

Continuous Self-Evaluation for the Self-Improvement of Software

Lori A. Clarke and Leon J. Osterweil*
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

USA

*This work is being carried out as a collaboration among Leon J. Osterwei
Clarke and George Avrunin at the University of Massachusetts, Debra Richa
University of California at Irvine, and Michael Young at the University o

1.0 INTRODUCTION:

The purpose of evaluation is to determine the extent to which a softwa
meeting its requirements, and to suggest, as much as possible, the sor
modifications that should be expected to help improve its ability to m
requirements. Our interest is in improving software. Thus in this pap
self-evaluation approach, called perpetual testing and analysis, that
larger activity of self-improvement.

In a manual, or human-driven, software improvement process humans take th
carrying out the testing and evaluation of software, humans infer the cha
be made, humans effect the changes, and humans reinstall the modified sof
which point the improvement cycle begins again. Software self-improveme
that some or all of these activities are to be assisted, or entirely carr
by the software itself, rather than being done solely by humans. There
interesting research required in order to reduce the dependence upon huma
these activities. In this paper we describe how we propose to transition
responsibility for testing and evaluation of software from humans and ont
tools and processes.

The essence of our idea is that deployed software should be under continu
analysis, and evaluation, drawing heavily upon the computational resource
utilization patterns found in the deployment environment. As the amount
possible testing and analysis are virtually limitless, there is value in
activities perpetually. It is important, however, that the activities no
undirected. We propose that the process of perpetual testing and analysi
incremental results and findings so as to produce increasingly sharp and
It is suggested that these results will inevitably lead to increasingly w
suggestions about what modifications to the software seem most likely to
improvements. Thus, our perpetual testing and analysis proposal is aimed

reducing the need for human involvement in evaluation, but also at assist
in proposing improvements.

There are substantial technical challenges in doing this. We propose tha
testing and static analysis go on essentially endlessly, but that results
activities be used to focus and sharpen the other s activity. Research i
make these two complementary evaluation approaches most synergistic is ne
envision orchestrating this synergy through the use of precisely defined
there is considerable research to be done in this area as well.

2.0 APPROACH

While self-modifying code has existed since the earliest days of computin
ample evidence that it poses clear dangers. Of most concern to us is the
modifying code is generally difficult or impossible to analyze, and there
its possible behaviors is difficult or impossible to bound. For this rea
in which software can modify itself, without necessitating the need for c
itself. Our approach to this problem is to view a software product as a
diverse types of software artifacts, including such types of components a
specification, an architecture, low level design specifications, code, te
analysis results. We also suggest that the software product also include
the process by which various components of the software product (code, in
to be modified. By doing so we can assure that no component of the softw
need modify itself. Rather, a separate component, the modification proce
responsible for modifying other components, such as the code.

Going further, we suggest that the software product is also characterized
constraints that specify the way in which the various components should b
each other. The constraints are particularly important because they are
determine when and how the components of the product need to be modified.
example, when test results derived through execution of testcases are inc
the requirements to which they should be related, this is a signal that p
modification is needed.

The foregoing suggests that a collection of tools should also be consider
the software product. These tools are the devices that are used to help
components of the product and to determine the degree to which the produc
consistent. Thus compilers, design tools, testcase monitors, and static
examples of tools that should be considered to be part of the overall sof

In classical software development, the tools are applied in order to buil
product and its components right up until deployment. But at deployment
code is separated from the rest of the components, and from its constrain
is placed in the deployed environment. This complicates the modification
substantially.

We propose that deployed software product code remain tethered to the oth
components (including the software product modification process), as well
constraint and tool sets that comprise a complete product. By doing this
possible for tools to continue to evaluate the consistency of the code wi
and to effect modifications. This is the more precise sense in which o
suggests how to effect the self-modification of software, without necessi
modification of the code component.

