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Abstract

Cache replacement policies play a key role in determining hit rates in set-associative
caches. Current cache replacement algorithms rely on runtime trace history, and neither
programmers nor compilers can explicitly control cache replacement. This paper describes a
novel mechanism to improve cache replacement decisions without the hardware costs of higher
set-associativity. We develop compiler-generated auxiliary information using dependence
testing and locality analysis to improve cache replacement decisions for scientific programs.
We present an ideal theoretical model of our new cache replacement algorithm and prove
that it matches or improves LRU for set-associative caches. We present a 16 and 1-bit cache
line tag implementation of this model. We call the one bit tag the evict-me (EM) bit. On
a miss, the architecture replaces a line if its EM bit is set, or, if no bit is set, it uses the
LRU bits. We prove that the EM bit yields replacement decisions at least as good as those
of LRU. The EM bit is practical and easy to implement in current set-associative cache
architectures. Simulation results on 7 programs show that the EM bit can reduce miss rates
in set-associative caches by up to 45% over LRU. On 6 of the 7 programs, it achieves the
same or better hit rates with 2-way set associative as compared to a 4-way cache without an
EM bit. A comparison with victim cache shows that the two strategies can work together
to further improve cache performance.
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1 Introduction

Microprocessor speeds have been steadily improving by about 55% per year since 1987. Mean-
while, memory access latencies have been improving only by 7% per year [9]. Cache hierarchies
attempt to bridge this gap, and researchers have studied them intensely since their invention. To
attain fast cache access times, current microarchitectures have direct-mapped or low, 2 or 4-way,
set-associative organizations [10, 9]. In set-associative caches, the architecture chooses to evict
the least-recently-used (LRU) line on a replacement. An optimal replacement algorithm must
peek into the future, and hence is clearly infeasible [5, 22]. LRU uses past history, assuming
that it should keep the most recently accessed data in the cache and evict the least recently
accessed data. This organization and replacement policy does not always use cache memory
effectively; i.e., even though the cache has sufficient capacity to retain data that will be reused
in the future, it does not [2, 6, 16].

Consider the simple example in Figure 1. Notice that array B is accessed in nest N1 but not
in nest N2. Whenever there is a cache miss in the first nest, we prefer to evict an element of
array B. However, LRU ranks items from least to most recently used, i.e., C, B, A. Assuming
that the cache size is a little bigger than 2*N, LRU will evict part of A even in a fully associative
cache. A better replacement algorithm can keep both A and C until their reuse in nest 2. In
this paper, we develop a new compiler mechanism that guides cache replacements by predicting
when data will be reused. We use dependence and array section analysis to determine static
locality patterns in a program. The compiler then encodes when data will be reused. On a
replacement, the architecture chooses to evict data that the compiler predicts will be reused
furthest in the future.

We first prove that our model matches or improves hit rates in a fully associative cache
when compared with LRU. We then develop algorithms for encoding reuse in cache-line tag bits
for set-associative caches, and prove that these algorithms will similarly match or improve hit
rates compared with the LRU policy. In particular, we show how to use a single tag bit called
the evict-me (EM) bit. On a miss, the architecture will choose to replace a line with this bit
set. For example in Figure 1, we mark the EM bit for B on its load, and then evict it on a
replacement to its cache set. The EM bit was inspired by the Alpha’s ewict instruction which
evicts the cache line immediately, and the prefetch and evict-next instruction which loads the
line to the level 1 cache and evicts it on the next miss to the cache set [14]. These instructions
have similar, but different semantics as compared to the EM bit. Our results show that the
EM bit can improve miss rates by up to 45% on a 4-way set associate cache, and on 6 of 7
programs enables a 2-way set associative cache with EM bits to improve or match a normal
4-way cache. Our approach thus attains the hit rate of higher set-associativity without the
hardware costs on our benchmarks. Results for a 16-bit tag show further improvements are
possible. We also implement a victim cache for level 1 cache. The results demonstrate that
neither strategy dominates the other. However, the two strategies can complement to further
improve cache performance.

