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Abstract

In this work we develop simple inference models based on finite capacity single server queues
for estimating the buffer size and the intensity of cross traffic at the bottleneck link of a path
between two hosts. Several pairs of moment-based estimators are proposed to estimate these
two quantities. The best scheme is then identified through simulation.

1 Introduction

The huge expansion of the Internet coupled to the emergence of new (in particular, multimedia)
applications pose challenging problems in terms of performance and control of the network. These
include the design of efficient congestion control and recovery mechanisms, and the ability of the
network to offer good Quality of Service (QoS) to the users. In the current Internet, there is a
single class best effort service which does not promise anything to the users in terms of performance
guarantees. The forthcoming deployment in the Internet of differentiated services (known as diffserv
1) will be a first (long awaited) step towards the support of various types of applications and
business requirements. It is however doubtful that Diffserv — which will mark each packet to
receive a particular forwarding treatment, or per-hop behavior, at each network node - or the
RED mechanism for congestion avoidance in gateways [5] alone will solve all QoS issues raised by
real-time applications. Diffserv and RED are two instances of a general approach that aims at
adding more intelligence in the network. A more ambitious component of this approach is captured
in the concept of active networking [16] that aims at exploiting mobile code and programmable
infrastructure to provide rapid and specialized service introduction.

‘http://www.ietf.org/html.charters/diffserv-charter.html




A complementary approach for providing QoS guarantees is to add intelligence to the applica-
tions. The idea is to provide applications with enough knowledge of the network so that they can
use this information to adapt their transmission rates to current network conditions. Since it is
impossible to monitor every link on the Internet, static (e.g. bandwidth of a link) and dynamic
(e.g. available bandwidth on a path) network internal characteristics have to be estimated from
measurements delivered by the network (e.g. packet losses in RTCP feedback). Our work falls into
the latter category.

The estimation of network characteristics from measurements has been carried out in a number
of cases. For instance, the packet-pair technique can be used to estimate both the bottleneck

bandwidth [1], [3], [12] and the available bandwidth along a path connecting two hosts on the
Internet (3], [6], [12]. The steady-state throughput of a bulk transfer TCP flow can be estimated
as a function of loss rate and round-trip time using the so-called TCP-friendly formula [8], [9], [11].
Although the previous estimates have been devised under the assumption that there exists a single
bottleneck link on a path connecting two hosts, experiments reported in the previous references
indicate that these estimates still perform reasonably well when this assumption is violated.

In this paper we develop a simple inference (queueing) model, based on the single bottleneck
link assumption, that will allow us to simultaneously estimate the bandwidth capacity, the traffic
intensity (hereafter called the cross traffic) and the buffer size at the bottleneck link. As already
pointed out, knowledge of the available capacity at the bottleneck link can be used by an application
to adapt its transmission rate. We expect this quantity to be better estimated when taking explicitly
into account the cross traffic and the buffer size at the bottleneck link (these quantities are not
taken care of in the packet-pair algorithm). We also believe that estimates of the intensity of the
cross traffic and of the buffer size at the bottleneck node are useful quantities on their own and can
be used by an application for instance, to estimate the maximum size of a burst. We expect these
estimates to be used in a number of contexts: adapting an application rate to the congestion in the
networks, optimizing the amount of FEC in continuous media applications such as IP telephony,
[2] and congestion control, [15].

The paper is organized as follows: two inference models based on the M/M/1/K and on the
M/D/1/K queues are introduced in Sections 2 and 3, respectively. In each case, several QoS
metrics of interest are identified and expressed in terms of the unknown parameters (buffer size,
cross traffic intensity, service capacity). In Section 4, we restrict ourselves to the estimation of
the intensity of the cross traffic and of the buffer size (i.e. we assume that the service capacity is
available and provided, for instance, by the packet-pair technique) and we propose eleven schemes
that can be used to compute these estimates. Section 5 reports simulation results obtained with
the ns-2 simulator from which we were able to select the best scheme out of these eleven schemes.



Concluding remarks and directions for future research are given in Section 6.

2 The M+M/M/1/K queue

2.1 The model

We model an Internet connection by a single server queue representing its bottleneck node, following
[1]. The buffer is finite with room for K customers (K > 1) including the customer in service. The
incoming traffic at the bottleneck is modeled as two independent Poisson sources: the probe traffic
generated by a foreground source with rate v, and the cross traffic generated by a background
source with rate A. This background source can be seen as the superposition of many heterogeneous
sources. The packets length being variable in the Internet networks, some packets being small such
as the acknowledgments of TCP traffic, while others containing data are larger, and service times
being more likely proportional to the packets length, we propose to model the service times as
iid. random variables with exponential distribution with mean 1/yu, further independent of the
arrival processes. This assumption represents the variability of the packet sizes. We are aware of
the strength of this assumption but we assumed it for the tractability it gives to the study of the
model.
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Figure 1: The inference model

The traffic intensity is defined as

p = — (1)

We are interested in the behavior of the system from the perspective of the foreground customers.
This includes stationary measures such as expected delay, loss probability, server occupation and a
number of additional statistics associated with the foreground loss process, namely, the probability
of two consecutive losses and the probability of two consecutive successes. It is important to
notice that these stationary metrics do not pertain exclusively to the foreground source, but to the
background source as well, due to the Poisson assumption and its memoryless property.



