew of the

serHer and client architectureb subseVuent sections then describe the serHer and signaling components in more
detail.

As shown in Yig. 1/ our serHer consists of two main modules/ a Server Control Engine (SCE) and a Server Data
Engine (SDE)/ embodying our principle of of separating control and data functionalities.

Server Control Engine (SCE): The control engine is primarily responsible for handling WcontrolX interacO
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Yig. 1. Architecture of Streaming serHer and client testbed

tions between the serHer and endOclients. These interactions are based on the Meal Time Streaming Protocol
WMTSPX and the Session ?escription Protocol WS?PX. The control engine listens for MTSP client reVuests
on a wellOEnown port. Yor each such reVuest/ it computesh WiX a transmission schedule that speci!es how
each Hideo segment should be retrieHed from disE and transmitted to the client oHer the networE/ and WiiX a
reception schedule that speci!es the order in which the endOclient should receiHe this data. The transmission
schedule is then handed oHer to the serHer data engine/ which then retrieHes and transmits data based on this
schedule. The reception schedule is formatted as an S?P message and sent to the client in an MTSP responseb
the client then uses this schedule to receiHe data on the speci!ed multicast channels.
Server Data Engine (SDE)h The serHer data engine uses directiHes from the control engine to coordinate
the retrieHal of Hideo data from disE/ and transmit data to endOclients using the MealOtime Transport Protocol
WMTPX. Conceptually/ the data engine is an ef!cient data pump that is designed to handle a high Holume of
data at low oHerhead Wfor instance/ by storing preOpacEeticed MTP streams on disE/ which lowers pacEeticaO
tion oHerheads at transmission timeX. Ef!ciency is an especially important consideration in our design/ since
the data engine will typically need to simultaneously retrieHe and transmit multiple portions WsegmentsX of
Hideo.

An endOclient interacts with the serHer Hia signalling and receiHes data transmitted by the serHerb it supports
a number of streaming techniVues such as seVuential unicast/ periodic broadcast and patching. Conceptually/
our client acts as middleware between the serHer and the actual Hideo playeriit receiHes data from multiple
Hideo segments/ possibly in outOofOplaybacE order/ and presents the illusion of a logically seVuential stream to
the player. This clean separation of functionality between the endOclient Wwhich is responsible for signalling
and receipt of dataX and the Hideo player Wwhich is responsible for decoding and displayX allows a great deal
of "e8ibility. Yor instance/ it allows our endOclient software to interoperate with seHeral widely used players/
including mpegNdec Win public domain ^1\`X/ the Meal player and the 2indows media player.

7iEe the serHer/ our endOclient consists of two Eey components that separate the data and control functionalitiesh
2e haHe successfully integrated our endOclient software with the mpegNdec and the Meal playerb a port of our endOclient software with

the 2indows !edia player is currently in progress.
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the client control engine WdClient CEe in Yigure 1X and the data engine WdClient ?EeX. The client control engine
is responsible for signalling with the serHer. It obtains user reVuests using a 9GI interface and communicates
them to the serHer using MTSP messages. Uur client currently supports user interactions such as play/ stop/
pause/ resume and inde8ed aumpb other interactiHe operations such as fast forward and rewind are currently
under implementation. The client data engine is responsible for receiHing MTP pacEeticed data transmitted by the
serHerb the reception schedule sent by the serHer indicates the timing and amounts of data that will be receiHed
from each multicast channel. The receiHed data is then presented to the player software in playbacE order for
decoding and display. 2e ne8t describe the serHer architecture and clientOserHer interactions in further detail.

III. SEMSEM

As noted aboHe/ the two main serHer components are the serHer control engine WSCEX and the serHer data engine
WS?EX. 2e consider each of these in turn.

A. Server Control Engine (SCE)

The SCE is responsible for WiX receiHing client reVuests/ and e8changing control information with the reVuesting
clients/ WiiX determining the serHer transmission schedule for each Hideo and communicating this to the SerHer
?ata Engine/ and WcX computing the Hideo reception schedule for each reVuesting client and communicating this
to a client. The SCE and S?E communicate with each other oHer a TCP connection.

The SCE is implemented as a multithreaded single process system. A single listener thread listens on a well
Enown port for incoming client reVuests/ and places an incoming reVuest on a message Vueue. A pool of free
scheduler threads wait to serHe reVuests on the message Vueue. Une thread from the pool will waEe up and
retrieHe an incoming reVuest. This scheduler thread is then responsible for WiX subseVuent communications with
the client/ WiiiX generating an abstract transmission schedule for the serHer data engine/ and WiiiX generating and
transmitting a reception schedule to the client.

The scheduler thread determines whether there is an alreadyOscheduled transmission for that Hideo that can be
used to satisfy this client/ or whether an additional transmission of the Hideo Wor part of itX is needed. In the latter
case/ the scheduler will be responsible for updating the data enginejs transmission schedule/ which is used by
the S?E to determine what parts of the stream are to be sent out/ and when. *ased on the serHer transmission
scheme/ the scheduler thread computes a reception schedule for this client and transmit this schedule bacE to the
client.

