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ABSTRACT

Complex toolsets can be difficult to use. User interfaces can
help by guiding users through the alternative choices that
might be possible at any given time, but this tends to lock
users into the fixed interaction models dictated by the Ul
designers. Alternatively, we propose an approach where the
tool utilization model is specified by a process, written in a
process definition language. Our approach incorporates a
user-interface specification that describes how the user-
interface is to respond to, or reflect, progress through the
execution of the process definition. By not tightly binding the
user-guidance process, the associated user-interfaces, and the
toolset, it is easy to develop alternative processes that provide
widely varying levels and styles of guidance and to be
responsive to evolution in the processes, user interfaces, or
toolset.

In this paper, we describe this approach for developing
process-driven user-guidance environments, a loosely
coupled architecture for supporting this separation of
concerns, and a generator for automatically binding the
process and the user interface. We report on a case study
using this approach. Although this case study used a specific
process definition language and a specific toolset, the
approach is applicable to other process definition languages
and toolsets, provided they meet some basic, sound software
engineering requirements.

1 INTRODUCTION

As toolsets, collections of interrelated tools, become larger
and more complex, users often find it difficult to understand
how to use them. Toolsets should not frustrate users in their
efforts to solve a problem, but should facilitate arriving at a
solution. For example, users should not have to struggle in
deciding where to start or where to go next after a result is
received from a particular toolset component. Such
ambiguities cause users to falter unnecessarily, can cause
them to feel unproductive and frustrated, and may be one
reason that CASEware often turns out to be SHELFware.
This paper presents an approach that enables providing

explicit user guidance in tool application. We refer to such a
facility as a user-guidance environment.

Our approach entails the development of user-guidance
processes to specify and help generate such environments.
The user-guidance processes, written in a process definition
language, are programmed to guide users away from
inappropriate or illegal tool usage, while still giving users
great flexibility in how they can apply tools. In addition, our
approach augments the process definition with a user-
interface binding specification, describing how the user
interface is to respond to, or reflect, progress in using the
toolset in executing the defined process.

Our approach supports flexibility, evolvability, and
generality. It is flexible in that it supports a wide range of
process definitions. For example, our work can be used to
support either novices or experts and impose either strong or
weak control over user actions. Our approach also supports
evolution. With time, novices become more expert, and
expert users find different ways in which they would like to
utilize toolsets. In addition, the toolsets themselves evolve,
with new tools being added and existing tools being
modified. Thus, user-guidance processes must evolve over
time to support both personal and toolset growth. Finally, the
approach that we propose is quite general. Although to
evaluate our approach we conducted a case study using a
specific process definition language and a specific toolset, the
approach is applicable to other process definition languages
and toolsets, provided they follow some basic, sound
software engineering practices.

The hypothesis of this work is that process definition
languages can be used effectively to define user-guidance
processes and that the execution of these processes can
provide an effective user-guidance environment. More
precisely, we have three specific subhypotheses. The first
subhypothesis is that process definitions can be used to create
environments that provide guidance to users through correct
and effective execution of sequences of tools in complex
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toolsets. Our second subhypothesis is that by augmenting a
process definition with a user interface binding specification,
our approach can automatically coordinate the process
execution with the user-interface actions. Our third
subhypothesis is that we can achieve considerable flexibility,
evolvability, and generality by separating the process, the
user interface, and the toolset and by providing technology
that automatically coordinates all three under the umbrella of
a user-guidance environment.

2 RELATED WORK

There has been a considerable amount of software
engineering research aimed at helping users to be more
effective in using collections of tools. Some of the earliest
work simply addressed the need for tools to interoperate with
each other. Early efforts suggested the use of a centralized
database as a vehicle for managing the flow of artifacts
among tools. For example, the Stoneman software
environment specification proposed the use of such a
centralized database to hold and distribute all of the artifacts
needed by all the tools [7). Thus, the artifacts were the
primary form of communication among tools. Major
problems with such an approach are the relatively rigid
schema structures that are required and the insistence on
artifact schema uniformity across all tools. Both of these are
obstacles to environment evolution. A centralized database
may suffice for a small collection of tightly integrated tools
or as a conceptual architectural view, but experience showed
that more loosely integrated architectures [20, 22, 25] are
needed what to provide more flexibility.