Let {Qn}32, be the process of the number of packets in the buffer at time of the n-th arrival

from foreground source, and let Q@ = lim, ;00 @n2. The distribution of Q is m; = P(Q = ¢). It is
known that [7)

1 - p)p* :
™ = ](___pK)-l-T’ 1=0,1,...,K. (2)

2.2 The loss probability

We focus here on the loss process. We define X, = 1{Q, = K} and X = lim,,00 Xp. A customer
is lost whenever it arrives to a full buffer. In other words, customer n is lost whenever X,, = 1
and is not lost otherwise. Let {a,}3, and {dn}S, be the arrival times to the system and the
departure times from the system, respectively, of the n-th foreground customer, n =1,2,.... When
a packet is lost, it never reaches the destination. We shall assume that d,, = oo if X, = 1.

The probability that a foreground customer arrives to find the system full, and is lost, is

P,:=P(X=1) = P(Q=K)

- K
T @

Observe that the expression for P, can be used to give the following expression for K in terms of
p and Py,

1 P,
= ogp 8 (1 - p(lL— PL)) ' @

2.3 The server occupation

The second metric of interest is the occupation U of the server, defined as the probability of a non-
empty queue as seen by a foreground customer. In order to express U, we introduce the following
indicator Y;, = 1{Qy, > 0} and define Y = lim,,_,, Y;. The server occupation is then

U=P(Y=1) = P(Q>0)

1-pK
=r (m) (5)
A word on the notation. Let {Z,} be a sequence of random variables taking values in [0,00). Assume that

limp 00 P[Zn < z] exists for all z > 0. Then Z = limpc0 Zn designates any random variable such that P[Z < z] =
limp— o0 P[Z, < 2]




= p(l1-Pp). (6)

Again, we can derive from the expression for U the following expression for K in terms of p and U,
1 1-U/p
= 1
logp Og( 1-U ) @

2.4 The expected response time

When available, the expected response time is also a relevant metric. To express this quantity, we
first define T;, as the response time of the n-th foreground packet. It follows that T, = d, — ay,.
Again, let T = lim,,_,,, T}, then, the expected response time is

,_01 (E+1)=(2)
(1 TK)

R:=E[T|X=0]= (8)

since a customer waits for an average time (¢ +1)/p if there were already ¢ customers in the queue;
1 — mx is the probability of a success. Using (2) we can write

1
B = p(l—mk) (1 PK+1 ,Z;(H-l)p)
Hence,
R = 1 [ l—pK _ KpK ]
p(—mg) [(1=p)(1-pK+1) 1 pk+l
1 K TK

- = . 9
p0-9) B A-A0-mm) ©)
The last expression for R, which was derived using (2), will prove useful. We can express R only
in terms of p and K by replacing mx given by (3) in (9). This gives

__ ! _K o7
B = i wi-& (10)



2.5 The conditional loss probability

The next metric we are going to study is the conditional loss probability or, in other words, the
probability that two consecutive losses occur. It is expressed as follows

gL := P(Qn = K| Qn-1 = K). (11)

In order to be able to derive a closed form expression for g, we define N(t) to be the queue length
of the system at time ¢ > 0 with the foreground source removed (v = 0). Let P;x(t) = P(N(t) =
k| N(0) = 7). Hence (11) rewrites

O
=1 e ™Prxlt)dt =7 Pik() (12)
where Pj 1(7) is the Laplace transform of P,k (t)-

Proposition 2.1 The following result is proved in the appendiz:

. ai+1 (1 _ a)—l _ bi+1 (1 - b)-l
Pix(r) = X (BE+L — gK+1)

fori=0,1,...,K, where

Atp+y+/( A+p+9)2 -4

2\
p = Atptr-vO+p+7)? -4
2 |
a
From proposition 2.1 we get that
. _(1-0a)7' - (¥/a)**(1-b)™?
P =X Graye 1)
which in turn implies from (12) that
_ (1) ((L=a)' — (¥/a)* (1 - )~
%= (,\) ( (b/a)EH -1 ' (13)
Expression (13) for gz, can be inverted to give
log ( 725 +arA) —log ( 135 + qrA
K= (s +a2) - (s )—1. (14)

logb —loga



2.6 The conditional non-loss probability

Another metric can also be calculated. It is the conditional probability that a foreground packet
arrives to find room in the buffer given that the previous foreground customer was also admitted.