The data structure for the transmission schedule must be carefully designed in order to be suf!ciently general
to e8press a transmission schedule for different Hideo deliHery schemes We.g./ batching/ patching/ and periodic
broadcastX. Yigure N illustrates this structure. Yor each media stream being currently transmitted/ there is a data
structure named Media/ containing streamOspeci!c information such as the !le location/ length/ and type of the
stream.

The Media data structure also contains a list of structures/ with each element corresponding to a multicast or
unicast channel on which some part of the Hideo is to be transmitted. Since a Hideo can be transmitted on multiple
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channels simultaneously/ a list of channels is needed. Each channel structure contains information identifying
the corresponding channel/ type of transmission Wmulticast or unicastX/ and a linEed list of structures Enown as
dworE reVuests.e The worE reVuest list contains information that determines what data will be transmitted on that
channel/ and when.

Each worE reVuest element corresponds to a seVuence of consecutiHe frames in the media stream/ and contains
schedule information used by the S?E to determine when this seVuence of frames is to be transmitted. Each
worE reVuest contains the following itemsh

Beginning and end frames numbers of the seVuence.
Time to initiate transmission of the seVuence.
Repeat Count h Tumber of times the current worE reVuest should be repeatedly serHiced/ before moHing to
the ne8t worE reVuest.
Pause Timeh Amount of time to pause after a worE reVuest !nishes before repeating it.

2e note that an important adHantage of specifying the transmission schedule at the frame leHel is that this allows
uniform handling of different Hideo !le formats/ e.g./ !PE9/ ASI/ etc./ at the SCE.

7et us illustrate the representation of a transmission schedule Hia a simple e8ample. Suppose the serHer must
deliHer a sec W frameX Hideo according to the following transmission schedule h WiX initiate transmission
of the frames on some address at time . WiiX initiate transmission of frames on the same
connection at some later time . The worE reVuest list associated with channel in Yig. N shows the abstract
representation for this schedule. Channel in the Hideo structure is initialiced with the outgoing address of this
stream. The linEed list of worE reVuests indicates that at time frames will be played and frames

will be played at time .
!any scheduling schemes such as periodic broadcast reVuire the repeated transmission of a seVuence of frames.

Suppose we also wish to transmit the aboHe Hideo on a second connection/ once eHery minute starting at time /
for a total of !He transmissions. 2e allocate a new channel WChannel in Yig. NX and !ll out the appropriate
address. 2e associate a single worE reVuest with this channel/ with Start Yramek / End Yramek . There is a

sec gap after each complete transmission of the Hideo/ and so the Pause !eld is set to sec. The Mepeat !eld
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is set to / indicating the Hideo transmission will be repeated four additional times after the !rst run.
The !nal important piece of the SCE is the channel pool. Since multicast addresses are a !nite resource/ the

serHer will need to perform some leHel of scheduling to allow for addressfchannel reuseb this is done Hia the
channel pool.

Since worE is scheduled out in time/ there are two naiHe ways to represent the schedules of a multicast channel.
Yor a continuousOHalued time/ a set of linEed lists could be used to represent free interHalsb leading to a search
across the multicast channels for an interHal of time in which nothing else is being sent. This problem can
be reduced into a discrete case by selecting only interHals of time/ leading to a bitmap operation to search for
interHals of free time WYig. LX. loweHer/ this operation is also computationally e8pensiHe.

Instead we use a techniVue called loricon Scheduling WlSX ^1Z`. lS allows us to store the last free time for
each multicast channel. 2hen a channel is needed for an interHal of time/ the serHer will do a linear search across
the multicast channelsWYig. LX. It will looE for the multicast channel with the latest free time that is before the
beginning of the new interHal. Unce found/ the serHer will update the multicast channels free time to be the end
of the interHal.

B. Server Data Engine (SDE)

The S?E is responsible for retrieHing Hideo streams from disE and then transmitting them on one or more
networE connections in accordance with the abstract transmission schedule receiHed from the SerHer Control
Engine. The S?E must therefore handle large Holumes of Hideo data and with realOtime deadlines. Since the
S?E runs on top of 7inu8/ which offers no realOtime streaming support/ the S?E is e8posed to the occasional
unpredictable timing behaHior characteristic of nonOrealtime USs.

The S?E is a multithreaded/ singleOprocess entity. Yor each Hideo that is currently being transmitted/ the S?E
creates two new threads. A disk thread (DT) handles retrieHal of the Hideo data from disE into main memoryb
a separate network thread WTTX transmits the data from main memory to the networE according to the serHer
transmission schedule. A global buffer cache manager is responsible for allocating the eVualOsiced free memory
blocEs that form the buffer cache for this Hideo. *oth ?T and TT operate in rounds. The disE roundOlength is
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and the networE roundOlength is . In each Oround/ the disE thread waEes up/ uses the abstract serHer transmission
schedule to determine which parts of the Hideo need to be retrieHed in that round/ issues asynchronous read
reVuests for retrieHing that data into main memory/ and then sleeps until the ne8t round. In each Oround/ the
networE thread waEes up/ determines Wfrom the abstract serHer transmission scheduleX the data that needs to be
transmitted on each channel in that round/ transmits that data from the main memory buffer cache/ and goes to
sleep.