A subsequent approach suggested that tool interoperability be
supported by event based notification. With this approach
tools are able to communicate artifacts and events as
messages, where responsibility for delivery of these messages
resides with a service that is separate from the various tools.
Advantages of this approach are that the tools need not
communicate directly with each other, nor do they need to be
proactive in fetching needed artifacts from a central
repository. This loose interaction model was pioneered in
past software environment research [20, 25, 26], and is now
widely supported by commercial products [6, 21-23] and
programming languages [15].

While these efforts made progress in effecting tool
interoperability, they did little to facilitate user interactions
with large toolsets. Many tools boast superior user interfaces,
designed to help users with the use of individual tools, but the
total interface to integrated collections of tools is often
uneven and confusing. To address this problem, some
environments emphasized the use of a consistent look and
feel to all tools, giving the user an impression of a seamlessly
integrated toolset. = Wasserman proposed one such

environment [30], suggesting the use of a coordinated set of
design diagrams as the vehicle for uniform access to all
design tools, data, and artifacts needed to support design.
Beaudouin-Lafon proposed another, using an iconic visual
model for interacting with tools [5]. In this approach, icons
are bound to application objects, and dragging these icons
between windows or to other icons results in operations such
as message passing or function invocation. Thery et al.
propose a system for providing user interfaces for a collection
of diverse theorem provers [29]. Experience with such
environments suggested that the uniformity of the user
interface was appealing, but, especially as toolsets became
large and diverse, users needed guidance in deciding which
tools to use under which circumstances and how to avoid tool
incompatibilities. In some cases, where such guidance was
incorporated as an integral part of the user interface,
experience indicated that it was often difficult to respond to
the varying levels of user expertise and to changing toolsets.

Provision of such guidance in the integration of tools to
support software development was a key objective of
process-centered environments.  This approach was first
suggested by Osterweil [24] and was a focus of the Arcadia
project, in which processes were defined using a procedural-
based language [17, 27] and were used to specify how tools
were to be integrated in support of software development.
The MARVEL/Oz family of environments provides [18]
another good example of this approach. In MARVEL/Oz the
process is described using rules, and specific tools are bound
to the various rules so that the triggering of a rule could effect
the invocation of one or more tools. Early versions of
MARVEL triggered Unix tools, and later versions of this
system have addressed increasingly broad and ambitious tool
integration facilities. HFSP, a hierarchical functional
language, was used in a similar way as a blueprint for the
application of tools [28].

Process Weaver was an early example of a graphical process
formalism, using data flow diagrams to represent processes,
with activity boxes being used as the loci of tool bindings
{14]. Similarly, SLANG [3, 4] and FunsofiNets [12, 16] both
used modified Petri Net formalisms to define processes, with
various of the transitions being bound to tools. All of these
systems were successful in supporting specifications of tool
integration, and the graphical depictions were particularly
useful in helping designers understand and reason about the
integration issues. While the processes drove the sequencing
of tool invocations, the processes were not able to help users
in dealing with the separate interfaces to the various separate
tools.
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Figure 1: High Level Architecture

What seems needed is an approach combining the advantages
of coordinated user interfaces with the advantages of process
guidance. In particular an approach in using the process both
to integrate tools and to manage interaction with human users
seems promising, and is described here.

Finally, we note that coordinating process execution with
user actions is somewhat reminiscent of work on coordinating
help or tutorial information with user actions. This work, has
primarily concentrated on recognizing and exploiting user
models and not on the infrastructure for supporting that
coordination [13, 19]. This approach is also reminiscent of
work on process inconsistency management [2, 9, 10], where
the goal is to identify when and where actual performance of
a process diverges from the process specification and to
tolerate the situation. That work, however, is not directed
towards our goal of providing positive proactive assistance to
users in the effective use of toolsets to support process
performance.

