
Proceedings of the 22nd International Conference on Software Engineering. 4-11 June 2000. Limerick, Ireland. Pages 754 – 757.

Little-JIL/Juliette: A Process Definition Language and Interpreter
Aaron G. Cass Barbara Staudt Lerner! Eric K. McCall!! Leon J. Osterweil

Stanley M. Sutton Jr.!!! Alexander Wise

Laboratory for Advanced Software Engineering Research
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610 USA

+1 413 545 2013
{acass, lerner, mccall, ljo, sutton, wise}@cs.umass.edu

ABSTRACT
Little-JIL, a language for programming coordination in pro-
cesses is an executable, high-level language with a formal
(yet graphical) syntax and rigorously defined operational se-
mantics. The central abstraction in Little-JIL is the “step,”
which is the focal point for coordination, providing a scop-
ing mechanism for control, data, and exception flow and for
agent and resource assignment. Steps are organized into a
static hierarchy, but can have a highly dynamic execution
structure including the possibility of recursion and concur-
rency.

Little-JIL is based on two main hypotheses. The first is
that coordination structure is separable from other process
language issues. Little-JIL provides rich control structures
while relying on separate systems for resource, artifact, and
agenda management. The second hypothesis is that pro-
cesses are executed by agents that know how to perform their
tasks but benefit from coordination support. Accordingly,
each Little-JIL step has an execution agent (human or au-
tomated) that is responsible for performing the work of the
step.

This approach has proven effective in supporting the clear
and concise expression of agent coordination for a wide va-
riety of software, workflow, and other processes.

Keywords
Process, process programming, Little-JIL, workflow, coordi-
nation

1 INTRODUCTION
There is a growing need for process and workflow specifi-
cation in many contexts. We present Little-JIL, a process

language that attempts to resolve the apparently conflicting
objectives of providing constructs to support a wide variety
of process abstractions such as organizations, activities, ar-
tifacts, resources, events, agents, and exceptions and creat-
ing a language that is easy to use and understandable by
non-programmers. Little-JIL is strongly rooted in our past
research on process programming languages [5, 6], but it
makes some important breaks with this earlier work. Little-
JIL differs from our prior work in that it is primarily a graphi-
cal language. This helps to promote understandability, adop-
tion, and ease of use. However, Little-JIL language con-
structs are still defined using the sort of precise semantics
that is more typically associated with textual languages. This
is facilitated in part because the focus of the language is nar-
rowed to coordination-related elements. This is facilitated by
another break from our earlier work, namely the factoring of
the language into modular language components. Little-JIL
focuses on the coordination component

Coordination, as defined by Carriero and Gelernter is “the
process of building programs by gluing together active
pieces” and is a vehicle for building programs that “can in-
clude both human and software processes”[1]. From this per-
spective, it can be seen that coordination is a logically central
aspect of process semantics. As with Linda [1], in Little-JIL
we have separated coordination from such other language se-
mantic elements as artifact management, resource manage-
ment, communication, and real time specification. In ad-
dition, because we are concerned about coordination pro-
cesses, Little-JIL incorporates control constructs into the co-
ordination language. This allows processes to constrain co-
ordination when necessary while leaving control decisions in
the hands of agents when those constraints are unnecessary.

! Currently at Department of Computer Science, Williams College,
Williamstown, MA, +1 413 597 4215, lerner@cs.williams.edu

!! Currently at HP Laboratories, Palo Alto, CA, +1 650 236 2882,
emccall@hpl.hp.com

!!! Currently at IBM TJ Watson Research Center, Hawthorne, NY, +1
914 784 7128, suttonsm@us.ibm.com

Because minimizing the process language and factoring out
related components permit language complexity to be added
incrementally, we believe that this approach can lead to bene-
fits in many areas, including process analysis, understanding,
adaptation, and execution.

2 APPROACH
In Little-JIL we identify what we believe to be a viable fac-
toring for a process programming language, and have de-
signed what we believe to be a viable set of linguistic ele-
ments that initially focuses on the coordination factor. We
have defined this factor so that flexibility can be offered to
the agents in the process at appropriate points, and we rely on
separate systems for the definition of resource requirements,
artifact specification, and agenda management. This factored
approach allows the core coordination language to be simpler
and easier to understand, develop, and use. Additionally, by
factoring out certain aspects of process definition, these as-
pects can be developed and evolved in independent ways, as
appropriate to the environments and organizations in which
they will be used. To demonstrate this approach we have also
developed examples systems to support these other factors.