We shall refer to this probability as the conditional non-loss probability and will denote it by qx.
We have

oy = P(Quir#K|Qn#K)
& P(Quis # K, Qn =i,Qn # K)

B 2 P(Qn £ K)
_ EPQui #K|Qn=i)7(3)
B ; 1~ n(K)

K-1 .
- (1 = P(@n+1 = K| Qy = 1)) n(3)
- § 1-n(K) :

Recall the definition of P;x(t) = P(N(t) = k| N(0) = i), where N(t) is the queue-length at time
t when v = 0 (no foreground customers). Since the n-th foreground customer is accepted in the
system when @, =i < K, we have

o0
P@u=K|Qu=i) = [ Purai)ye™ra
¥ Py, k(7)

fori=0,1,...,K — 1, with 1—"1’-':,‘(3) = f0°° e~*P; (t)dt. Therefore,

K-1 * (i
v = 1—720&;1’_1{—7(2{)(22- (15)

Using proposition (2.1) which gives an expression for P7 (), (15) rewrites

o = 1= () (22) (o)

[02 (1= (pa)®)  B2(1 - (pb)¥)
(1-a)1-pa) (1-0)1-pb)]"

(16)



Since

P(Qn+1=K)=P(Qn+1:KlQn=K)P(Qn=K)
+P(Qn+l=K|Qn#K)P(Qn9éK)

we deduce that Py, qr and gy are linked by the following relationship

PL(l1-q1) = (1-Pr)(1—gn). (17)

3 The M+M/D/1/K queue

3.1 The model

We still consider the model introduced in Section 2.1 but we now relax the assumption that the
service times are exponentially distributed. Instead we will assume that the service times are
constant and all equal to 1/p. In Section 2.1, we motivated our choice for exponentially distributed
service times by the fact that various packet lengths are possible. Taking into consideration that
packet lengths may not be so variable to justify the choice of an exponential distribution, we study
here the other extreme case: the service times are taken to be constant (i.e. all packets have the
same length) with value 0 = 1/p. Recall the definition of the traffic intensity given in (1).

Again, let {Qn}52, be the process of the number of packets in the queue at time of the n-

th arrival from foreground source and let @ = lim,_ o @n. Some preliminary results must be
introduced before computing the stationary distribution of Q.

Let F(0) = E [exp(—60)] (R(8) > 0) be the Laplace-Stieltjes transform (LST) of the service time
distribution. Since we consider a constant service time, this transform rewrites as F(0) = exp(—6o).
For p > 0 and |z| < 1, define

o) = F(H=2) -

4
= P9 _,, (18)

For p > 0, we denote by 29(p) the zero of G,(z) having the smallest modulus. Also, we denote by
[2"]f the coefficient of 2™ in the Taylor series expansion of f.

To express the stationary distribution of @, we base our calculus on Cohen’s analysis of the
M/G/1 queue with finite waiting room [4, Chapter III.6]. Introduce the parameter B defined as

P 1 dz
B = Py . EE
145 fD TE & (19)

8



with D, any circle in the complex plane with center 0 and radius strictly less than |29(p)]. According
to the results obtained by Cohen [4, page 575], we have

PQ=0) = %

A=
21rzB gp(z) 23’
dz

PQ=K) = 2mB% (g,,(z) : z) 2K-1°

where j = 1,...,K — 1. The integrals in the r.h.s. of (19) and the preceding two equations can be
evaluated using the theorem of residues. The distribution of @ is then given by

P(Q=1)

o= 1+pix@) | 0
m f§§%£555 (21)
m o= af;‘_:‘:);;z;gp), i=2,... K—-1 (22)
= ) &

where

a1 1 (49D 1
aj(p) = [/ zlgp(z) =G-2) (dzf"" Gp(z))zzo

When the service times are constant, an analytical expression for a;(p) can be derived. To this
end, start from

1 1 ;
= - ep(l-z) zep (l—z))"
Go(z) e P(l-2) 4 g(

where the last equality is true for z such that |ze?(1=?)| < 1, which yields

1 - ,
= FeP (i+1) g—p(i+1)z
Go(2) g



_ Zzzep(z+l)( P(H'l)z)

i20 k>0
B Z ( Z P (+1) (_1)% p k(z+l)k)
- |

n2>0 \it+k=n Kt

Hence,

g LECDHG

aj(p) =
i+k=j-2

3.2 The loss probability

Recall the definition of X, introduced in Section 2.2, X, = 1{Qy, = K} and X = lim, 00 Xj,. A
customer n is lost whenever X,; = 1 and is not lost otherwise.

The probability that a foreground customer is lost is the probability that it finds the system
full upon arrival, namely,

P, = P(X=1) = P(Q=K)

1+ (p—1)ak(p)
1+pak(p)

(25)

3.3 The server occupation

The occupation U of the server was defined as the probability of a non-empty queue. The server
occupation is

U := P(Q>0)

pax(p)

1+pak(p)’ (26)

3.4 The expected response time

Applying Little’s formula and the PASTA property to the queue, we find that the expected response
time R is given by

TK, in()

S s wr T g

(27)

10



Using (21), (22) and (23), (27) rewrites

po K+ Ep-Daxp) -1- 55" ai(p)
prak(p)

(28)
with a;(p) defined in (24).