Our approach proposes that the tools, user-interfaces and
processes should all be independent first-class entities. We
propose that a process be used to guide the execution of user
interfaces and guide users through correct execution
sequences of a complex toolset, while maintaining the
independence of the individual components. The coordination
of these components is facilitated by a binding manager that
communicates with these components via event based
notification.

3 ARCHITECTURE OF A PROCESS-GUIDED
ENVIRONMENT

Our architecture consists of four major components: the tools
that make up the toolset, the user interfaces (UIs) for the
individual tools, a process interpreter, and the binding
managers that interpret a set of bindings for connecting the
Uls to the process interpreter. The data flow relationships
among these components are shown in Figure 1. This
architectural decomposition is driven by a desire to separate
process, toolset, and Ul concerns so they can evolve
separately from one another. Typically, process, Ul, and
toolset code are tightly intertwined, making it difficult to

modify any component independently. The architecture
proposed here separates the process interpreter from the
toolset and Ul by inserting a “binding manager” between the
process and each UL. The process interpreter sends process:
state change information to the binding managers, which use
this information to enable and disable UI actions. Similarly,
Ul components communicate user interaction information to
the process interpreter via the binding managers so that the
process can respond appropriately.

This approach is most successful when the relevant steps in a
process definition correspond closely to toolset API method
calls. In addition, the user interfaces for the individual tools
must be separated from the tools themselves. If all these
conditions hold, the process, the Uls, and the bindings among
these can all be defined separately from the toolset's tools.
The binding managers have to be specialized to deal with the
specific process definition and Ul programming languages.
While this somewhat limits the generality of our solution, it
would be relatively easy to specialize the binding managers
for several existing process and programming languages, and
so we feel the overall approach is still relatively general.

In this depiction of our architecture, and in our case study,
each Ul in the toolset is associated with one tool and a
separate binding manager. = Conceptually, all binding
managers have the same functionality, but a particular
binding manager implementation is only concerned about
controlling the UI with which it is associated. The approach
that we are proposing does not limit the cardinality
relationships between these three components. A single tool
may have several user interfaces, or there may be several
tools underneath one UL Additionally, it may be possible to
have one binding manager for all of the Uls. For the purposes
of this discussion, we assume that there is one binding
manager and Ul per tool and that there are multiple tools in
the toolset.



[infile <filename>

[<UIComponentType> < UIComponentName >]*
[parameter <parameterName> of <stepName> [comesfrom | goesto] <methodName>]*]*

[when <stepName> instate <state>

[do <UlAction> on <UIComponentName> [with <options>] ]*

[if <UIComponentName>

ReceivesEvent <UlActionPerformed> [and if

<ClassName.methodName>] do

<processReaction>

onstep <stepName> [with <exceptionName>] ]*]*

Figure 2. Syntax for the Binding Specification Language

Description of High-Level Architectural Components

Process Interpreter: The process interpreter is responsible for
executing a process definition, which can be viewed as a set
of steps that need to be completed, but perhaps in orders that
may be intricate and highly dependent upon runtime
conditions. The process interpreter is responsible for
sequencing the steps in a process, assuring correct artifact
flow into and out of steps, and securing all resources needed
for step execution. The key resource needed by a step is the
agent, either a human or automated system that is to be
responsible for executing the step. In cases where a human is
the execution agent for a step, the human is responsible for
doing what is necessary to carry out the work of the step, but
the process is responsible for providing needed resources and
artifacts, and for coordinating the work of this step with
substeps, sibling steps, and parent steps. In some cases, this
coordination may entail restrictions on the agent's activities.
Thus, a major challenge in our work is to assure that the
process communicates with human agents in ways that are
clear, supportive, and convenient. Further, the process must
provide flexibility to the human user, while still preventing
the human from doing things that are illegal, ineffective, or
inappropriate. To some extent this is a process definition
challenge, but our work has also indicated that the challenge
is facilitated by a suitable process definition formalism.