The design of Little-JIL coordination features was guided by
four primary principles:

Simplicity: To foster clarity, ease-of-use, and understand-
ability, we made a concerted effort to keep the language sim-
ple. We added features only when there was a demonstrated
need in terms of function, expressiveness, or simplification
of programs. Furthermore, by using a factored approach and
concentrating on coordination, we were able to simplify the
language relative to that of a general-purpose programming
language. To help make the language accessible to both de-
velopers and readers, we adopted a primarily visual syntax.

Expressiveness: Subject to (and supportive of) the goal of
simplicity, we made the language highly expressive. Soft-
ware and workflow processes are semantically rich domains,
and a process language, even one tightly focused on coor-
dination, must reflect a corresponding variety of semantics.
We wanted the language to allow users to speak to the range
of concerns relevant to a process and be able to express their
intentions in a clear and natural way.

Precision: The language semantics are precisely defined.
This precision contributes to several important goals. First,
it enables automatic execution of process programs (See [2]
for a description of Juliette, our runtime environment that
executes process programs based on this precise semantics).
Second, precision supports the analyzability of process pro-
grams (see [3] for a discussion of work aimed at static anal-
ysis of processes based on this precise semantics). Analysis
is key to assuring that process programs indeed have proper-
ties that are desirable for process safety, correctness, reliabil-
ity, and predictability (or, conversely, for showing that those
properties cannot be guaranteed). Analysis also contributes
to process understanding and validation.

Flexibility: In some cases, a process programmer needs to
control the order in which steps are executed because only
one step sequencing may be acceptable. Traditional work-
flow languages have allowed the specification of this type
of sequential control. However, in cases where more than
one sequencing is acceptable, or when a different set of steps
may be acceptable, a fixed step sequencing imposed by the
process program would not be appropriate. Little-JIL is de-
signed to give process programmers the power to choose
what level of flexibility to give to the process’s agents.

In the next section we describe the features of Little-JIL. We
show how Little-JIL can be used to clearly and effectively ex-
press the coordination aspects of agent-based processes us-
ing the familiar problem of trip planning.

3 LANGUAGE AND EXAMPLE
Capturing the coordination in a process as a hierarchy of
steps is the central focus of programming in Little-JIL. A
Little-JIL program is a tree of step types, each of which can
be multiply instantiated at runtime. The leaves represent the
smallest specified units of work and the tree’s structure rep-
resents the way in which this work will be coordinated.

As processes execute, steps go through several states. Typi-
cally, a step is posted when assigned to an execution agent,
then started by the agent. Eventually either the step is suc-
cessfully completed or it is terminated with an exception.
Many other states exist, but a full description of all states
is beyond the scope of this paper.

SubStep HandlerStep

Exception

Continuation Badge

Step Name

Interface Badge

Exception Handler Badge

Postrequisite Badge

Control Flow Badge

Prerequisite Badge

Parameter

Figure 1: Legend

The graphical representation of a Little-JIL step is shown in
Figure 1. This figure shows the various badges that make up
a step, as well a step’s possible connections to other steps.
The interface badge at the top of the step is a circle to which
an edge from the parent may be attached. The circle is filled
if there are local declarations associated with the step, such
as parameters and resources, and is empty otherwise. Be-
low the circle is the step name, and to the left is a triangle
called the prerequisite badge. The badge appears filled if
the step has a prerequisite step, and an edge may be shown
that connects this step to its prerequisite (not shown). On the
right is another similarly filled triangle called the postreq-

NoUnited

NoMoreChoices
NoPlane

NoUSAir

USAir ReservationUnitedReservation

Sequential
Try
Choice
Parallel

PlaneReservation InBudget

HotelReservation CarReservation

DaysInnReservation

NotTightBudget

HyattReservation AvisReservation HertzReservation

CarAndHotelReservation

PlanTrip

IncludeSaturdayStayover

NotInBudget

Continue
Throw

Restart
Complete

Airline
TripTimes

agent: TravelAgent

TripDates
Budget

agent: Traveler

Figure 2: Reservation process showing proactive control: step kinds, requisites.

uisite badge to which a postrequisite step may be attached.
Within the box below the step name are two more badges.
From left to right, they are the control flow badge, which
specifies the order in which substeps are to be executed, and
to which the substeps are attached, and the exception han-
dler badge, to which exception handlers are attached. These
badges are omitted if there are no child steps or handlers,
respectively. The edges that come from these badges can be
annotated with parameters (passed to and from substeps) and
exceptions (that a handler should handle). It is possible for
an exception to have a null handler, in which case the con-
tinuation badge alone determines how execution proceeds.