Thus the perpetual testing approach implies that software code be perpetu
by access to an environment that supports its evaluation and improvement
to this as the development environment, even though it will persist past
development), and takes a pro-active role in assuring that evaluation con
positive contributions to the improvement of the software. Coordination
numerous types of testing and analysis artifacts that exist in the develo
deployed environments is a daunting job that is prohibitively expensive a
carried out manually. Instead, a highly automated testing and analysis p
testing and analysis tools and artifacts, using the available computing r
be acquired at any given time. Although this process is considered to be
of the product, it is not required to be resident with the code in the de

3.0 TECHNICAL AND RESEARCH CHALLENGES

3.1 DEPLOYMENT CONSIDERATIONS

It is important to emphasize that the nature of the interconnection
between the development environment and the deployed code that is (p
being testing perpetually will vary considerably, depending upon the
variation in deployment situations. Thus, for example, it may be qu
to suggest that non-critical prototype research software deployed in
research setting may be under continuous evaluation, and continual i
with its development environment. On the other hand, it is unthinka
that mission critical realtime software code deployed in a secure mi
environment will have direct contact with its original development e
while it is deployed and in service. There is a large spectrum of d
situations between these two extreme situations. It is our belief,
can fashion a corresponding spectrum of approaches to supporting the
of the benefits of perpetual testing. Certainly the degree to which
connect deployed code to the rest of the product will dictate the de
we are likely to have with self-evaluation and self-improvement.

Clearly the furnishing of parameterized monitoring capabilities, con
communication between deployment and development environments, and
rehosting of major portions of the development environment all pose
technical challenges.

3.2 ANALYSIS AND TESTING RESEARCH

3.2.1 INCREMENTAL RETESTING AND REANALYSIS

Testing and analysis techniques should be applicable continuously
initial software development, where it should be applied to incom
systems, and continuously as software modifications are considere
carried out. As modifications are being considered, it is highly
to repeat analysis and testing for unchanged aspects of the softw
This entails the ability to carry out careful analysis of the imp
modifications, determination of which past analytic results remai
determination of the most pressing retesting/reanalysis needs, an
optimized process for addressing the most pressing needs first.

Incremental reanalysis and testing will require technologies for
web of summary information about the code and its various subcomp
deciding what parts are partly or fully reusable, and optimizing
portions that changes have rendered invalid. Incremental approac
been developed for compilation, based on interprocedural data-flow
techniques. Incremental techniques developed for testing and ana
conceptually similar, but will involve a much more complex set of
and relations among multiple sources and kinds of information. T
these relations is indicated briefly below.

3.2.2 INTEGRATION OF TECHNIQUES

The prospect of Perpetual Testing suggests that diverse analysis
techniques will have to be synergistically integrated and reinteg
dynamically and in diverse ways. Previous research has described
different analysis techniques could complement one another, but h
proposed fixed integration strategies consistent with the assumpt
testing was a phase of fixed duration. These activities have tea
expensive, but usually less precise, analysis techniques with mor
but very precise, techniques, often greatly reducing computation
human intervention. For example, static dataflow analysis scans
and sharpen dynamic testing regimens, and can be used to iterativ
and solve successions of dataflow analyses, that iteratively shar
results. These prototype integrations indicate many opportuniti
synergy, and the clear feasibility of effecting new integrations

Verification systems have traditionally maintained constraint rel
lemmas and theorems, but have had an overly simplistic view that
is either proved (when all its relations are proved), or is compl
support. Testing systems have maintained records of thoroughness
notions of coverage), as well as sets of properties in the form o
but have not related levels of assurance to particular properties
analysis tools have been limited to a distinction between verifie
(must results) and inconclusive (may) results.

Integration of analysis and testing techniques, and particularly
post-deployment usage information, provides an opportunity for a
set of constraints among properties, techniques, and levels of as

example, a property may be verified by a static dataflow analy
dependent on the absence of an aliasing relation that is monitore
Each asserted property of a software system can be supported by a
of analyses and assurances of differing strengths, which are prop
through the web of relations and constraints. Monitoring of depl
software is critical in this regard, and explicit constraint link
monitored in the deployed software provide a way to calibrate and
assurances established in the development environment.

3.2.3 SPECIFICATION-BASED ANALYSIS

Testing is a human intensive process. Testers must develop test c
test cases and then evaluate the results. The latter task can be
consuming, tedious, and error prone. Specification-based testing
are being developed so that humans no longer have to play the rol
The use of specifications needs to be further developed, not only
but for a range of analysis techniques.

Specifications are the driving impetus for a number of analysis a
Some modern dataflow analyzers use a quantified form of regular e
for expressing properties that are to be validated, others use te
specifications, while still others use graphical interval logic.
that is actually done and the validity of the system being evalua
the specification. Needless to say the quality of the analysis a
the quality of the specification. For example, data flow analysis
determine the validity of a property unless that property is capt
specification.