Thus for example, humans need to be told clearly and gently
when the process determines that the human is to be the agent
for a tool application step. The assignment should be
reflected in the user interface for that tool, rather than through
a separate interface to the process. Thus in our architecture,
the assignment of a tool usage task to a human agent is
communicated through the tool's binding manager, which
then communicates the assignment to the agent through the
existing tool UL. Any flexibility, such as alternative choices
of tools, is likewise communicated through existing Uls.

Other events of importance in step execution include the
binding of needed resources, the passing of parameters, the
invocation of substeps, the completion of substeps (and
completion status), and the occurrence of exceptional
conditions. In our architecture, the binding managers are
responsible for filtering the interpreter's notification of these
process state events and communicating them to the user
through the appropriate tool Ul, to assure that the user
receives guidance that is both useful and inclusive of

contextual information to help users understand why options
are either provided or denied. This allows us to keep the
process interpreter as generic as possible by keeping domain
knowledge out of the interpreter, thus supporting our initial
design goals of flexibility and generality.

The process interpreter must also provide an API by which
the binding managers, and other components, can tell the
process interpreter the state of the steps an agent is executing,
such as when a human agent successfully completes an
assigned step. The states of a step would depend on the
process definition language, but would usually include states
such as ready to execute, executing, execution completed
normally, and execution completed abnormally.

Ul: The Ul component consists of the user interfaces to all of
the tools in the toolset. These UI subcomponents usually
employ a set of widget components, such as menu items,
windows, checkboxes, data entry fields, and lists, that make it
easy to design and implement the desired UI functionality for
a particular tool. In general, a Ul function can be enabled or
disabled, thus allowing or preventing the user from
performing some actions. When a Ul function is enabled, it
can be selected by the user, usually by clicking on a
particular widget with a mouse button. When the user selects
a UI function, the Ul generates an event that encapsulates
what the user did and notifies the function’s observers about
the event.

In our architecture, a Ul has the additional responsibility of
notifying the process interpreter when events of interest to the
process occur. Clearly not all UI events are of interest to the
process. Thus the event stream must be filtered. Here too, in
the interests of flexibility, our architecture places the onus of
determining the events to filter and the events to
communicate upon the binding manager.

A UI's binding manager enables and disables the UI's
functionality based on the current state of the executing
process. Therefore, a UI must provide an API that allows Ul
functions to be enabled or disabled. In those cases where
existing Uls do not provide mechanisms by which
components external to the Ul can register to receive
notification about UI events or do not provide an API for
enabling and disabling functions, it will be necessary to build
special wrappers for these Uls.



Binding Manager: Our work has shown that the binding
managers can be automatically generated from a specification
that defines the relationship between the process and the UI,
and vice-versa. This specification describes how to modify
UI function states when the process state changes and how to
change the process state when the user takes some action in
the UL

The syntax for the binding language we use is shown in
Figure 2. The specification is divided into two sections. The
first declares the Uls, component types and names, and
parameters to be referenced in the specification. It also
indicates the file for that UI, followed by the UI component
types and names and parameters that will be referenced. The
transfer of information between the UI and the process
interpreter is done via parameters that are "passed” to the UI
using the accessor or update method, methodName. The
second section defines the bindings when the process is at a
particular state of a step. This is done with a when clause that
is potentially followed by lists of UlAction statements and
lists of processReaction statements. A UlAction statement
defines how to modify the state of a UI function when a step
with the specified name enters a certain state. Thus, when a
step named stepName progresses to state state, the binding
manager is instructed to cause each UlAction, with options, to
occur within the UlComponentName user interface. The
options are used to give the UIComponent additional
information where needed, such as the index of the tab of a
JtabbedPane. When the process interpreter assigns a step to
the user, an event will be generated and the binding managers
will be notified of the step assignment via an appropriate
event. Each binding manager then informs the Uls for which
the event is relevant and determines what state change (e.g.,
enabling a menu item) to make to the appropriate Uls.