4 Using the inference models

4.1 An inference question

Until now we have introduced two models for a connection. In the first model we were able to
identify five metrics describing the quality of service provided to the foreground source, given in

(3), (5), (10), (13) and (16). In the second model we were only able to find three QoS metrics,
given in (25), (26) and (28). Since p = (A +7)/p, all these equations are expressed in terms of the
parameters A, ¢ and K (v is assumed to be known throughout the paper).

The problem is therefore the following: How can we infer estimates \,, fin and K, of parameters
A, p and K, respectively, from the observations collected by the first n probe packets?

If the parameters A, 1 and K are unknown, then equations (3), (5), (10), (13) and (16) leave us
with nine schemes to compute these three constants in the M/M/1/K case (there are ten possible
schemes but relation (17) reduces that number to nine); no scheme is available in the M/D/1/K as
only equations (25) and (26) can be used.

If we now assume that only A and K are unknown (4 being estimated for instance, using a
packet-pair based technique [1], [3], [12]), then ten schemes in the M/M/1/K case and one scheme
in the M/D/1/K case can be used to compute these two constants. These eleven schemes are listed
in Table 1, where the notation X_Y denotes the scheme obtained by using the metrics X and Y in
the M/M/1/K case and where P;_U_D denotes the scheme obtained by using the metrics Pr, and
U in the M/D/1/K case.

4.2 Solving for the equations

From now on we will restrict ourselves to the estimation of parameters A and K, thereby assuming
that x4 and «y are known. In this case, each scheme identified in Section 4.1 involves two QoS metrics.
For instance, the loss probability Pr, and the server occupation U in scheme I, the expected response
time R and the conditional loss probability ¢z, in scheme VIII, etc. Assume that both QoS metrics
involved in a scheme can be evaluated from measurements collected at the sender/receiver (cf.

11



Table 1: Schemes for estimating A and K.

Scheme Equations to use |
Pp U (referred to as scheme I) (3), (5)
PR (I1) (3), (10)
Prqp (111) (3), (13)
Prgn Iv) (3), (16)
UR (V) (5), (10)
Ugr (V1) (5), (13)
Ugn (VII) (5), (16)
RgL (VIII) (10), (13)
Rgn (IX) (10), (16)
aL4N (X) (13), (16)
PLUD (XT) (25), (26)

Section 4.3). Then, estimators for A and K will be obtained by “solving” the scheme w.r.t. the
variables A and K.

If we want to apply a certain scheme to estimate the buffer size and the intensity of the cross
traffic, we must establish existence and uniqueness of its solution (A, K). To be more precise,
consider for instance scheme I. Then, for any (observed/measured) values of Pr, and U with 0 <
Pr <1and 0 <U < 1, we want to find a single pair (), K) satisfying the set of equations defined
by (3) and (5). This existence and uniqueness property holds for scheme I as shown below, as well
as for schemes II and V (proofs not provided for sake of conciseness). As to the other schemes
we have not been able to show that property, but in all experiments that have been carried out
and that are reported in Section 5, each scheme always gave us a unique solution. We now briefly
discuss the solution to scheme I, show the existence and uniqueness of the solution for scheme II,
and indicate how a solution can be found for scheme XI.

4.2.1 Solving for scheme I

Equations involved here are (3) and (5), namely,

_ (-p)p¥
Py 1— pK+1

U = P(ll__%-;) = p(1 - Pp).

12



Hence,

- (29)
and

log(Pr/(1 - U))
log(U/(1 - P))

by combining (29) and (7). Therefore, the set of equations (3) and (5) in the variables A and K
has a unique solution given in (29) and (30), respectively.

It is interesting to investigate the sensitivity of A and K with respect to the variables Py, and U.
To do so, let us compute the differentials of A and K considered as functions of P; and U. From
(29) and (30) we find

(30)

- v
d\ = T—F, (dU—l- e dPL)
1
dK = P U/ ) (BdU + CdPy)
where
g - los(U/1-Pp)) log(Pr/(1-U))
- 1-U U
Cc = log(U/(1 - Pr)) log(Pr/(1-U))
- Py, 1-P; )

We conclude from the above that A will be more sensitive to the variations of P (resp. U) than
to the variations of U (resp. Pr) whenever p = U/(1 — P.) > 1 (resp. p < 1). As for K, it follows
primarily U’s variations since it is easily seen that B > C, except when p =1 (U =1 - P) in
which case A and K are equally influenced by P, and U’s variations.

4.2.2 Solving for scheme II

Assume that one knows R and Pp and that p and K are unknown. The expression for Pr can be
used to give the following expression for K in terms of p and P,. We find from (3)

_log(Pr/(1—p(1 - Pr)))
K= log(p) ' o

13



Plugging now this value of K in (9) gives

__ 1  Pplog(P/(1 —p(1—Pp)))
p(l—p) p(l-p)(1-Py)log(p)

Observe that necessarily p < 1/(1 — Pg). For 0 < z < 1/(1 — P.), introduce the mapping

1 P log(P/(1—=z(1-Pp)))
p(l-z)  p(l-z)(1- P)log(z)

If one can show that the equation f(z) = 0 has a unique solution in (0,1/(1 — P.)), then this

solution will give us p, hence A, and subsequently K by using (31). Proposition 4.1 shows that this
is indeed the case.