There are five main features of the Little-JIL language that
allow a process programmer to specify the coordination of
steps in a process. Due to space constraints, we can only give
an overview of the language. Detailed language semantics
are provided by the Little-JIL language report [7].

In explaining the language features we refer to an example
process program for planning a trip (Figure 2). The process
describes the activities of first getting a plane reservation,
then getting hotel and car reservations for a trip, while re-
maining within budget. The main features of the language
and their raisons d’être follow:

Four non-leaf step kinds provide control flow. These four
kinds, “sequential,” “parallel,” “try,” and “choice,” are the
bare minimum for which a need has been clearly established
to date. Non-leaf steps consist of one or more substeps
whose execution sequence is determined by the step kind.
Substeps of sequential steps (such as PlanTrip in Figure 2)
are all executed in left to right order. Substeps of parallel
steps (such as CarAndHotelReservation in Figure 2) can be
executed in any order (including in parallel). Substeps of try
steps (such as PlaneReservation in Figure 2) are executed in

left to right order stopping when one completes successfully.
Exactly one of the substeps of choice steps (such as Hotel-
Reservation or CarReservation in Figure 2) is executed with
the decision of which to execute being made dynamically by
the agent. It is important to note how the parallel and choice
step kinds accord to human users the power to exercise their
judgment and to make choices about the order in which the
subtasks of an item should be performed or how a particular
item of work is to be done. While the language can be used
to constrain the alternatives, the human agent is left free to
make the choices.

Requisites are a mechanism to add checks before and after
a step is executed to ensure that all of the conditions needed
to begin a step are satisfied and that the step has been ex-
ecuted “correctly” when it is completed. A prerequisite is
a step that must be completed before the step to which it is
attached. Similarly, a postrequisite must be completed after
the step to which it is attached. For example, the postrequi-
site of PlaneReservation in Figure 2 is a separate step called
InBudget. When PlaneReservation is finishing, the InBudget
step is posted and executed like any other step. If it throws
an exception, this is an indication that the plane reservation
has over-extended the budget. While requisites decrease the
simplicity of the language, we have found them necessary
to allow process programmers to naturally describe common
step contingencies. The need for pre- and post-requisites ap-
pears to be common in process programs and requisite step
semantics seem different enough from other kinds of sequen-
tial steps that a special notation was introduced. These con-
structs also seem ideal for supporting the monitoring of pro-
cess execution.

Exceptions and handlers augment the control flow con-
structs of the step kinds. Exceptions and handlers are used

to indicate and fix up exceptional conditions or errors during
program execution and provide a degree of reactive control
that we believe allows a process programmer to simply and
accurately codify common processes. The exception mecha-
nism in Little-JIL has been designed to be simple yet remain
expressive. It is based on the use of steps to define the scope
of exceptions and handlers. Exceptions are passed up the
step decomposition tree (call stack) until a matching handler
is found. Our experience has indicated that it is necessary
to allow different exception handlers to work in a variety of
ways. After handling an exception, a continuation badge de-
termines whether the step will continue execution, success-
fully complete, restart execution at the beginning, or rethrow
the exception. For example, in the process in Figure 2, the
handler attached to PlanTrip for the NotInBudget exception
has a restart continuation badge, indicating that if we are not
InBudget, we should first IncludeSaturdayStayover and then
restart the trip planning process. Detailed semantics are pro-
vided in [7].

Parameters passed between steps allow communication of
information necessary for the execution of a step and for the
return of step execution results. The type model for parame-
ters has been factored out of Little-JIL, thus removing issues
such as type definition and equality, which are unrelated to
coordination. For lack of space, we don’t show all the param-
eters and their bindings in Figure 2. The left side of the dia-
gram shows some of the parameter passing on the edges (for
example, the PlanTrip step passes the TripDates and Budget
to the PlaneReservation step, and gets back TripTimes and
Airline).