Similarly, the processReaction statement describes how to
modify process state based on a Ul state change. When a step
named stepName progresses to state state, then the binding
manager is instructed to react to the receipt of a
UlActionPerformed event from UIComponentName, by doing
processReaction on the step stepName, if the guard
ClassName.methodName returns true (if specified). If an
exception exceptionName is specified, it indicates that the
process interpreter should throw that exception within the
process. The guard classname.methodname provides a
placeholder for an arbitrarily complex Boolean function that,
if used, must be provided by the specifier. Thus, with such a

specification, if the user clicks on a menu item while in step
stepName, the Ul will generate an event encapsulating the
identity of the function that caused the event and will notify
the binding manager. Upon receiving the event, the binding
manager will check to make sure that the step is in the
specified state. If the step is in that state, the binding manager
will make the indicated change in the executing process step's
state, otherwise it does nothing, making the assumption that
the process has already moved on.

Figure 3 shows a data-flow diagram for the binding manager
generation process. The parser recognizes the binding
specification and creates five lists consisting of Process-UI
bindings, Ul-Process bindings, ProcessReaction bindings,
Parameter bindings, and the Ul components that will be
referenced in the existing Ul classes. The parser also uses the
process definition to verify that the binding specification
references step names that are actually declared in the process
definition. These lists, along with the source code for the Ul
components, are input to a class creator, which generates new
classes that include the binding manager code and
instantiations of the binding managers in the new versions of
the UI classes. The binding manager code consists of two
sections, one that has knowledge of how to interact with the
process interpreter and one that knows how to observe and
respond to the declared UI widgets.

Toolset: The toolset is the collection of tools that actually
perform the process steps based on what the user chooses to
do. While this paper has emphasized the management of
tools that are invoked by a human user, it is important to
remember that some tools may be invoked directly from the
process, without any user interaction. Under our architecture
this could be done in two possible ways; by direct invocation
from the binding managers or by direct invocation from the
process interpreter. Direct invocation from the process
interpreter requires tool domain knowledge be embedded in
the process interpreter. Invocation through the binding
managers, on the other hand, provides greater flexibility and
generality by keeping concerns separate. In either case, the
tool must provide either an appropriate API or be wrapped to
provide an API at the same level of abstraction as the process
definition.
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Figure 3: Generator Architecture
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This architecture presents a relatively generic approach for
the creation of flexible, evolvable user-guidance
environments. We achieve these goals by adhering to the
classic software engineering goal of separation of concerns
by maintaining process, tool, and Ul independence.

4 CASE STUDY

To study our hypotheses and the applicability of our
architecture, we undertook a case study that consisted of
integrating a complex toolset, called FLAVERS, with a
process definition written in the Little-JIL process formalism.
FLAVERS uses data-flow analysis to verify properties of
software systems [11]. We believe that FLAVERS is an
appropriate choice for our study because software analysis is
a complex domain. It is unreasonable to expect that an
inexperienced analyst could use FLAVERS effectively
without training or guidance. Moreover, we found that even
users that have knowledge of verification need some
guidance in the use of FLAVERS. Little-JIL is a
semantically rich, visual process definition language [31, 32]
that offers process abstractions that are useful in constructing
user-guidance processes. Little-JIL is supported by the
Juliette interpreter that offers an interoperability layer having
an API that allows external components to interact easily
with an executing process.