R

f(z) = R.

Proposition 4.1 For any constants p > 0, P, € [0,1) and R > 1/p, the equation f(x) =0 has a
unique solution in [0,1/(1 — PL)). O

Sketch of the proof. Define the mappings
h(z) := ((1 — a)P? + (1 + 2a) Py, — (2 + a))z?
+(1-P)22®+(1+2a(1-Pr)¥)z—a(l - Pr)
and
k(z) := (1 - Pp)*z* + (P} + PL — 2)z + 1.

. _1-R
where a := Rp (-Fp <0.

When a < 0 it can be shown that the polynomial k(z) has a unique zero in [0,1/(1 — Pp)],
denoted as p(a). When a = 0, then h(z) has two zeros in [0,1/(1 — PL)}: z =0 and = = p(0) where
p(0) # 0 is the unique zero of the polynomial k(z) in [0,1/(1 — P)]. The following properties then
hold for all a < 0:

o if p(a) < 1 then f(z) has a unique zero in the interval [0,1/(1 — P.)]; this zero is located in
the interval [0, p(a)];

e if p(a) > 1 then f(z) has a unique zero in the interval [0,1/(1 — PL)]; this zero is located in
the interval [p(a),1/(1 — Pp)];

e if p(a) = 1 then z = 1 is the unique zero of f(z) in the interval [0,1/(1 — Py)]
which concludes the proof.

14



4.2.3 Solving for scheme XI

This scheme still involves P, and U, but this time these quantities have to be computed for the
M+M/D/1/K queue. More precisely, cf. (25) and (26),

1+ pak(p) (32)
pak(p)
1+ pak(p) (33)

with ak(p) given in (24).
Recall that we want to solve the system of equations (32)-(33) w.r.t. the variables p and K.
We readily observe from (32)-(33) that

U
and
1-P
ax(p) = T4 (35)

If all coefficients {@;(p),j > 2} in the Taylor series expansion of 1/G,(z) are different, then (34)-(35)
will return a unique solution (p, K).

For given p, we computed the coefficients a;(p) for a certain range of j and compared the results
with the r.h.s. of (35); then K was chosen as the integer j for which o;(p) was the closest to (the
measured value of) (1 — Pr)/(1 - U).

4.3 Calculating the moment-based estimators

We have at our disposal the first » samples of {X;};, {Y;}i, {ai}i, {di}: for the probing traffic, and
we know v and p. Let U(n), Pr(n), R(n), 4z(n) and Gn(n) denote the estimators of U, Py, R, g
and gy, respectively. They are defined as (n =1,2,...)

By(n) = %Zl(X,—:l) (36)
=1

Om) = =Y 1(%i=1) (37)
i=1

15



i=1 1(Xi = 0) (di — a;)

ﬁ(n) = i=1 ?=1 I(X‘ - O) , (38)
5 = 2_:?;11 1(X;=1,X;11=1)
gr(n) = " T10%; = 1) , (39)
n—1 L ) _
n(n) = Yoiq UXi=0,Xi41 = 0). “©

Tia (X =0)

Pr(n) and U(n) are estimated over all packets, R(n) and §n(n) are estimated over successful
packets and §z(n) is estimated over lost packets only. It is expected to have a slowly convergence
when estimating qr, hence, intuitively, we can say that all schemes involving this metric will not
perform well.

4.4 Desirable properties of an estimator

If a comparison is to be made among several estimators, it is useful to have in mind the main
properties of a good estimator. Namely, an estimator is preferably unbiased and consistent. Unbi-
asedness has been proved for P(n), U(n) and R(n), while §z(n) and gy(n) turn out to be biased
(see Section 4.4.1). Consistency for each metric is much more complicated to show. The major
difficulty in establishing such a property is due to the fact that the rv’s {X;}; are correlated, since
the queue is finite and since the samples are taken from consecutive foreground packets rather than
random packets.

