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Abstract

Anytime algorithms offer a tradeoff between computation time and the quality of
the result returned. They can be divided into two classes: contract algorithms, for
which the total run time must be specified in advance, and interruptible algorithms,
which can be queried at any time for a solution. An interruptible algorithm can be
constructed from a contract algorithm by repeatedly activating the contract algorithm
with increasing run times. The “acceleration ratio” of a schedule is a worst-case measure
of how inefficient the constructed interruptible algorithm is compared to the contract
algorithm. When the contracts are executed serially, i.e., on one processor, it is known
how to choose contract lengths to minimize the acceleration ratio. We study the problem
of scheduling contracts to run on m processors in parallel. We derive an upper bound
on the best possible acceleration ratio for m processors, providing a simple exponential
scheduling strategy that achieves this acceleration ratio.

1 Introduction

In solving optimization problems, we are often faced with situations in which there is not
enough time to determine an optimal solution. We desire approximation algorithms that
can trade off computation time for quality of results. Algorithms with this property have
been called anytime algorithms, and have been studied by researchers in artificial intelligence
(Horvitz, 1987; Dean & Boddy, 1988; Russell & Zilberstein, 1991) concerned with designing
real-time systems. Anytime algorithms are widely used in computer science. For instance,
local search, simulated annealing, and genetic algorithms are all naturally viewed as anytime
algorithms.

A useful distinction has been made between two types of anytime algorithms: contract
algorithms and interruptible algorithms. Contract algorithms require that the total compu-
tation time be given in advance. This characteristic distinguishes them from interruptible
algorithms, which do not need to know the deadline a priori. Contract algorithms can be
easier to design because they have access to more information. Some problem-solving tech-
niques that can be viewed as contract algorithms include depth-bounded heuristic search



and solving continuous control problems by discretizing the state space. What is common
to these techniques is that for a given contract time they can select parameters (e.g., the
depth bound or the coarseness of the discretization) that limit the amount of computation
so as to guarantee returning a solution within the available time. However, if a contract al-
gorithm is given more time than it expects, it may have to be started from scratch with new
parameters in order to improve upon its current result. In real-time systems, the amount
of time available for deliberation is often unknown ahead of time. Interruptible algorithms
are generally more flexible and widely applicable than contract algorithms.

We consider the problem of constructing an interruptible algorithm using a contract
algorithm. An interruptible algorithm can be formed by repeatedly running a contract
algorithm with increasing contract lengths, returning the last result produced in the case
of an interruption. In the case of serial execution of contracts, (Russell & Zilberstein,
1991) suggested the sequence of contract lengths: 1,24 8,.... They showed that for any
interruption time ¢ > 1, the last contract completed is always of length at least ¢/4. This
factor of four is the acceleration ratio of the schedule. In (Zilberstein et al., 1999), it was
shown that no sequence of contracts on a single processor can reduce the acceleration to
below four.

By scheduling the contract algorithm on parallel processors, it is possible to achieve an
acceleration ratio of less than four. In this paper, we describe a simple exponential strategy
for scheduling a contract algorithm on m processors. By analyzing this strategy, we derive
an explicit formula for an upper bound on the optimal acceleration ratio in terms of m.
This bound approaches 1 as m approaches infinity.

2 Scheduling a contract algorithm on multiple processors

An anytime algorithm A, when applied to an optimization problem instance for time ¢,
produces a solution of some quality Q4(¢). The function Q4 is called the performance
profile of the algorithm A on the instance. In general, one does not know the performance
profile of an algorithm on a problem instance. But the concept of a performance profile is
useful in reasoning about anytime algorithms. We assume that the performance profile of
an anytime algorithm on any problem instance is defined for all ¢ > 0 and is a monotonically
non-decreasing function of ¢.

We wish to construct an interruptible algorithm from a contract algorithm by scheduling
a sequence of contracts on m processors in parallel. A schedule is a function X : {1,... ,m}x
N — R, where X(i,7) is the length of the jth contract run on processor i. We assume,
without loss of generality, that X (1,1) =1 and that X (¢,5) > 1 for all ¢ and j.

A contract algorithm A along with a schedule X defines an interruptible algorithm B.
When B is interrupted, it returns the best solution found by any of the contracts that
have completed. Since we assume performance profiles are monotonic, this is equivalent
to returning the solution of the longest contract that has completed. This is illustrated in
Figure 1.