This paper is organized as follows. Section 2 discusses related work. Section 3 presents
potential hardware implementations. Section 4 introduces locality analysis and a new concept,
reuse level. It also describes techniques for generating reuse levels at compile time. Section 5



SUBROUTINE TEST(N)
INTEGER A[N], B[N], C[N]
DONII=1,N
C[I] = A[I]+B[I]

ENDDO

DO N21=1:N
Al = C[I] * 5

ENDDO

END

Figure 1: A simple example

presents an algorithm based on reuse levels and provides a proof that it is at least as good as
LRU and has potential to in fact improve the overall hit rates. We then describe algorithms
that use 16 and 1-bit tags for each cache line. Section 6 discusses our experimental methods
and simulation results. Section 7 concludes the paper.

2 Related Work and Motivation

This section briefly discusses related work in set-associative cache design, prefetching, trace
driven cache replacement algorithms, and compiler algorithms for improving locality.

Direct-mapped first-level caches have been popular because their lower hit cycle time, as
compared with set-associative caches, often yielded better system performance, even though
set-associative caches have lower miss rates [10, 9]. However due to the rapid increases in miss
penalties in cycles, many recent architectures use at least 2-way set associative caches, e.g., the
Compaq Alpha 21364 and Sun Sparc2. The hit cycle time penalties of even higher degrees of
associativity still negate their reduced miss rates. The hardware mechanisms of an EM cache
do not increase cycle time and are only effective on set associative caches; i.e., the hit time is
unchanged although the replacement logic on a miss considers one more bit. Our work tries
to achieve the hit rate of higher associativity by improving the replacement decision of a cache
with lower associativity, thus achieving both low hit cycle time and low miss rates.

Our work takes an opposite approach as compared with hardware and software data prefetch-
ing which tolerate latency [12, 4, 17, 18]. Data perfecting tries to fetch data which will be used
in the near future to reduce miss penalties. EM tags instead predict which data will and will
not be used in the near future, and keep the data in the cache that will be used. Our techniques
eliminate misses, using the cache more effectively as compared to prefetching. EM tags do not
bring new data into the cache and thus do not have the bandwidth and other overheads of
prefetching. However, prefetching does not require a set-associative cache.

A number of dynamic or hardware techniques have been proposed to reduce cache misses
citeAP:93, JMH:97, Jouppi:90. Victim cache is originally designed to enhance direct-mapped
caches by keeping a small number of replaced lines in a fully-associative buffer [12]. We can also
apply our techniques to the victim buffer to improve its replacement decisions. We compare an
EM cache with a cache augmented with a victim cache with and without EM bits in Section
6. Run-time spatial locality detection devote hardware tables to keep track of spatial localities



dynamically [11]. The work does not address cache replacement algorithm.

Previous work uses program traces to study the limits of cache performance. Belady pio-
neered this area by comparing random cache replacement, LRU, and optimal algorithms [5].
Sugmar and Abraham used Belady’s algorithm to accurately characterize the notion of capacity
and conflict misses [21]. Recently, Temam extended Belady’s optimality result by simultane-
ously exploiting spatial and temporal locality [22]. All these studies seek to understand cache
characteristics rather than to implement a real cache and related algorithms. Although our
theoretical model in Section 5.1 is also based on static traces, we apply it to a real cache by
using compiler analysis.

Another research trend is to improve cache locality with compiler techniques. Abu-Sufah
first discussed applying loop transformations to improve paging [1]. McKinley et al. used a cost
model to capture more types of reuses [15]. All this work focuses on single loop nest. Kandermir
et al. improves cache performance for a sequence of loop nests through a combination of loop and
data layout transformations [13]. We believe loop transformations will make locality prediction
more accurate, and can exploit more fully the performance of our replacement strategy. We plan
to study these interactions in the future.

3 Hardware Implementation

We believe that the widening performance gap between memory and processor speeds must
eventually be reflected by additional instructions in the ISA that help compensate for this gap.
Hence, adding new load and store instructions to the ISA that set EM tags is one step in this
direction, and a simple step. However, our 1-bit EM replacement functionality can also be
implemented without changes to the ISA in some architectures. On the Alpha 21264 which has
a 2-way set associative level 1 cache, we can first use the “prefetch and evict-next” instruction
to set the EM bit and then perform a register load or store [14]. The “prefetch and evict-next”
instruction loads the data into the level 1 cache, and then replaces it on the next miss to the
same set. Other implementations that do not change the ISA are also possible. For example,
we could directly use the physical addresses of the level 1 cache to manipulate the EM bit.