The separation of disE retrieHal and networE transmission actiHities is motiHated by the Hery different nature
of the disE and networE subsystems. It is wellOEnown that the disE subsystem can introduce signi!cant unpreO
dictability in the timing and has high oHerheads. To preHent starHation due to high and Hariable disE access times/
data is prefetched from disE and temporarily staged in main memory. To reduce the impact of disE oHerheads/ we
WiX employ asynchronous read reVuests/ and WiiX issue read reVuests for large chunEs of data at a time. Therefore
the disE round/ / should be relatiHely large/ and is currently set to sec. Yor the networE/ it is desirable to aHoid
inaecting bursts of traf!c. Therefore the networE round length/ / is typically much smaller than / so the TT has
to transmit only a small amount on any channel at a time.

Since the ?T acts as the producer and the TT as the consumer of data in the main memory buffer cache/ a
mechanism is necessary to ensure that the TT does not attempt to go ahead of the ?T or access the part of the
buffer cache that the ?T is simultaneously modifying. 2e outline below a method of synchronicing the TT and
?T using only three locEsWYig. ]X.

7et us de!ne / the ratio of OtoO . Initially the disE and networE thread each taEe a locE. Yor each
completed loop of the disE thread/ the disE thread attempts to grab the ne8t locE. The three locEs should be
considered as a loop where the ne8t locE moHes along one direction. Unce the disE thread gets the ne8t locE it
unlocEs its preHious locE and increments the counter to show how many times the disE thread has ran the loop.
Yor the networE thread/ the current Halue of the is multiplied by . If the product is greater than or eVual to the
current counter then the ne8t locE is acVuired.

Tote that the disE thread must guarantee that the data will be in position before it moHes to the ne8t locE/ and
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the disE thread will not erase a blocE of data that has been called up less than rounds ago. As a conseVuence
this places a lower bound of for start up latencies in the data engine. Tote also that a Eey adHantage of this
noHel LOlocE arrangement is that in each Oround/ the ?T or TT needs to access only a single locE. This is a much
more lightweight mechanism than conHentional approaches which would haHe associated locEs with each buffer
cache blocE/ and would reVuire the ?T or TT to access a potentially large number of locEs in each round.

At the end of a ?T or a TTjs round/ the thread must giHe up the CPG and wait for the ne8t round. The S?E
is running in a 7inu8Obased nonOrealOtime enHironment/ with a Hery coarse W1JmsX scheduling granularity. This
means that sleeping threads are rescheduled as much as 1Jms apart. Therefore is no guarantee that the thread
will waEe up at its designated waEeup time. EHen if it waEes up on time/ it is not guaranteed to get the CPG
immediately. A mechanism is thus reVuired to preHent these delays from accumulating and adHersely impacting
system performance. In our design/ when a thread completes its actiHities for a round/ it checEs to see if it has
fallen behind/ i.e./ if the start time the ne8t round has passed. If so/ the thread starts serHicing the ne8t round
instead of going to sleep.

IS. SI9TA7IT9 PMUTUCU7

ClientOserHer communication in our testbed is based on the Meal Time Streaming Protocol WMTSPX ^1Q` and
occurs oHer a separate TCP connection. The steps from when a client issues a reVuest to when it receiHes a
Mesponse message Wsee Yigure PX are as followsh

1. At time / the client sends a PMU*E message to the serHer. The serHer receiHes the message at time and
immediately returns an AC( message.

N. The AC( message reaches the client at time . The client calculates the MTT as . *ased on the MTT/
the client estimates the oneOwayOdelay from the serHer to the client. E8act estimation of this oneOwayOdelay
is not triHial/ because the route from serHer to client and from client to serHer are not necessarily the same.
Also routes followed by multicast and unicast sessions may be different. As an initial estimate/ we choose
half of the MTT as the oneOwayOdelay.

L. The client composes an MTSP ?ESCMI*E message and piggybacEs with it additional information Wusing
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the S?P description languageX such as its estimates of the oneOwayOdelay and initial setup time. The setup
time includes time for creating socEets/ setting initial parameters/ etc. This is obtained based on offOline
pro!ling of the client code.

]. The serHer receiHes the MTSP ?ESCMI*E message at time . It calculates a reception schedule for this
client and piggybacEs the Meception Schedule Win S?P formatX on the MTSP MESPUTSE message to the
client. The client receiHes the MS at time .

S. EnPEMI!ETTA7 SETTIT9S

In this section/ we describe the eHaluation of the platform. The measurements are diHided into two sets. Une
set is carried out locally. It is used to show the systemjs ability to run broadcast schemes in an ideal local area
networE. In particular/ we e8plore the endOend performance and the caching effect. The other set is carried out
oHer vBNS. This initial study of a wide area networE focuses on the serHerjs performance at deliHering streams
across the networE in preparation for our future worE.

The Hideos used for the e8periments are listed in Table I. The bandwidth of the Hideos Haries from 1ZQ.\(bps
to L!bps. The length of the Hideo is in the order of seHeral minutes. The number of MTP pacEets refers to the
total number of pacEets after MTP pacEetication based on MYCNNPJ ^1P`. The ma8imum sice of each pacEet is
1PJJ *ytes. In all e8periments/ the serHer transmits each stream at the playbacE rate on each channel. That is/ if a
Hideo is to be played at LJ frames per second/ the serHer transmits the Hideo at LJ frames per second. ?ue to lacE
of space/ we do not demonstrate here the tuning e8periments on and . The e8periments show that improper
setting of and lowers the serHer performance and the settings of to 1 sec and to LL msec leads to good
serHer performance. Throughout the e8periment/ we use this setting for and .