4.4.1 Study of the mean values
Using the identity E[1(A)] = P(A) that holds for any event A, we find

E[Py(n)] = P
Eli(n) = U
E[R(n)] = R
Elgr(n)] = aqn- °°V[@L(n)}?<n—1)1
Blinm)] = aq + @) Po(n - 1))

P
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The last two equalities follow from (39) and (40) when expressed as follows

X =1,X0 =1)

1=1
(n-1) PL(n -1)
Tt 1(X; =0, Xy = 0)

in(n) = i=1 — .
W = )= Bm-1)

d(n) =

Clearly, Pp(n), U(n) and R(n) are unbiased estimators whereas §z(n) and §n(n) are biased but the

bias depends on the size of the samples. Moreover, if Py, (n) is consistent then the bias approaches
0 as n — oo for both estimators.
The overall performance of the estimators is presented in Table 2. For each experiment (50

different experiments have been done; see details in Section 5), we have computed the relative error
between each estimator in (36)-(40) and its corresponding theoretical value. This computation has
been performed after the generation of 50000 probe packets. For a given estimator, we therefore
have a collection of 50 relative errors. These 50 numbers have been ordered and their average value
has been computed. Table 2 now reads as follows. Consider the metric Py, (1st line): in 66% of the
experiments the relative error was within 6.1% of the theoretical value (in the table this quantity is
referred to as the percentage of hits), the average value being approximately equal to 3. In all cases,
the relative error is larger than 0.08% of the theoretical value. The 4th column in Table 2 gives, for
each QoS metric, the minimum/average/maximum values of the empirical variance obtained after
50000 probe packets. More precisely, only the experiments for which the relative error was smaller
than the maximum value indicated in column 3 were used in this computation, the others being
discarded. For instance, in the 5th line of Table 2, we can read that the empirical variance for gy
lies in the interval (3 x 107%,6.7) with an average value of 1.40. We see from this table that the
top three estimators (in terms of unbiasedness and consistency) are, in decreasing order, R, U and
gn. Further comments on Table 2 can be found in Section 5.3.

5 Simulation results and analysis

5.1 Trace generation

The data sets {a;}i, {di}i, {Xi}: and {Y;}; were extracted from traces generated by simulation
models in ns-2. Overall 50 simulations have been performed. We have concentrated our work on
the simple case of a single queue (i.e. we didn’t try to use our estimates in the case where there are
several bottleneck links), to test the behavior of both inference models under various background
traffic patterns. Several types of background traffic have been considered:
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Table 2: Overall performance of the estimators for 50000 probe packets.

Hits Relative error Empirical variance
min/avg/max (%) min/avg/max
P | 66% 0.08/3/6.1 8x10~%/0.65/3.5
U | 98% | 0.0003/0.62/5.4 | 5x10%/0.47/4.7
R | 94% | 0.0005/0.88/3.6 | 2x10~%/0.007/0.2
qr | 48% 0.05/2.92/8.9 6x10~/3.50/33.6
gy | 100% | 0.004/1.92/6.3 3x1075/1.40/6.7

(T1) a Poisson flow of packets with exponentially distributed packet size

(T2) a superposition of 100 Poisson-like flows. The packet length is constant for each flow and its
value is taken from an exponential distribution

(T3) an aggregation of 250 FTP over TCP flows
(T4) an aggregation of 1600 FTP over TCP flows

(T5) an aggregation of 100 On/Off flows, where the On and Off times were taken from a Pareto
distribution

(T6) an aggregation of 250 On/Off flows, where the On and Off times were taken from a Pareto
distribution.

In all experiments foreground packets arrive according to a Poisson process and have exponentially
distributed packet size except in the case when the background traffic is of type (T2); in the latter
case, the foreground source is also of type (T2).

Note that the Poisson assumption for the background traffic is everywhere violated except in
case (T1). Indeed, as we know that in general traffic is not Poisson in today’s networks [13], it
is important to test the robustness of our estimators when the background traffic is not Poisson
(this assumption has been made only for mathematical tractability) and exhibits correlations across
several time scales (like in case (T5)-(T6); see [17]).

The rate of the foreground traffic (the probe packets) was equal to 250 pkts/s in all experiments
(except in case (T1) where values of 125, 250 and 500 pkts/s were chosen). On the network side,
the server rate was either equal to 1500 pkts/s or to 6500 pkts/s and the buffer size was either
equal to 10, 30, 65, 100, 150 or to 1000 packets (recall that in ns-2 the size of the buffer is defined
in number of packets regardless of their size).
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Below, we give the ranges of values obtained for the five metrics over all 50 experiments:
e P ranged from 1.7x10~4 to 0.637

e U ranged from 0.892 to 1

R ranged from 0.0007 to 0.66 seconds
e gy, ranged from 0.105 to 0.64

gn ranged from 0.367 to 0.9998.

As for the rate of exogenous traffic intensity )\, measured as the number of background packets
arriving to the bottleneck link over the run time, its value ranged from 1593.2 to 17437 packets per
millisecond, giving the range 0.965 - 2.758 for the traffic intensity p.

5.2 Estimating background traffic intensity and buffer size

Having at our disposal {a;}:, {di}i, {Xi}i and {Y;}; for the n first probing packets, the moment-
based estimators are computed according to formulas (36), (37), (38), (39) and (40). At this point,
By (n), U(n), R(n), §r(n) and gn(n) are plugged into equations (3), (5), (10), (13), (16), (25) and
(26). The eleven pairs of equations referred to as schemes I through XI are then solved numerically
using a C program including the NAG? C library.

Results are reported in Tables 2-6.