4 Locality

In this section, we briefly review locality, cache organizations that exploit locality, ideal replace-
ment and algorithms based on complete trace information. We introduce our reuse notation. We
present a new compiler algorithm that predicts locality within a loop nest (intra-nest locality)
and between loop nests (inter-nest locality).

4.1 Background

To simplify further discussion, we concentrate on a set-associative, write-allocate, write-back
cache. The minimum unit of communication between main memory and the cache is a block:
whenever any part of a block causes a miss, the architecture loads the entire block. We use miss
rates to compare the performance of different cache replacement algorithms.



The reason caches perform well is that most programs exhibit good locality. The classical
notions of locality found in programs are: temporal locality - if an item is referenced, it will be
referenced again soon; and spatial locality - if an item is referenced, an adjacent item will tend
to be referenced soon [9]. LRU takes advantage of program locality. It tries to keep the data
recently referenced in cache and expects that data will be referenced again soon. However, as we
pointed out earlier with regard to Figure 1, although arrays A, B and C all have spatial locality
in nest 1, only arrays A and C are reused in nest 2. LRU can not exploit this fact because
its decision is based on history. In this paper, we explore a new mechanism for using locality
information to improve cache replacement decisions.

4.2 Perfect Locality Information: Trace-based Replacement

In our work, we want to approximate the locality of references in a given program. Consider
the following quantitative definition of temporal locality [19]. The temporal locality of a data
reference at time T is TL = 1/(Tpext —T'), where T)yeqy is the time of the next consecutive access
to that particular address. Since we focus on caches that bring a whole block of data in at a
time, we can similarly define spatial locality as follows. The spatial locality of a data reference
at time T is SL = 1/(Tpext — T), where Tpeqt is the time of the next consecutive access to
the same block. Thus, in our model, temporal locality is a special case of spatial locality. If
we know the temporal and spatial locality of each data reference in a program trace, then the
optimal replacement algorithm replaces the data which has reuse furthest in the future, i.e., the
data with the smallest value for SL [5]. Of course, we do not have a complete trace at program
execution, and SL is impossible to know exactly via static program analysis. To control cache
replacement explicitly, we need a new method to describe locality. In the following section, we
introduce a measure which is comparative rather than absolute.

4.3 Compiler Approximated Locality Information

This section first reviews dependence analysis. Then we abstract dependence distance by a new
representation, called reuse level. We show that reuse levels are comparable and thus can be
used as a basis for a cache replacement algorithm.

Consider the abstract program shown in Figure 2: all nests in the program contain the same
number of loops. The iteration space of loop nest i is an n-dimensional polyhedron consisting
of all the n-tuples of values of the loop indices, called an index vector. Extending the idea of
iteration space, we define the iteration space of the whole program as all valid values of vector
< J,%j1,%52,...,1jn >, called a cross-loop index vector. Here the value of j, 1 < j < k, denotes
the subspace of the ji, loop nest. We use < to denote the lexicographic ordering of cross-loop
index vectors.

< J, ijl, ijz, ---,ijn ><< j,, i;l,i;g, ey 7’;n >if j < jl or
(j = Jj' and for some I, V1 <m < I,ijm = i}, and ij < z;l)

There is a dependence between two references in a program if there exist two runtime in-
stances of the references that refer to the same memory address. In fact, dependence denotes
temporal reuse of a reference, i.e., multiple accesses to the same memory location. Dependence



Nest 1: DO 411 = l11 : w11 : S11
DO i1p =lin : uin : S1n
body 1
ENDDO
ENDDO
Nest k: DO 41 = lg1 : ug1 : Sk1
DO igp = lipn : Uln @ Skn
body k
ENDDO
ENDDO

Figure 2: An abstract program

PROGRAM SimplifiedJacobi
PARAMETER (N=1000, M=1000)
REAL A(N, M), B(N, M)

temporal (=,<>)