A. Local Area Configurations

The con!gurations for endOend measurement in the local enHironment is shown in Yig. Q. *oth con!gurations
contain a serHer/ a client/ and a client simulator. All three machines are ]JJ !lc Pentium II with ]JJ!* MA!
running a 7inu8 US. The serHer sends out three separate copies of the Blade2 Hideo listed in Table I using a
selected broadcast scheme. The client simulator generates a bacEground load of client reVuests to the serHer in a
Poisson manner choosing one of the three Hideos with eVual probability. The serHer sends the Hideo to the client
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Yig. Q. E8perimental con!gurations for local endOend measurements.

simulator according to the reVuest sent. The client simulator does not actually collect Hideo data from the serHer.
Unce the bacEground load reaches a steady state/ we run a real client to reVuest the full stream and monitor the
statistics on the stream arriHal data.

The differences between the two con!gurations is where the bacEground load is directed to. In Con!guration
I/ the bacEground load is sent out to the switch where it will interfere with the data being sent to the real client.
In this con!guration it is noticed that the 1JJ!bit linE will become a bottlenecE in the system. In Con!guration
II the bacEground traf!c is sent on a priHate linE to the client simulator so that results collected at the client can
be determined to be caused by bottlenecEs of the serHer other than the networE linE.

B. vBNS Configuration

Uur H*TS tests include four sites. EC1 and ECN are located on east coast and connected to H*TS. Similarly/
!21 and 2C1 are located in the midwest and west coast respectiHely. All sites use 7inu8 based serHers and
clients to maEe measurements on the stream Vuality sent from other sites.

C. Broadcast Algorithms

2e chose a representatiHe algorithm from the periodic broadcast family and the patching family of broadcast
algorithms. In both cases we assume that the client has enough buffer to store the length of the Hideo.

Periodic Broadcast: Yor periodic broadcast/ we use the 9?* ^Q` segmentation scheme. In 9?* we diHide
the stream into segments. The length of the !rst stream is denoted by . The interior segments are of sice

where . The length of the last segment is denoted as . It should be
noted that the length of the !rst segment determines the ma8imum client startup delay under ideal system and
networE conditions. A smaller Halue of reduces this delay/ but may increase the number of segments and
hence the transmission bandwidth reVuirements. Yor the results reported/ we use three Halues of h seconds/

seconds/ and seconds. Throughout the e8perimental section we use -GDB to indicate a 9?* scheme
where the initial length is of sice . The lengths of the resulting segmentation schemes for the sec Hideo
Blade2 are reported in Table II. In each case the actual length of the last segment is less than the length
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Scheme Tumber of segments Segment 7engthsWsecX
LO9?*

1JO9?*
LJO9?*

TA*7E II
ATTMI*GTES YUM ?IYYEMETT 9?* SE9!ETTATIUTS YUM TlE !*PS/ !IT !PE9O1 *7A?E GSIT9 YIMST

SE9!ETT 7ET9TlS UY AT? SEC MESPECTISE7o.

speci!ed by 9?* Wshown in bracEetsX for that segment/ due to the !nite Hideo length. Tote that segment
will be transmitted once eHery seconds. Yor e8ample in LJO9?* the !rst LJ seconds of the Hideo are
sent out eHery LJ seconds/ the ne8t QJ seconds of the Hideo are sent out eHery QJ seconds and so on until the
last ]PJ.Z seconds are sent out eHery ]\J seconds.
Patching: Yor patching/ we consider the threshold based Controlled !ulticast scheme proposed in ^1[`. In
this scheme/ a threshold is used to control the freVuency at which a complete stream of Hideo is transmitted.
The !rst reVuest for the Hideo is serHed using a complete transmission. SubseVuent reVuests that arriHe within

time units of beginning transmission of the preHious complete stream will share the complete stream and
obtain only a pre!8 of the Hideo from the serHer. A reVuest arriHing after time units haHe elapsed is serHed
by initiating a new complete transmission for the Hideo . Gnder this scheme/ when the client arriHal rate for

a Hideo is / the length of the Hideo is seconds/ the threshold is chosen to be seconds
to the minimice the aHerage transmission reVuired to serHe a client ^1[`.

D. Metrics

2e focus on the the following Eey performance metrics in our e8perimental eHaluations.