Before describing the FLAVERS processes, it is important to
have a rudimentary understanding of Little-JIL. Little-JIL
represents processes as a hierarchical decomposition of steps.
Little-JIL uses different step-kinds to orchestrate different
execution orders for substeps. The step-kinds that we focus
on here are sequential, choice, parallel, and leaf. A sequential
step is executed by having its sub-steps performed
sequentially in left-to-right order. A choice step presents the
user with a set of sub-steps that represent options. When the
user chooses one of the substeps, the others are retracted from
the set. A paralle] step is executed by having all of its
substeps performed, but in no specified order, and potentially
in parallel. Finally, leaf steps are not decomposed into sub-
steps. Leaves are steps at which human agents apply tools to
move a process forward. A generic step is represented in
figure 4, along with the types of sequencing badges used
during this discussion. Juliette interpretation is driven by a
finite state machine, whose principal states include posted,
started, retracted, and completed. The transitions among

these states are the basis for the events that drive the UL,

The specific Little-JIL process for using FLAVERS that is
shown in figure 5 defines a canonical way in which a user
should be encouraged to perform an analysis. The steps of
this process consist of choosing a system to verify, choosing
properties to be verified on that system, choosing constraints,
checking that the system is correctly annotated, running the
analysis, and analyzing the results of that analysis. The
details of these high level steps are also encoded as process
definitions, but are not shown here because of lack of space
The process describes how humans should use the FLAVERS
toolset, but it also has implications for the UI for these tools.
Figure 6 provides an example of a process-Ul binding
specification that describes how the process definition in
Figure 5 should be coordinated with the user interface. In this
example, when the “Choose Properties” step is posted, the
process interpreter sends an event to the binding managers
indicating that the user has been assigned a new step to
perform. The Property Tool UI binding manager's job is to
notify the user of this, in this case by enabling the appropriate
tab in the tabbed panel of the tool UL. A similar effect is
desired when “Choose Properties” enters the “Completed”
state, except in this case, the job of the binding manager must
assure that the tab is disabled. According to the specification,
when the user selects the editPropButton, an event is sent to
the binding managers. The Property Tool UI binding
manager will receive this notification and process the event.
If the executing process has a step “Edit Property” and it is in
the state “Posted”, then the “Edit Property” step will be
executed (completed).
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Figure 5 — The FLAVERS Novice Process



infile e:\tjs\...\FlaversULjava

JTabbedPanel mainTabbedPanel

infile e:\tjs\...\PropertyPanel java
JMenultem editPropButton

infile e:\tjs\... \PropertyPanel java
JMenultem doneProps

when “Choose Properties” instate Posted
do Enable on mainTabbedPanel with 2
when “Choose Properties” instate Completed
do Disable on mainTabbedPanel with 2

when “Edit Property” instate Posted

do Enable on editPropButton

if editPropButton receivesevent selected do CompleteStep onstep “Edit Property”
when “Edit Property” instate Retracted

do Disable on editPropButton

when “DoneWithProperties” instate Posted

do Enable on doneProps

if doneProps receivesevent selected do StartStep onstep “DoneWithProperties”
when “DoneWithProperties” instate Started
do Terminate en doneProps with ContinueException

Figure 6 An example process-Ul binding specification

The implementation of the generator for the binding
managers closely conforms to the description provided in
Section 3. Here, we introduce the specifics of the
implementation, given that the FLAVERS toolset and the
Little-JIL process execution system are both written in JAVA
and that the Uls for the FLAVERS tools are based on the
JAVA SwingSet components,

During generation, each UI source file is modified to include
a new additional class, which implements the interface
ActionListener, and extends an abstract class
AgendaMonitor. The ActionListener interface requires the
method actionPerformed (Event) be implemented in the
concrete class. The processStateChange (StepName,
StepState) method is an abstract method, and sub-classes
provide a concrete implementation. The generation process
produces these concrete implementations. As part of
generation, the original UI source code is modified so the
original class instantiates the generated class, and the
generated class is registered as an ActionListener with all the
components in the original class that will be controlled via
the process. When the user performs an action such as
selection of a menu item, an event is generated and all the
ActionListeners for the selected component are notified of the
event, via an API call to the ActionListener’s
actionPerformed() method

The actionPerformed() method has an if-statement for every
Ul-Process binding related to the UI in the binding
specification. In the example 2in Figure 6, if the user selects
the “doneProps” menu item, when the “DoneWithProperties”
step is still “Posted,” the step will be started.