B(I-1.J) at N1
[1:M-22:N-1]

spatial(==,<) spatial(==.<)

spatiu|(=,=.<<)_>/

B(1J-1) at N1
DOJ =2,N-1 2M-LIM2) °ee
DOI=2, M-1
A(1, J) = (B(I-1, J)+B(I+1, J)+B(1, J-1)+B(I,J+1))/ 4
ENDDO
ENDDO cross-loop [24 cross-loop [2:M-12:N-2] cross-loop [2:M-2,2:N-1]
DO J =2, N-1
DOI=2, M-1
B(I, J) — A(I, J) spatial(:,é spatial(==<) g
ENDDO
ENDDO
END
(b) Locality graph
(a) Another simple program
Figure 3: A simple program and its locality graph
step 0 1 2 3 4 5 6
cache blockl rl rl rl rl r2 r2
PREDICTION cache block2 r2 r3 r3 r3 r3
miss/hit miss miss miss hit  miss hit
cache blockl rl rl r3 r3 r2 r2
LRU cache block2 r2 r2 rl rl r3
miss/hit miss miss miss miss miss miss

Table 1: LRU versus Prediction



testing determines if two references to the same array access the same memory location by test-
ing if there is a solution to a set of linear equations which makes the subscripts equal to each
other. Dependence testing detects spatial reuse when the equations make all subscripts equal
except the least significant one, and the difference between the two least significant subscripts is
less than the cache block size. Testing returns a distance or dependence vector which describes
the distance, or a range of distances, for which the two index vectors satisfy the dependence
equations. When specific distances cannot be obtained through static compilation analysis,
compilers use direction vectors to describe the ordering of the source and target index vectors.
In our implementation, we have both, but the encodings we present in Section 5 use direction
vectors because we must limit the number of bits we use.

To detect dependences between distinct loop nests, we use bounded regular sections [8] to
describe the access range of a reference in a loop nest. The descriptors for bounded regular
sections (BRSD) are vectors of elements, each of which is a triplet. A triplet describes an
accessing range in a dimension, consisting of a lower bound, an upper bound, and a step. The
bounded regular section for A[JI] in Figure 3(a) is [2: M — 1,2 : N — 1]. The default step is
1. The descriptors support union and intersection operations. There is a dependence between
two references in distinct nests if the intersection set of their BRSDs is not empty. We build a
locality graph based on dependences. The graph describes temporal and spatial reuses within
each loop nest and across loop nests. It is a directed graph consisting of nodes that correspond
to the references in the program, and edges that describe the locality of related nodes. An
edge connecting two references in the same loop nest contains the dependence vector. An
edge connecting two references in distinct loops contains the intersection of the two BRSDs.
Figure 3(b) is the locality graph for the sample program in Figure 3(a), where for simplicity we
omit B(I+1,J) and B(L,J+1).

We can rely on the dependence distance as an oracle of access patterns. If we can track the
loop iterations at runtime, then the compiler can tell at which iteration points reuse will occur.
Notice that what the dependence distance predicts is not an exact point of reuse, but a range.
We thus need a method to compare ranges.

We introduce a new representation called reuse level which has dependence distance as a
special case. Assume that we have a complete trace of a program: a series of references in the

program following the execution order, i.e., a,%f N agf( X The superscripts show the

@@ e
order of accesses, and the subscripts are the blocks j;iri)th their addresses as subscripts which
determine the references. The block addresses of the references need not be distinct, of course.
Reuse level is used to approximate the locality of each reference. Rather than describe a specific
distance from the current reference to the next reference to the same block, reuse levels describe
a range in which the next reference will occur. Formally, the locality of reference af)f(i), 1<i<n

is a set s € S, where
Sn={¢}U{sjr|l <j<k<n}andsj=1{jj+1,. Kk}

L. If s is ¢, then block bg(;) will not be referenced again after the iy, reference; i.e., f(i) # f(I)
foralli <l <=n.
2. If s is sj; for some j,k , i < j < k < n, then 3¢t,5 < ¢ < k, such that the next reference to



block by ;) is the t;;, reference in the trace, i.e., f(i) = f(t), and f(t) # f(I) for all s <1 < t.
Then we call the set s the reuse level of af)f(i). To compare reuse levels for references, we define

three relations on S, :<, ~, and >.

sij < ¢ forall 1<i<j
Sij = Skl if j<k

Sij ~ Skl if  siNspu#¢
Sij  »~ Skl if Skl < Sij

Theorem 1. Only one relation holds for any two elements in S,.