?.1 SerHer !etrics

System Read Load (SRL) h This is the Holume of Hideo data reVuested per unit time by the application from
the underlying operating system. A read reVuest is initiated only if a reVuired data blocE is not present in the
applicationOleHel cache. SM7 therefore presents a measure of the worEload associated with the data path that
is imposed on the underlying system by the application. The system may satisfy the reVuest from the Eernel
buffer cache if possible/ and otherwise fetch the blocE from disE. Therefore/ this metric also acts as an upper
bound on the read worEload e8perienced by the disE subsystem.
Server Network Throughput (SNT) h This is the Holume of Hideo data transmitted per unit time by the applicaO
tion/ and measures the load imposed on the networE protocol stacE/ networE interface card and the outgoing
networE connection. This is eVual to the SM7 in the absence of any application leHel buffering.
Deadline Conformance Percentage (DCP) h 9iHen a transmission schedule/ this is the percentage of frames
that the serHer was able to transmit to the networE by scheduled deadlines created by the serHer control
engine. This measures how well the serHer was able to Eeep up with the schedule.
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Yig. [. Client Yrame InterarriHal Time under different segmentation schemes and reVuest rate for periodic broadcast.

ArriHal MateWper minX Scheme Gsed SerHer TetworE ThroughputW!bpsX ?eadline conformance Percentage
1 LJO9?* 1].\1 ZZ.Zp
1 1JO9?* 1Z.N[ Z\.Lp

QJJ 1JO9?* 1Z.N[ Z[.Zp

TA*7E III
SEMSEM STATISTICS YUM PEMIU?IC *MUA?CAST.

?.N Client !etrics

Network Jitter: Suppose is the time that the th pacEet is sent at the serHer/ and is the time that the
th pacEet is receiHed at the receiHer. In ^1]`/ the difference in pacEet spacing at the receiHer compared to

the sender for a pair of pacEets is de!ned ash . 2e de!ne the aHerage of
s oHer a certain period of time as the networE aitter in this period.

Client Frame Interarrival Time (CFIT): Suppose is the time that the last pacEet of frame reaches the
client. The difference of and is the client frame interarriHal time. Yor a smooth transmission/ the
frame interarriHal time should be near to a constant. The Hariability of CYITs re"ects the aitter caused by
both the serHer and the networE.
Reception Schedule Latency: The Meception Schedule 7atency is the time from when the client reVuests the
Hideo at to when it receiHes the MS at Wsee Yig. PX.

Stream Latency: The stream latency is the time from when the client reVuests the Hideo at to when the !rst
frame of the Hideo reaches the client Wsee Yig. PX.
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A. End to end performance

A.1 Periodic *roadcast

In O9?* the data are sent out regardless of the number of clients that reVuest the Hideo. This allows us to
test two dimensions of load on the serHer. 2e can inspect loads where the serHer is sending Harying numbers of
streams onto the networE along one a8is and Hary the number of reVuests for that Hideo along another a8is. Yor
these e8periments we used local con!guration II Wsee Yig. QX to minimice the impact of the networE bottlenecE.
2e used 1JO9?* and LJO9?* with arriHal rates of one reVuest per minute generated by the client simulator to
test the effects of serHer networE throughput on the system. The results are in Table III. Yrom these results we
can Hiew the deadline conformance of each of these runs. 2e use the deadline conformance percentage to show
the percentage of the frames that are sent out by their deadline. Since the serHer only reports 1Pp of its processor
being utiliced Wall of it in system timeX/ ?CP proHes to be a good indicator of stress seen at the serHer. As the
STT at the serHer increases for these schemes/ the deadline conformance decreases. loweHer/ most deadlines
missed were less than 1JJms.

The client sees Hery few problems for both LJO9?* and 1JO9?* schemes. Yigure [ plots the client frame
interarriHal time for the transmission e8perienced by the client. Yor this Hideo/ the frames should arriHe eHery
LLms from each other. *y e8amining Yig. [WaX we notice a strange effect. The plot of times is diHided into two
layers/ LJms and ]Jms. This is due to the 1Jms granularity of scheduling on 7inu8. As would be e8pected two
thirds of the mass lies at LJms and one third lies at ]Jms. This shows that the serHer is able to deliHer frames with
little aitter for LJO9?*. In Yig. [WbX we can see differences when load is increased at the serHer running 1JO9?*.
2e notice that seHeral frames fall well away from LLms interarriHal times. As a result the difference of time till
the ne8t frame is Hery low and e8plains the line of points that form of the bottom of the graph. In most cases/ the
client can e8pect to receiHe the ne8t frame in less than 1JJms. In this 7AT setting/ we can see that the serHer is
easily able to handle these loads and proHide the client with high Vuality Hideo.

Te8t/ we e8amine the effects of the number of clients reVuesting Hideos. Yor this we e8amine 1JO9?* with
reVuest rates of 1 and QJJ per minute generated by the client simulator. This measurement is Hery important
for these schemes. In theory/ segmented deliHery should scale up to an in!nite number of clients since for each
new client the serHer will not haHe to transmit any more data. loweHer/ as we can see in Table III increasing
the reVuest rate causes the ?CP to decrease. *y e8amining Yig. [WbX and Yig. [WcX we can see that the client
e8periences higher Hariation in the CYIT plot between frames. loweHer/ this rate is still well behaHed.