The generated class’s super-class, AgendaMonitor,
incorporates the functionality of observing the set of tasks
that the user has been assigned and calls the

processStateChanged() method when a process step changes
state. In the example, we specified that the doneProps menu
item should be enabled when “DoneWithProperties” is
“Posted”. Additionally, we indicated that we want to
terminate “DoneWithProperties” and to throw an exception if
the “DoneWithProperties” step enters the “Started” state.

Experiences

In studying the FLAVERS process, it became clear that we
could potentially overly restrict the user if we were not
careful in how we specified the process. Particularly, certain
process constructs seemed to lead to a proliferation of dialog
boxes, prompting the user for input that might be implicit
under other circumstances. For example, the process
construct shown in Figure 7 would have required that a user
working with properties explicitly state an intention to keep
working with properties after every selection of a menu item
associated with properties. This excessive amount of dialog
did not seem to be user friendly, nor was it consistent with
our original goal of providing user-guidance.  Our solution

O
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Figure 7 — Properties with Problematic Iteration



to this problem is shown in Figure 8, and involves adding a
choice to the “Specify Property” step, which allows users to
explicitly indicate when they are done working with
properties. When the user selects a choice, the sequential
step “PropertiesIterator” is invoked recursively, automatically
making all the choices below “Specify Property” available to
the user. When the user indicates no further desire to specify
properties, an exception is thrown in the
“ContinueToConstraints” step, causing the
“Propertieslterator” step to complete, and ultimately causing
“Choose Properties” to complete as well. The user is then
allowed to specify constraints. This “done problem” is a
commonly occurring concern with event based notification,
since the completion of processing is an important event that
often should be observed and responded to but frequently is
not reported by components.

To keep the Ul user-friendly, we wanted to allow even a
novice user to go back and fix something done in a previous
step. Our original process did not allow for this, forcing
users to specify a system, properties, constraints, and run the
analysis before allowing users to go back and reconsider what
had originally been specified. In the modified version of our
process, we allow users to go back and revisit anything that
had already been done.

In general, we found Little-JIL to be an effective language for
programming FLAVERS processes. Little-JIL allows a task
to be specified at arbitrary levels of detail, which we found
very useful. When less guidance was desired, less process
detail was programmed. We also found the Little-JIL choice
step to be particularly effective in describing where and how
users are to be offered flexibility of choice at key points in
our processes. Finally, Little-JIL provides a well designed
API that allows external components to interact with the
process interpreter easily, which facilitated the construction
of a generator for these environments.

We also encountered a few problems in using this
architecture and the generated binding managers. One
problem that we encountered was that some FLAVERS Uls
had process decisions hardcoded into their implementations.
For example, some Ul components were originally
implemented to communicate directly with each other,
making decisions about what actions could happen next. This
greatly reduced the flexibility of the processes that could be
defined. In our case, we were able to recode these Uls to
remove this process information, but clearly this would not
always be the case. We learned that it takes considerable
design discipline to avoid “process creep.”

A related issue is the level of granularity of process control.
For this project, process control was via the access methods
of the tool components. To get finer grain control would
require invading the integrity of the tool components. On the
other hand, the tool component interfaces might not be
designed to be amenable to support process control. For our
experiment with FLAVERS, however, interacting at the
component level seemed appropriate and effective.

Once we removed the “burned-in” process in some of the
FLAVERS UI components, creating environments was very
easy. The FLAVERS intermediate and expert processes
required approximately 230 lines of specification to control
about 30 different UI functions with the process. The
binding specification for the novice process, which is
partially shown in Figure 5, is approximately 320 lines long.
Moreover, it was easier to debug the binding specification
than the original manually developed binding managers.