Proof. By definition. [

Theorem 1 shows that reuse levels are comparable. Intuitively, if two blocks conflict, we
want to replace the block whose reuse level is < than that of the other block. When two reuse
levels are ~ to each other, we use access history to break ties (as does LRU). Now we are ready
to describe cache replacement algorithms that use reuse levels generated by locality analysis at
compile time.

5 Cache Replacement Algorithms

In this section, we show how to use locality information to improve cache reuse in an ideal case
and within the context of realistic cache organizations. First, we develop an abstract algorithm
that can improve hit rates over LRU. Then we use our model to develop an algorithm for
improving replacement decisions in a k-way set associative cache, where k is assumed to be
small (e.g., 2 < k < 4, as in most modern microprocessors). The second algorithm uses 16 extra
bits to encode reuse levels, which is impractical in current microarchitectures, but is useful for
investigating the limits of our approach. We further explore an algorithm that uses only one bit
of extra information called the evict-me bit that indicates when a cache block is a good choice
for replacement. We prove that these algorithms will improve a k-way set-associative cache
when compared to LRU.

5.1 Improving LRU Cache Replacement

Our first cache replacement algorithm, the Prediction algorithm, uses the access order of a

. i . 1 2
reference and its reuse level to direct replacement. Consider a program trace ab<f(’ls)1>, b<f(’2s)2>,...,
<n,sn>

bry where by (;) is the ig, block accessed by address f(i), and < 7, s; > are its access order and
reuse level respectively. We define a relation < on the set Q,, = {< 4,51 >,1 <1 < n,s;; € Sp},
as follows:

<4y 8jp > A<, 8mp > if (85 < 8mn) or (i > 1 and sji ~ Spmn)-

Each <order, reuse level> pair is an element of Q,,.

Theorem 2. For each pair of elements in Q,, < ¢,5;; > and < [,8y, > , i # [, either
< 4,855 > <9<, 8mp > or <, 8mp > << 1,85, >.

Proof. By definition.[]



The Prediction algorithm updates a reference’s order and its reuse level in the cache on
every access. Think of a cache set as an ordered list from smallest to largest by the < ordering
of the <order, reuse level> pairs. Initially every reuse level is the ¢, and on a reference, the
architecture sets the reuse level if it is specified. Whenever there is a miss, the last line with the
largest <order, reuse level> pair is replaced. When a reference changes the cache line’s <order,
reuse level> pair, we change its position in the list. We compare it to the other items in the
list from first to last until the < ordering of the line is smaller than that of the next element,
and then insert the line before this next element. Although the < ordering is not a partial order
(because it is not transitive), the definition of the Prediction algorithm and the list ordering
algorithm guarantees that there is a deterministic ordering of the list after each cache access;
i.e., Theorem 1 and 2 are sufficient to ensure that the Prediction algorithm is totally specified.

The following example illustrates the algorithm. Assume a two-way set associative cache and
have a simple program trace a<1’[3’4]> a<2,[5,6]> a<3,[5,6]> a<4,[21,28]> a<5’[10’12]> a<6,[10,12]>

ple prog rl » Hr2 )’ r3 » Yrl )’ Hr2 ’» r3 ’
..., all of whose elements are mapped into a single set. Here [i, j] is the set {i,i+1,...,5} , and rl,
r2, and r3 are distinct block addresses. Then the content of the cache is shown in Table 1. In step
3, LRU replaces rl, which leads to a miss in step 4. However, since < 1,[3,4] > < < 2,[5,6] >,
the Prediction algorithm replaces r2 instead. In this example, it performs better than LRU,
which results in all misses.

Theorem 3. For the same cache configuration (same cache size, same degree of associativity,
and same block size), at each reference point, if there is an LRU hit, there is also a Prediction
hit.

Proof. See the Appendix.[J

Theorem 3 tells us that the Prediction algorithm is at least as good as the LRU algorithm
at any reference point. So if we can find a reuse level for each reference point, we expect to
improve upon the LRU algorithm.