The end result of this e8periment shows us two things. Yirst/ the serHer sees little dif!culty in worEing with
the large number of streams sent out and the client is similarly able to listen to PO[ streams with little dif!culty.
Secondly/ high client reVuests do affect the ability of the serHer to deliHer the stream. This could eHentually lead
to scaling problems or at least considerations in the implementation of future systems.
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Yig. \. Synchronication between transmission schedules could lead to bursty behaHiors

A.N Patching

Yor patching algorithms the number of streams sent out is a function of the client arriHals. This means that
the streams a client must receiHe Wi.e. from multicast groupsX is a function of when clients arriHed before it. 2e
are forced to use local con!guration II Wsee Yig. QX so that the real client can interact with the reVuests of the
simulated clients. Since the arriHal rate and the STT are related/ we increase the client arriHal rate from 1 to P
reVuests per minute and record the performance. WYor higher arriHal rates the networE linE becomes a bottlenecE.X
Table IS shows the parameters of the e8periment. The serHerjs ?CP is remains steady at .

Un the client side/ we see similar CYIT distribution as in periodic broadcast. 2e obserHed that if the client
starts playbacE around 1.P seconds after sending the reVuest/ it is able to receiHe all the frames before the playbacE
time. This 1.P seconds includes stream latency and some delay after that to accommodate the pacEets that come
later than the supposed playbacE time. 2e can conclude that the networE becomes the bottlenecE in 7AT settings
since the serHer is able to send at the bandwidth of the linE without e8periencing poor Vuality Hideo at the client.

B. Scheduling Among Videos

2hen running L copies of the Hideo Blade2/ we !nd an une8pected effect. The amount of data placed on the
networE seen in Yig. \WaX/ showed spiEing effects. To understand this we looEed bacE to the way that O9?*
worEs. The O9?* algorithm periodically repeats each segment of the Hideo at a certain rate. The last segment
might be smaller than the repetition rate. Therefore/ the serHer will send the segment and then send nothing until
the ne8t repetion. After realicing that the serHer was seeing three e8tra channels of information/ we e8amined



1[

10

13

16

19

22

25

28

10 15 20 25 30 35 40 45 50
Se

rv
er

 R
ea

d 
Lo

ad
(M

bp
s)

per video buffer (MB)

3-GDB:actual
3-GDB

10-GDB:actual
10-GDB

Yig. Z. Caching effects on Periodic *roadcasth plots the e8perimental and analytic Halues of the read oHerhead under 7MG.

what happened when the schedules were started separately at an interHal of three minutes apart. Yigure \WbX/
shows three LO9?* staggered broadcasts to preHent them from synchronicing the retrieHal of the last segment/
and !nd that the sustained bursts disappear. This is clearly useful as it remoHes the necessity to proHision high
peaE STT. This e8ample illustrates the bene!t of using techniVues for smoothing out the offered load/ especially
for high loads.

C. Caching Implications for Periodic Broadcast and Patching

Earlier research on periodic broadcast and patching has focussed on the serHer networE throughput reVuireO
ments of these schemes. 2e now focus on the serHer read load imposed by such schemes. SerHer endOsystems
today possess signi!cant high speed memory. Caching effects Wat the application and system leHelX would impact
the full demand of the serHer. In this study/ we inHestigate the use of application-level caching and application-
specific caching policies for reducing the bandwidth demand on the underlying serHer operating system. 2e
consider 7east Mecently Gsed W7MGX cache replacement as a baseline. The choice was motiHated by the fact
that this is widely used in literature and many conHentional operating systems implement this policy in their
underlying Eernel buffer caches.

C.1 Periodic *roadcast

2e !rst consider two 9?* segmentation schemes LO9?* and 1JO9?*. Uur application locEs a tunable
amount of main memory for applicationOleHel caching for a Hideo. The Hideo uses a local caching policy to
reduce the load on the system. A read is generated only if a blocE is not present in the applicationOleHel cache.
The metric of interest is the system read load.

Yig. Z plots the read load for a single Hideo as a function of the application leHel buffer cache sice aHailable
for that Hideo. 2e consider both actual measurements from our testbed and analytical computations of 7MG
performance for the same cache sice. The small deHiations between the analytic and e8perimental Halues are due
to the large application leHel memory blocEs W (*X used for these e8periments. This graph demonstrates the
role of caching in reducing the read load. As e8pected the SM7 is a nonOincreasing function of increasing buffer
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sice. In addition/ larger and larger increases in buffer sice yield lower and lower returns.
In the absence of any caching/ the read loads for the LO9?* and 1JO9?* segmentation schemes would be h

!bps and !bps respectiHely. EHen with a relatiHely small !* buffer which is of the sice of
the Hideo/ the load under 7MG reduces by and .

Periodic broadcast e8hibits some interesting Vualities under 7MG caching. In order for caching gains to be
realiced the buffer must be large enough to allows for an entire segment to be cached. Utherwise the 7MG
will choose to replace the blocEs that are actually needed ne8t. This e8plains the stepOliEe behaHior. A step
corresponds to the region where 7MG has buffer to cache another segment. lence the step sices are !bps/ which
corresponds to the bandwidth for one segment. This is followed by a horicontal portion where the additional
buffer is not suf!cient to fully cache the ne8t segment.

TetworEOcentric studies of periodic broadcast trade off larger stream latency for reducing the STT for a particO
ular periodic broadcast scheme. Gnder this approach/ 1JO9?* should reVuire less STT than LO9?*. loweHer/
this does not necessarily hold in the conte8t of the SM7/ as caching effects may cause LO9?* to impose a lower
SM7 than a 1JO9?* WSee Yig. ZX. Yor e8ample/ with !* of buffer/ the O9?* induces a read load of

!bps/ while the O9?* results in a load of !bps. The graphs suggest that instead of increasing the
length of the !rst segment/ a better approach may be to use caching to reduce the read load on the serHer.