5 CONCLUSIONS

We believe that our case study supports our original
hypothesis that process definition languages such as Little-
JIL can indeed be used to define user-guidance processes,
whose execution can create effective user-guidance
environments.

More specifically, our experience in developing the different
Little-JIL process definitions clearly supports our first
subhypothesis that such languages can indeed be used to
create environments that provide users guidance for complex
toolsets such as FLAVERS. We used Little-JIL to define a
canonical process for using FLAVERS. Our work with this
canonical process led to subsequent definitions that seemed to
provide guidance that was decreasingly distracting and
increasingly effective.

Our experience also supported our second hypothesis, namely
that it is possible to augment such process definitions with
user interface binding specifications that can then be used as
input to a generator to help construct process guidance
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environments. We demonstrated a language for defining such
specifications and a generator that takes such specifications
and creates interfaces to tool Uls. These then became key
components of a user-guidance environment that consists of a
user interface that exhibits behavior that is consistent with the
specification that describes the relationship between the Ul
and the executing process.

Finally, our case study also supports our third subhypothesis,
namely that we can achieve substantial flexibility,
evolvability, and generality by separating concerns in the way
dictated by our architecture. During our case study, we
described several processes that modeled potential uses of the
FLAVERS toolset. When different processes had the same
basic steps and varied only in control-flow, it was possible to
try several different processes without modifying the binding
specification or the user interface. The user interface simply
exhibited the control-flow behavior described by whatever
process definition was used at a given time. When the steps
in the process changed or varied, it was necessary to modify
the binding specification and re-generate code from the new
specification. However, this required no direct modification
of the user-interface code by a programmer. Our
experiences with expert users validate our claims of
flexibility and evolvability, because it was so easy to adapt
the system to expert system user requests for changes. We
achieved generality via the separation of concerns that is
proposed in our architecture. By separating out the process,
the user interface, and the toolset, we were not bound to any
particular type of instance of these three components, aside
from the requirements that we have outlined earlier in this

paper.

While achieving process flexibility and evolvability, we were
also achieving evolvability and flexibility in the tools and the
user interface. For instance, while we did not replace our
Uls, we are confident that it is possible for the UI to be
evolved, or even replaced, independent of the process
definition. Similarly, as long as its API is identical, a new
tool could replace an existing tool without requiring any
modifications to the UI or the process.

There are several areas for future work. Our work with the
FLAVERS process suggests applying our approach to wider
classes of processes and toolsets. We have recently initiated a
project to apply this approach to CVS configuration
management system [8] using the JCVS user interface [1] .
Configuration management seems particularly well suited to
process control. Even with a tool, such as jCVS, it is
relatively easy for programmers to violate agreed upon, but
manual, configuration protocols. We expect that capturing
these protocols with some well-designed executable
processes that seamlessly guide the user via the user interface
would be very valuable. Our initial work on this project
seems very promising. To date we have defined one such
process and the associated process-UI binding specification.
It appears that the design of the jCVS toolset will be
amenable to this approach but we intend to explore this
further. We believe that this experiment will provide further

evidence of the benefits of process guidance for helping users
employ complex but important software tools.

The event-based notification within Java has many
predefined event types, each with their own behavior. To
date, we have implemented support for only two of these
event types, ActionEvents and ChangeEvents. These were
the only two that occurred in our two examples. This
somewhat limits the flexibility of our binding managers,
however, and we intend to add support for other event types
and to examine general solutions that allow for handling
arbitrary event types.

In developing our approach, we found it useful, especially
during debugging or demonstrations, to be able to visualize
the execution of the process steps. One could argue that the
enabling and disabling of UI functionality provides a
visualization of the process, but this is a very indirect,
imprecise view. Since Little-JIL is a visual language,
however, it seems relatively natural to superimpose execution
visualization upon a visual process definition. We have an
initial implementation of one such visualizer that seems very
useful. We intend to explore other approaches to visualization
and to determine if such visualization is useful to end users as
well as to process designers.
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