5.2 16-Bit Encoding

The Prediction algorithm makes replacement decisions based on reuse levels. In Section 4, we
discussed how to obtained reuse levels for each array reference. To use reuse levels at runtime,
we assume an extended ISA that has extra bits for setting the reuse levels in each cache line
on loads and stores, and a cache that supports these bits. We discussed other implementation
options in Section 3. Cache tag bits are set when a memory instruction with tag bits is executed.
Cache replacement is based on the value of cache tag bits and LRU history bits. The 16-bit
method we describe here is not practical for an implementation but lets us explore the accuracy
of our reuse information and encoding. Before moving on to an encoding algorithm, we first
clarify two issues.

First, a static reference sometimes has different reuse levels for different loops or nests. For
instance, in Figure 3(a), A[L,J] in nest 1 has spatial reuse across the I loop. It also has cross-nest
temporal reuse. We need two reuse levels for the reference. Statically, we must encode all these
reuse levels into the corresponding instructions. The problem is that we need a mechanism
to tell the runtime system which reuse level to use and when. We should always first use the
smallest reuse level in the < ordering. In our implementation, we insert an update() function



update(int 1)

for all reuse levels associated with each cache block {
remove those predicting reuses for level [

} /* end update */

Figure 4: Update Function

Bit | Function

15 | temporal bit for level 4

14 | spatial bit for level 4

13 | temporal bit for level 3 (cross-nest bit for level 4)
12 | spatial bit for level 3

11 | temporal bit for level 2 (cross-nest bit for level 3)
10 | spatial bit for level 2

9 temporal bit for level 1 (cross-nest bit for level 2)
8 spatial bit for level 1

7 temporal bit for level 0 (cross-nest bit for level 1)
6 spatial bit for loop level 0
5

4

0

sign of reference step (1:negative, 0: positive)

-1 | reference step

reuse level tag

Table 2: Encoding for 16-bit reuse level

as shown in Figure 4 at the exit of each loop. The function expires those reuse levels which are
no longer valid.

Second, the reuse level of a reference usually does not span the whole sub-space of the
reference. In the locality graph shown in Figure 3(b), we notice that the spatial reuse of A[I,J]
occurs only when I is odd, given a cache line size of two words and A[1,]] is aligned on the
cache line for all J. If we know the starting address of each array reference, loop unrolling can
produce array references with and without spatial locality. Our implementation uses another
method to resolve this problem. At run time, we know the cache block size and exactly where a
memory block will be mapped into a cache line. This information and the access pattern of an
array reference are usually enough to decide if there is spatial reuse. For example, for the A[L,J]
we just mentioned, we know the next access to array A is A[I+1,J]. Hence we can be sure the
reference A[L,J] will have no spatial reuse across the I loop if it is mapped into the last word of
a cache line. For a given array reference whose indices are all affine expressions, the compiler
discovers the pattern of spatial reuse and encodes it into the corresponding instruction.

In our implementation, we consider only arrays with the least significant index in the form
of a x I + b, where [ is the loop induction variable, and a and b are constants. We also assume
that the loop step of the induction variable I is a constant s. Let p be the word position of
the reference in the cache line, [ be the cache line size, e be the element size in the number of

10



reuseLevelGeneration()

{

for each perfect nest whose outermost loop is at level j {
for each array reference 7 in the nest {
reuseLevel = 0;
for each loop at level ¢ enclosing the reference r {
if » has temporal reuse across the loop
set the (642*i)th bit of its reuseLevel to 1
if » has spatial reuse across the loop
set the (54+2*i)th bit of its reuseLevel to 1
set the value of 1-5th bit by the reference step and its sign of r
if r has cross-nest reuse then
set the (642%j)th bit of its reuseLevel to 1

set the Oth bit to 1

}
}
}

Figure 5: 16-bit Reuse-level Generation

words, and a * s be the reference step. If a x s is positive, the reference has self-spatial reuse
whenp <l —axs*e. If p> —a+*sxeand a* s is negative, the reference also has self-spatial
reuse. Similar techniques resolve group-spatial reuse. The predicated instructions in the Intel
TA64 can easily implement this feature, but other architectures need ISA changes.

The update() function in Figure 4 can help to reduce the side effects of miss-prediction for
both spatial and temporal reuse, because it expires the prediction of reuse in a loop after the
execution of the loop. If only a small percentage of predictions are not correct, they will expire
sooner or later, and so will not affect the miss rate too much. In the example code, we notice
that the temporal reuse of B[I-1,J] exists for all J except J=N-1. The miss-predictions at J=M-1
are insignificant. However, loop peeling can single out this case. If we peel off the last iteration
of J loop, then B(I-1,J) has no temporal reuses in the peeled iteration. This technique is not
currently implemented in our system.