C.N Patching

2e ne8t consider the impact of applicationOleHel caching on patching. Yor a giHen arriHal rate of 1.LL client per
minute/ we e8amine the changes in the SM7. In the absence of caching/ the e8pected SM7 is !bps. As can
be e8pected/ the resultant SM7 is lower to !bps with ]L!* of buffer. Yig. 1J shows the distribution of
read loads across a !He hour run/ for no buffer and !* of buffer. The graph illustrates that for a giHen buffer
sice/ the instantaneous read load can be much higher than the mean/ and that 7MG caching with eHen a modest
amount of buffer can signi!cantly reduce the instantaneous read load.
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Trace SerHerOclient Time MS lat.WmsX Stream lat.WsX PEt. 7oss Yraction of frames without loss
71 EC1OECN ZfJZ N1hJJ N]N N.1Q J.Np ZZ.Pp
7N ECNOEC1 ZfJZ N1hLJ \[ N.]J N.JJp ZN.[p
l1 EC1OECN ZfJZ 1QhJJ NNQ 1.QL J.1p Z\.Zp
lN ECNOEC1 ZfJZ 1QhLJ 1QN 1.[J 1[.]p 1].Qp
lL EC1O!21 [fNQ 1PhJJ 1Z\ 1.[J 1.1Np Z1.Zp
*1 EC1OECN 1Jf1Q 1QhJJ \P J.\1 J.1Lp ZZ.Np
*N ECNOEC1 1Jf1Q 1QhLJ N] 1.L[ L1.Zp Q.Lp
*L EC1O2C1 1JfJL NJhJJ 1\L J.ZJ P.Lp ZL.Np
*] 2C1OEC1 1JfJQ NJhJJ 1[\ 1.LN N].Zp 1N.[p

TA*7E S
EnPEMI!ETTA7 ?ATA USEM vBNS.

D. Network Evaluation

Ideally/ we could eHaluate the platform using multicast oHer vBNS. Gnfortunately/ the sites for our 2AT e8perO
iment do not haHe multicast interconnectiHity. 9iHen this/ our preliminary e8periment is testing the simplest case/
that is/ transmitting the Hideo in one channel using unicast. ClarE/ etc. carried out applicationOleHel measurement
of performance on the H*TS based on simulated Hideo data ^1N`. In our e8periment/ the serHer transmits Hideos
with bandwidth ranging from 1ZQ.\(bps to N!bps oHer vBNS and the goal is to measure the resultant loss/ aitter
and latencies. 2e disable the decoding and playbacE at the client to remoHe their load on the processor.

Table S summarices some of the e8periment results. Traces 71 and 7N are collected using the Hideo Leno.
Traces l1/ lN and lL are collected using the Hideo Hacker. Traces *1/ *N/ *L and *] are collected using the
Hideo Blade1. All the data in the table are measured at the client site. The pacEet loss ratio is the number of
pacEets lost oHer the total number of pacEets transmitted. 2e assume all the losses occur in the networE because
our local e8periments shows that there is no loss caused by the de!ciency of the serHer or the client. To con!rm
this/ we use tcpdump to collect traces at the serHer and the client networE interface. The comparison of the
tcpdump traces with the log data recorded by the serHer and client con!rmed our assumption.

The table shows that there is tremendous Hariability in terms of the pacEet loss ratio along different paths and
the bandwidth of the Hideo. The pacEet loss ratio of the low bandwidth Hideos We.g. LenoX is usually signi!cantly
lower than that of the high bandwidth Hideos We.g. Blade1X. !ost of the losses occur as single pacEets/ this is
consistent with the result in ^1N`. loweHer when transmitting the highbandwidth Hideo Blade1/ we see bursty
losses WoHer 1J pacEets loss in the rowX. The last column of the table shows the fraction of frames without any
loss. It is a rough measurement of the Hideo playbacE Vuality assuming players can not tolerate any loss in a
frame. Yor more resillent players/ we need more accurate measurements which taEe account of the importance
of the different frames and the dependence of the frames. TetworE aitter per second is measued as de!ned in
Section SO?.N. 2e compare the pacEet loss and aitter for eHery second and do not see correlation between them.
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Yig. 11. 7YG characteristics for periodic broadcast and patching

The high loss rate on some paths implies that loss recoHery scheme is needed to proHide Vuality stream deliHery.

SII. 7ESSUTS 7EAMTE?

2e haHe gained seHeral Eey insights from the deHelopment of this streaming media platform and subseVuent
e8perimental eHaluations. 2e discuss these insights in this section.

A. Caching Schemes

?uring the process of eHaluating the performance of our periodic broadcast and patching schemes/ we realiced
that 7MG is a poor caching scheme. SubseVuently/ we concluded that a new replacement policy/ 7east YreVuently
Gsed W7YGX can proHide better performance.

Definition. Among the set of cached blocks, LFU replaces the block that contains data that is least frequently
used. If there are multiple blocks with the same frequency, remove the block that is furthest from the beginning of
the video.