An advantage of specification-based analysis and testing is that
specification base can grow. Over time, as users have more experi
the software product, new specifications can be formulated. Ever
discovered after deployment should be captured by a new specifica
intended behavior so that future modifications of the software pr
evaluated against this specification as well. As the specificatio
more and more of the reanalysis and retesting will be driven by t
should improve the quality of the testing and analysis, but shoul
improve the quality of the software product, reduce the amount of
intervention, and greatly reduce the time devoted to testing and

3.2.4 PREDICTIVE-DRIVEN ANALYSIS AND TESTING

A perpetual testing framework provides a unique opportunity to ga
about the sequence of modifications to the software product and t
metrics to predict the most appropriate analysis or testing techn
evaluation of subsequent modifications. For example, a code subc
that has a history of containing faults might be given a high pri
reanalysis if it is modified. Information about the kinds of fau
discovered in the past and metrics about the component itself, su
uses concurrency or has complicated data structures, would impact

of analysis approach to employ. Also, past execution costs could
predict computing resources that would be needed to complete the
a timely fashion. Finally, if one technique proved to require sub
interaction in the past for problems with a similar metric footpr
consumptive techniques would be considered.

Recent work on testing and analysis has just started to address u
to drive the choice of analysis techniques. With perpetual testi
be able to be more complete and effective in gathering informatio
software being evaluated, the kinds of faults discovered (or prop
verified) by the analysis and testing techniques, the computing r
and the amount of human intervention required. On the basis of th
information, we should be able to develop a predictive model of w
to be the best testing and analysis process. This model would its
subject of evaluation and would continue to be modified as we gat
experimental evidence. This should lead to a predictive meta-mod
incorporated as part of the overall software product. As more inf
learned about a particular software product and its modification
information would be used by the meta model to evolve a predictiv
drive the testing and analysis process for that software.

3.2.5 PERPETUAL TESTING PROCESS DEVELOPMENT

Analysis and testing activities should be viewed as processes to
as software is, from requirements through coding, evaluation, and
This is particularly important for perpetual testing processes. B
to be indefinitely ongoing processes, it is essential that clear
beforehand, so that progress towards those goals be continually m
and so that revisions to either goals, of processes, or both can
continually. Thus, perpetual testing can reasonably be viewed as
integration of sequences of applications of both testing and anal
demonstrable support of precisely articulated analysis and testin
propose to demonstrate the value of articulating requirements for
testing processes, and then also demonstrate perpetual testing pr
architectural designs.

It seems particularly appropriate to consider, in addition, the d
code for analysis and testing processes. For example, dynamic reg
testing entails iteration that is comfortably expressed with trad
Deciding when and whether to follow coarse-grained, static datafl
with more precise, sharpened dataflow analyses is expressible wit
case and if-then-else constructs. In both cases, the fine scale
products must also be specified.

The testing and analysis process we envisage will also require re
mechanisms. It is often important to program immediate reactive
to such testing failures as incorrect results and system crashes.
analysis results may need to trigger fixed standard subsequent re

reporting of analysis results obtained at deployment sites might
by timer events, or by the very action of their being completed.

All of this argues for the specification of actual executable pro
guide the execution of these perpetual testing processes, and the
continuous self-evaluation of software products. In our work we
demonstrated such perpetual testing process code, and now propose
used as the engine for driving software product self-improvement.

4.0 SUMMARY

The perpetual testing and analysis approach promises to enable the c
self-evaluation of software throughout the sequence of modifications
during its entire lifetime, and thereby to enable software self-impr
can be measured and evaluated. Key to doing this is to perpetually
software code to the rest of the overall software product s componen
constraints, tools, and the perpetual testing process itself. This
increase the confidence that people will have in their software prod
software products become larger and more complex, they will become e
difficult to evaluate and improve, trust, and predict unless an appr
perpetual testing is explored.

 5.0 ACKNOWLEDGEMENTS

This research was partially supported by the Air Force Research Labo
and the Defense Advanced Research Projects Agency under Contract F30
2-0032, and by U.S. Department of Defense/Army and the Defense Advan
Research Projects Agency under Contract DAAH01-00-C-R231, The U.S.
Government is authorized to reproduce and distribute reprints for Go
purposes notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the authors
not be interpreted as necessarily representing the official policies
endorsements, either expressed or implied of the Defense Advanced Re
Projects Agency, the Air Force Research Laboratory/IFTD, the U.S. De
Defense, the U. S. Army, the U.S. Government, the National Science F
or of IBM.