Assuming that we have an unlimited auxiliary number of bits in each cache line and that
instruction length is also unlimited, we can easily encode reuse levels into load or store instruc-
tions. But this implementation is impractical in any real architecture. The simulator we use
supports 16-bit annotation. We use all 16 bits to investigate an upper bound on our technique.
Figure 5 shows our algorithm for using these bits. The function of each bit is shown in Table 2.
The encoding assumes that the deepest level of a loop nest is 4, which is appropriate for most
applications. The temporal bit of loop level ¢ also functions as a cross-nest temporal reuse bit
for a nest whose outermost loop is at level ¢ + 1.

Now the implementation of the update(int 1) function needs to set the temporal and spatial
bit at level [ to 0. Bit 0 is set when the compiler can determine the reuse levels of a reference.
Now the Prediction algorithm can make cache replacement decision simply based on the value
of reuse levels associated with each cache line. It always evicts the cache line with the smallest
reuse level. A special case is when the reuse level of a cache line is 0, the eviction is based on its
access order as in LRU. Here our implementation is more aggressive than the formal definition
of the Prediction algorithm in Section 4. In the implementation, we keep each cache set in its

11



PROGRAM SimplifiedJacobi
PARAMETER (N=1000, M=1000)
REAL A(M, N), B(M, N)

DO J =2, N-1
DOTI=2 M1
A(L J)<oxoas3> = (B(I-1, J)<oxoes3> +
B(I+1, J)<ox0ess> +
B(IL, J-1)<oxo0483> +
B(L,J+1)<oxo0683> )/4
ENDDO
call UPDATE(2)
ENDDO

call UPDATE(1)

DO J = 2, N-1

DOT =2, M-1
B(I, J)<oxo0403> = A(I, J)<0x0403>

ENDDO
call UPDATE(2)

ENDDO

call UPDATE(1)

END

Figure 6: Reuse levels for the sample program

LRU ordering. When there is a miss in a set, the last line of the set is replaced if its reuse level is
0, which means that compiler does not known its reuse level. Otherwise, the algorithm chooses
the line with the smallest reuse level.

Figure 6 shows the program in Figure 3(a) with 16-bit reuse levels, which are listed in
hexadecimal form. We use reference B(I+1, J) ~gx0es3> as an example to explain our algorithm.
B(I+1,J) has both spatial and temporal reuse at loop level 2 (the I loop), so the 10;, and 114,
bits of its reuse level are set to 1. Note that after the I loop finishes its execution, update(2) is
executed which sets those two bits to 0 and thus expires the prediction. B(I+1,J) has temporal
reuse at loop level 1 (the J loop), so the 9y, bit is set to 1. It also has cross-nest reuse and the
outermost loop of the nest is at level 1, so the 8, bit is set to 1. Obviously, B(I41,J)’s reference
step is positive and its value is 1, so bit 1 to bit 5 are set to 1. Bit 0 is set because compiler
knows all reuses of the reference.

5.3 Evict-Me: 1-Bit Encoding

In Section 5.2, we use 16 auxiliary bits for each cache line. This will lead to a complicated
cache comparison logic and long access latency. The cost of the update function is also very
high. There are two ways to cope within our model. One is to implement it in lower-level
caches where the cost of extra reuse level bits and the comparison latency are relatively low.
The other is to simplify the model and apply it in high-level caches. In our model, we use a
one-bit (EM) evict-me tag. If the bit of a block is set, the replacement algorithm will prioritize
to choose that block to replace a miss. Otherwise, it follows the standard LRU policy. For a
w-way set-associate cache, a naive method need logw bits to keep LRU history as a pointer
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2-way Miss Rate(%) | Percentage | 4-way Miss Rate(%) | Percentage | EM(2)/ | Percentage of | Percentage of
Program LRU EM Improved | LRU EM Improved | LRU(4) Static EM | Dynamic EM
VPENTA 24.87 24.31 2.22 | 25.75 23.98 6.86 0.94 44.60 11.27
TOMCATV 1.77 1.49 15.74 1.70 1.37 19.62 0.88 10.79 2.01
SWIM 3.48 3.48 0.07 3.58 3.47 3.10 0.97 11.79 3.13
JACOBI 5.57 5.57 0.00 5.57 5.56 0.99 1.00 25.0 4.17
ERLEBACHER 1.00 0.99 0.85 1.00 0.99 0.85 0.99 8.91 1.25
ARC2D 4.41 4.34 1.48 3.70 3.68 0.44 1.17 6.00 2.23
APPSP 2.99 2.93 1.84 3.14 3.13 0.34 0.98 5.29 4.72