The algorithm B has a performance profile which depends on the profile of A and the
schedule X. Before describing B’s performance profile, we need to make a few definitions.
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Figure 1: Constructing interruptible algorithm B by scheduling contract algorithm A on
three processors.

We define the total time spent by processor ¢ executing its first j contracts as:

J
Gx(i,§) = Y X(i,k).

k=1

For a given time ¢, we define a function that specifies which contracts finish before that
time:

Bx(t) = {06, 5)IGx (i, 5) <t}

We take the view that when a contract completes at time ¢, its solution is available to
be returned upon interruption at any time 7 > t. The length of the longest contract to
complete before time ¢ is:

_ max(jjeay ) X(5,5) if @x(t) #0
Lx(®) _{ 0o if ®x(t) = 0

Thus, the performance profile for the interruptible algorithm B is

Qp(t) = Qa(Lx(t))-

We wish to find the schedule X that is optimal for a given number of processors m,
independent of the particular contract algorithm being used or the problem being solved.
We compare schedules based on their acceleration ratios, which is a measure similar to the
competitive ratio for on-line algorithms (Sleator & Tarjan, 1985).

Definition 1 The acceleration ratio, R,(X), for a given schedule X on m processors is

the smallest constant r for which Qp(t) > Qa (%) for all t > 1 and any contract algorithm
A.



The acceleration ratio tells us how much longer the interruptible algorithm has to work
to ensure the same quality as the contract algorithm. The following lemma will be useful
in the later proofs.

Lemma 1 For all X, Ry, (X) = sup;, #(t)

(X)
this holds for any algorithm A, we can suppose an algorithm A with performance profile

Qa(t) =t. Thus Lx(t) > #(X) = Rp(X) > ﬁ(t) for all ¢ > 1. This implies R, (X) >

Sup;~.q ﬁ(t) To show that equality holds, assume the contrary and derive a contradiction

Proof: By the definitions above, Qp(t) = Qa(Lx(t)) > Qa4 (#) for all ¢ > 1. Since

with the fact that R,,(X) is defined as the smallest constant enforcing the inequality between

@Rp and Q4. O
We define the minimal acceleration ratio for m processors to be

* = inf X).
Ry, 1§1(Rm()

In (Zilberstein et al., 1999), it was shown that R} = 4. In the next section, we provide an
upper bound on this value for arbitrary m.

3 Upper bound

We first prove a lemma formalizing the idea that the worst time to interrupt the schedule
is just as a contract ends.

Lemma 2 For all X,
t>1 Lx(t) ()21 Lx(Gx(i, 7))

Proof: Lx(t) is left-continuous everywhere and piecewise constant, with the pieces delim-
ited by the time points Gx(i,7). For t > 1, #(t) is piecewise linear, increasing, and left-
continuous. Thus, the extrema of L{ can only occur at the points Gx(i,7), (¢,7) # (1,1);

Lx(t
no other points in time may play a role in the supremum. O

m+1
* +1)™m
Theorem 1 R;, < %

Proof: Consider the schedule X (7,5) = (m + l)i_1+:z(j_1). Note that in the one-processor
case this reduces to X (i,5) = 2/~L. Tt is straightforward to show that for (4,7) # (1,1)

pxGatan = | K1) i

Also, the following is true for all (z,7) # (1,1):

J
Gx(,5) = Y X(ik)

k=1
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So for all 7, j such that ¢ # 1,
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and for all ¢,j such that i =1 and j # 1,
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4 Discussion

We described a simple exponential strategy for scheduling contract algorithms on multiple
processors to form an interruptible algorithm. We conjecture that this schedule achieves
the smallest acceleration ratio among the set of all schedules, but this remains an open
problem.

In this work, we assumed no knowledge of the deadline or of the contract algorithm’s
performance profile. In (Zilberstein et al., 1999), the authors study the problem where the
performance profile is known and the deadline is drawn from a known distribution. In this
case, the problem of sequencing runs of the contract algorithm on one processor to maximize
the expected quality of results at the deadline can be framed as a Markov decision process.
It still remains to extend this work to the multiple processor case.
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