5.3 Analysis of the results

Coming back to Table 2, we observe that metrics R, U and gn exhibit the highest percentage of
hits thereby suggesting that schemes involving these metrics may perform better than the others.
This is not what we have found though, the best scheme being in general P;,_R. We explain this
result by the fact that estimators Py and R are probably the ones containing the least redundant
information (as opposed to scheme U_R, for instance). From now on, only results pertaining to
scheme P;_R are presented.

Tables 3-5 report the relative errors between the estimate of parameter A (resp. K), denoted

as A (resp. K), returned by scheme P;_R and the measured value A (resp. the true value K),
for various cross traffic patterns (Poisson traffic as defined in (T1) in Table 3, a superposition of

SNAG is a copyright of The Numerical Algorithms Group Ltd
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Table 3: Relative errors of the estimates for 50000 probe packets returned by the scheme P;_R, when the
cross traffic is a single Poisson source.

X | 6600 | 6600 | 6600 | 17068
4| 124 | 248 | 496 | 125

K | 1 |6968 | 6968 | 6967 | 6962
10| | 06 [0004] 01 | 0.1
K|lo7 | 09 | 14| 04

30| A[01] 01 |03] 09
Klo7| 16 | 06 | 005

65 | A{004] 02 [ 07 ] 10
K|l111] 10 | 03| 01
100 x|004]| 01 |01 ] 05
K| 28| 27 | 02| o001
150 A 01 ] o1 [002] 02
K| 83| 41 | 04 | 003

Table 4: Relative errors of the estimates returned by the scheme P _R for 120000 probe packets

Cross traffic On/Off FTP/TCP
Nb of sources | 100 250 250 | 1000
P 6812 | 17437 | 1641 | 1870
5 247 | 246 | 248 | 248
K © 6663 | 6532 | 1502 | 1491
10 ) 38 | 10 | 70 | 28
K 75 | 1.1 | 59 | 05
30 A 52 | 06 | 7.6 | 3.2
K 177 | 05 | 22 | 0.04
65 A 60 | 06 | 83 | 3.0
K 295 | 04 | 1.0 | 04
100 A 54 | 04 | 76 | 3.2
K 314 | 04 | 14 | 06
150 A 47 [ 005 | 6.7 [ 3.0
K 332 01 | 1.3 | 06
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Table 5: Relative errors of the estimates returned by the scheme P, _R for 120000 probe packets: case of
Poisson-like flows, A = 6677.5, v = 250 and u = 6374.

10 | 30 | 65 | 100 [ 150

3111100401 ]0.1
9.2 (85| 69 | 54 | 40

= > X

On/Off sources with Pareto On and Off time distribution or a superposition of FTP/TCP flows as
defined in (T3)-(T6) in Table 4, Poisson-like flows as defined in (T2) in Table 5).

Results contained in Table 3 are fairly good for moderate values of K (all relative errors are
within 1.6% of the correct values when K < 65); for larger values of K, it appears that the
convergence to the true values is slower. Notice that in any case the estimates should converge to
the true values as the number of probe packets increases since the model considered in Table 3 is
the M/M/1/K queue.

Of more interest are the results in Table 4 since they have been obtained when the assumption
that the cross traffic is Poisson is violated. We see that the quality of the estimates increases as the
number of source increases (results obtained after 120000 probe packets). For 250 On/Off sources
all estimates for A (resp. K) are within 1% (resp. 1.1%) of the correct value; for 1000 FTP/TCP
flows all estimates for A (resp, K) are within 3.2% (resp. 0.6%), still a good result.

As for the set of simulations where all sources (i.e. foreground and background sources) were
Poisson-like (type (T2)) relative errors are reported in Table 5. In this case, the service time was
constant for each source, which differs from the theoretical model, thereby explaining the error in
the estimation of K, the estimation of A being satisfactory. Finally, Table 6 shows the performance
of scheme Pr_R over all 50 simulations (each simulation lasts exactly 500 seconds). We see from
this table that the estimate for A (resp. K) is always within 9% of the exact value in 98% (resp.
84%) of the experiments. Only for large values of K (K > 1000) the scheme works poorly and may
return no value for K.

From this experimental study we conclude that the inference model M+M/M/1/K returns
reasonably good results even when the Poisson assumption on the background traffic is violated.
This result should nevertheless be validated on a real network, which is the object of ongoing
research.
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Table 6: Percentage of hits for scheme Pz _R over all simulations.

| Results of estimation for scheme PR |
A, error within 1 % 52 %
K, error within 1 % 40 %
), error within 5 % 76 %
K, error within 5 % 70 %
), error within 9 % 98 %
K, error within 9 % 84 %
wrong estimation for A 2%
wrong estimation for K 10 %
no estimation for (K) 6 %

5.4 From simulation to reality

Till now, we have always assumed to have access to the first n samples of {a;};, {di}:, {Xi}; and
{Y:};. In this work, we have carried out simulations to generate traffic traces, and the samples were
extracted from the traces. However, ultimately, we must extract the samples from the real network
(e.g. the Internet). How can we do this?