7YG can be shown to be optimal and proHides a lower bound for theoretical serHer read loads. 2hen we
compare the 7YG with the 7MG scheme used preHiously/ we can see signi!cant improHement WSee Yig. 11WaXX.
2ith the same buffer sice/ 7YG reduces SM7 much more effectiHely than 7MG. Yor e8ample/ in 1JO9?*/ with a

!* buffer/ the SM7 drops from !bps under 7MG to !bps under 7YG/ a reduction of . Also/
under 7YG/ eHen a partially cached segment contributes to caching gains. This e8plains why 7YG decreases SM7
more smoothly than 7MG. 2e are in the process of implementing this simple yet remarEably promising scheme
in our serHer.

It has been shown in ^NJ` that there e8ists a reVuest arriHal rate aboHe which periodic broadcast is preferred
and below which controlled multicast is preferred. 2e will now e8amine the effect that 7YG caching has on this
crossoHer point. In Yig. 11WbX we see 7YG used for patching and periodic broadcast across an a8is of reVuest
arriHal rates. WTote that preHious graphs of SM7 include oHerheads imposed by the system architecture. lere we
Hiew the upper bounds for comparison.X The crossoHer point between patching and periodic broadcast occurs at
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an arriHal rate of reVuests per second W per minuteX. At this point the SM7 imposed by both schemes is
eVual to !bps. As the buffer cache increases/ we !nd that the SM7 decreases as e8pected for both schemes/
but 1JO9?* sees more adHantages. 2ith increasing buffer sice/ the crossoHer point for these schemes shifts to
lower arriHal rates. These studies demonstrate that the caching scheme and cache buffer sice both impact the the
crossoHer point and need to be factored in its computation.

B. Inter-Scheduling Interactions

!ost broadcast schemes haHe been e8amined in the conte8t of a single Hideo. Itjs important to note that/ posO
sibly unwelcome/ interactions can occur between schedules for different Hideos. In Section SIO*/ we presented
a case where the lacE of attention to this resulted the synchronicing the schedules of three Hideo sessions. This
produced situations where the serHer generated reVuest rates well aboHe the aHerage rate for short period of times.
These synchronications can be reduced or eliminated through careful scheduling.

C. Server-Client Synchronization

Une of the lessons we haHe learned which is not reported on in this paper is the dif!culty of synchronicing the
serHer and the client. Yor preHious MTSP interfaces/ the client selects a port on which it will receiHe the stream.
2ith the broadcast schemes considered in this paper/ the client must Enow not only where to listen to but also
when to listen. If the client listens too early to a multicast stream/ that client will receiHe data that is not releHant.
ConHersely/ if the client listens too late/ it will miss data. 2e presented an approach which uses relatiHe timing
along with estimations of round trip time. loweHer/ the Hariability of multicast aoin latencies from site to site can
cause problems with scheduling.

D. The use of a non-real time operating system

In the design and implementation of our serHer/ one of the main concerns was the use of a nonOreal time
system. Uur e8perimental results show that/ although the serHer runs on top of 7inu8/ without any underlying
realOtime support/ with access to clocEs with coarse time granularities of at least 1Jms/ the serHer is nonetheless
able to meet real time deadlines. Yor loads that nearly saturate a 1JJ!b networE connection/ the serHer misses
surprisingly few data transmission deadlines. Yurthermore/ we are able to show that with an initial startup delay
of less than 1.P sec the client can absorb aitter and hide the startup signaling latency in a 7AT enHironment. This
clearly austi!es our design decisions.

SIII. CUTC7GSIUTS

The high transmission bandwidth reVuirements of streaming Hideo/ coupled with the bestOeffort serHice proO
Hided by todayjs IP networEs maEes it a challenging problem to proHision networE resources for deliHering such
media to remote clients. In this paper/ we presented the design and implementation of an e8perimental streaming
media testbed for inHestigating scalable streaming solutions liEe periodic broadcast and patching. The testbed
consists of a distributed Hideo serHer and client software running on top of offOtheOshelf PCs e8ecuting commerO
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cial 7inu8 and 2indows operating systems. The platform uses the Meal Time Protocol for data transmission and
Meal Time Streaming Protocol for signaling. The platform has been designed to be "e8ible and e8tensible to
support a wide range of streaming deliHery schemes.

Through measurement and analysis we !nd that the serHer is able to operate on a 7AT setting with networE
bandwidth as the main bottlenecE. ;itter imposed by the non real time operating systems and the networE can be
absorbed by a small amount of latency at the client. The use of caching in the serHer helps to reduce the load
on the systems without sacri!cing the Vuality of serHices. Yurthermore/ we haHe shown that 7YG allows us to
optimally cache the streams for periodic broadcast and patching schemes. Initial eHaluations oHer the H*TS show
that errorOrecoHery schemes are needed to handle the losses in the networE.

2e are implementing 7YG caching policy in our system to further improHe the performance of the serHer. Also
we are in the process of deHeloping a networE pro8y serHer testbed that in conaunction with the current Hideo
serHer will allow us to inHestigate how pro8ies can be used to deliHer high Vuality streaming Hideo to clients oHer
bestOeffort IP networEs.
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