Resources are representations of entities that are required
during step execution. Resources may include the step’s ex-
ecution agent, permissions to use tools, and various phys-
ical artifacts. In Figure 2, PlanTrip has an agent specified
as Traveler and PlaneReservation has an agent specified as
TravelAgent. Resource management is not done in Little-
JIL, but is carried out by a resource specification and man-
agement factor. As such, the resource specifications in Fig-
ure 2 are interpreted only by the resource management fac-
tor. As with parameters, Little-JIL attempts to minimize
the requirements placed on the resource specification fac-
tor: Little-JIL requires little more than that the factor support
the identification of resources that match a specification, and
that it support resource acquisition and release to avoid usage
conflicts.

What’s missing from the above feature list is also important
to note. As noted above, Little-JIL does not specify a data
type model for parameters and resources. It also omits ex-
pressions and most imperative commands. Little-JIL relies
on agents to know how the tasks represented by leaf steps
are performed: Little-JIL is used to specify step coordina-
tion, not execution. These typical language features have
been factored out, thus simplifying Little-JIL.

We have developed Juliette, a runtime environment based on
Little-JIL that provides implementations of these other lan-
guage factors so that process programs can be executed [2].
Resources are managed by a prototype resource manager, the
Java type system is used as the type model for parameters,
and an Agenda Management System [4] is used to assign
work to possibly mobile agents. The Little-JIL language in-
terpreter of Juliette is built on top of a Distributed Object
Substrate that allows the pieces of the interpreter to be dis-
tributed close to the agents with which they must interact.

4 CONCLUSION
To date we have used Little-JIL to define a wide range of
processes from domains as diverse as software engineering,
robot control, and electronic commerce. We have success-
fully supported the execution of many of these processes and
have begun to apply powerful static analyzers to the process
definitions to prove critical properties. This experience sug-
gests that our approach to process definition has very broad
applicability.

Reports on the details of Little-JIL can be found at
http://laser.cs.umass.edu.

ACKNOWLEDGMENTS
The authors would like to thank Rodion Podorozhny for
his early contributions to Little-JIL and the resource man-
agement factor, and Yulin Dong, Hyungwon Lee, Timothy
Sliski, and Marcia Zangrilli for programming in and provid-
ing feedback about many versions of the language.

This research was partially supported by the Air Force Re-
search Laboratory/IFTD and the Defense Advanced Re-
search Projects Agency under Contract F30602-97-2-0032
and by the U.S. Department of Defense/Army and the De-
fense Advance Research Projects Agency under Contract
DAAH01-00-C-R231. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied of the Defense Advanced Research
Projects Agency, the Air Force Research Laboratory/IFTD,
the U.S. Dept. of Defense, the U. S. Army, or the U.S. Gov-
ernment.

REFERENCES

[1] N. Carriero and D. Gelernter. How to Write Parallel Programs
A First Course. MIT Press, 1990.

[2] A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, and
A. Wise. Logically central, physically distributed control in a
process runtime environment. Technical Report 99-65, Univer-
sity of Massachusetts at Amherst, Nov. 1999.

[3] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. Verifying
properties of process definitions. Technical Report 99-63, Uni-
versity of Massachusetts at Amherst, Nov. 1999.

[4] E. K. McCall, L. A. Clarke, and L. J. Osterweil. An Adapt-
able Generation Approach to Agenda Management. In Proc.
of the 20th Int’l Conference on Software Engineering, pages
282–291, Apr. 1998.

[5] S. M. Sutton, Jr., D. Heimbigner, and L. J. Osterweil. APPL/A:
A language for software-process programming. ACM Trans.
on Software Engineering and Methodology, 4(3):221–286, July
1995.

[6] S. M. Sutton, Jr. and L. J. Osterweil. The design of a next-
generation process language. In Proc. of the Joint 6th European
Software Engineering Conf. and the 5th ACM SIGSOFT Symp.
on the Foundations of Software Engineering, pages 142–158.
Springer-Verlag, 1997.

[7] A. Wise. Little-JIL 1.0 Language Report. Technical Report
98-24, University of Massachusetts at Amherst, Apr. 1998.