Usually, real-time applications use the Real-Time Transport Protocol (RTP) [14] together with
UDP and IP. RTP provides end-to-end network transport functions suitable for this kind of ap-
plications, over multicast or unicast network services. RTP consists of two parts, a data part and
a control part referred to as RTCP, the Real-Time Control Protocol. The feedback information
is carried in RT'CP packets referred to as Receiver Reports (RR).The rate at which they are mul-
ticast is controlled so that the load created by the control information is a small fraction of that
created by data traffic. The RR sent by a destination includes several information: the highest
sequence number received, the number of packets lost, the estimated packet interarrival jitter, and
timestamps. At the sender, the {a;}; are available, the {d;}; are retrieved from the timestamps
present in the RR and the {X;}; are retrieved from the highest sequence number received at the
destination, also given in the RR. As for the {Y;};, they are hard to obtain, hence we can try to

estimate U differently, by considering that a packet finds the bottleneck server empty if its response
time is minimal.
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5.5 Example of a possible application

A real-time application uses a FEC-based error control algorithm for Internet telephony. The
optimal amount of redundant information is somehow dependent on the available bandwidth p — A
and the buffer capacity at the bottleneck of the connection. The application should then estimate
the parameters u, A and K. It can use the Packet Bunch Mode (PBM) algorithm proposed by
Paxson in [12] to estimate the bottleneck bandwidth along the unicast path. After that it should
transmit probes using RTP together with UDP at a Poisson rate 4. Having used the Receiver

Reports (RR) to retrieve P, and R, the application should calculate A and K as in scheme PR
* with the pair of equations (3) and (10) (cf Section 4.2.2).

6 Conclusion

In this work, we have proposed two simple models for a connection, based on a single server queue
with finite waiting room, to infer the buffer size and the intensity of cross traffic at the bottleneck
link of a path between two hosts. We have quantified several parameters of both models and
obtained eleven pairs of moment-based estimators. Using traces generated by the network simulator
ns-2, estimated values for both parameters have been calculated according to the characteristics of
the a priori models. Pairs of estimators have been discarded while others have proved to give good
results. However, the pair of estimators we have “elected” as the best one need to be tested on an
experimental network, or even better, on the Internet, in order to evaluate its performance under
realistic network traffic conditions.

Acknowledgements: We thank Tian Bu (Univ. of Massachusetts) for helping us simulating a
Poisson source with ns-2 and for useful discussions at an early stage of this work.

A Proof of Proposition (2.1)

Recall the definition P; x(t) = P(N(t) = k| N(0) = i) where N(t) is the queue length of the system
with the foreground source removed (y = 0) at time ¢ > 0. We have the following differential
equations:

LPio(t) = —APyo(t) +pPis(t) (41)
4P k(t) = —pPik(t)+APk-(t) (42)
FPx(t) = —(A+p)Pis(t) + AP;p-a(t)

+pPipa(t), fork=12,...,K-1 (43)
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for i =0,...,K. Define Pi(z,t) = 3 o Pix(t)z*. Then,
K K
d d d
Zp — _2 :p. k _ z :_ , k.
zdtR(z’ t) zdt ~ S,k(t)z zk=0 dt l,k(t)z

Using equations (41) — (43) and after some algebra we get

z d
TPt = (= A2)Pi(zt) — uPio(t)

+ AP k(). (44)

Now we consider the Laplace transform of P;(z,t), P} (z,3) = [;° e **Pi(z,t) dt. Replacement of
this in (44) along with the use of the following relation

o d
f e 2 P(zt)dt = sP(z3) - Pi(z,0)
0

and some algebraic manipulations yields

2% — p(1 — 2)Piy(s)
sz—(1-2z)(u— A2)
A1 = 2)2K+1 Pty (s)
sz—(1-2)(up—A2)

Pi(z,8) =

+

(45)

where P}y(s) = [;° € *'P;x(t)dt, k = 0,1,..., K. The denominator of the right-hand side of (45)
contains two zeros,

,\+p+s-\/(,\+p+s)2-4,\#

a(s) = 2
A+p+s+/(A+p+s)?—4)
22(s) p \/(2)\# ) p

for R(s) > 0. As P?(z,s) is analytic, the zeros of the denominator must also be zeros of the
numerator. More precisely, the numerator must satisfy

2 (s) = [L~ zk(9)l[wPo(s) — Azu(s) Pk (s)] = 0.
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These two equations for £ = 1,2 can be solved to yield

z2(8)i+lzy (8)K+L  z1(5)iH1zy(s)KH1
* = 1—22(s) 1-2;(s)
Fiole) g (21(s)KH1 — zp(s)KH1)

22(’)1‘(+1 _ 21(8)'-(4';
* — 1-2z3(8) 1-z1(s
Fr@) = o ora =)oy

Let a and b be defined as a = z3(y) and b = 21 (), we get

. ai+1 (1 _ a)—l - bi+1 (1 —- b)—l
wx () = A (BKFT — gK+1)

and the proof is concluded.
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