Table 3: Comparison of LRU and EM on Seven Programs for 32k Caches

for each cache line. LRU evicts the cache line with the largest pointer value. With the EM
policy, the EM bit is added to each pointer as the most significant bit and the replacement logic
remains the same. The compiler generates special-purpose instructions to set the EM bit and
thus explicitly control cache replacement. Theorem 3 tells us if the tagged blocks in a set are
always reused later than the blocks without tags, we can at least match the hit rate of LRU.
Intuitively, we want to tag the data that has poorest locality.

A simple heuristic algorithm is to tag the array references which are not reused in the
following nests. Assume the total number of references in a program is ¢t. The algorithm
sets up two reuse levels, [1,¢] and [t + 1,+00]. Following the definition in Section 4, we have
[1,t] < [t + 1,+00]. A more aggressive algorithm follows Theorem 4.

Theorem 4. In a w-way set-associative cache, if the number of distinct references mapped
into the same set between a reference and its reuse is greater than w, then evicting the first
reference in the next replacement will not degrade the overall LRU hit rate.

Proof. See the Appendix.[J

We can design an algorithm which sets the EM tag when accessing a reference if it knows
its following reuse is far away enough. By Theorem 4, the replacement to the tagged block will
not hurt the LRU hit rate, whereas the new replacement can possibly lead to one more hit by
keeping in cache the block which would be evicted by the LRU policy. Accurately counting the
number of distinct references mapped to a specific cache set is impossible at the early phases of
compile time when the starting memory addresses of arrays are unknown, although optimization
techniques can change the relative offset of two arrays [20]. Rather than count the number of
references mapped into one specific set, we can estimate the total number of references in a loop
nest at compile time. If the loop bounds of the nest are all constants and available at compile
time, we combine them with the BRSDs to compute the data volume. When the loop bounds
of a nest are unknown, we use a simple heuristic which assumes that the data volume of a nest
is greater than the cache size if it contains more than one level of loop nesting.

Now, we can estimate the total data volume between a reference and its reuse that crosses
loop nests. If it is greater than the cache size, then we predict that the number of distinct
references mapped into a set between the reference and its reuse will be greater the degree of
associativity. This intuition implies that Theorem 4 holds and leads to the algorithm in Figure 7.

The condition for setting the EM tags requires us to single out those references without
temporal and spatial reuse in a nest. Unfortunately, there are few references in real applications
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setEvictMeTag()

for each loop nest {
estimate the total data volume accessed in the nest
}

for each loop nest {
for each array reference a in the nest {
if @ has no temporal and spatial reuse in the nest
&& ( it is not referenced in the following nests
|| the reuse across nests whose volume
is greater than cache size)
set the EM tag of reference q;

Figure 7: Algorithm for setting EM tag

that satisfy this condition. For instance, in nest 1 of Figure 3(a), all references have static spatial
or temporal reuse, or both. We use the implementation described in Section 5.2 to resolve spatial
reuse. Now, at compile time, the EM tag of a reference is set when it has no temporal reuse
in its nest. We then need to encode its reference step into the corresponding instruction. At
runtime, the EM tag for a reference with spatial locality is set by the runtime environment only
after its spatial reuse is complete. In the program in Figure 3(a), we set the EM tags of A(I,J)
in both nests, the tag of B(I,J-1) in nest 1, and that of B(I,J) in nest 2, because these four
references have no temporal reuses and the total data volume of each nest is estimated to be
greater than the cache size.

6 Experimental Results

The experiments use the Scale compiler infrastructure developed by ALI group at the University
of Massachusetts. Scale accepts C and Fortran source code as input. The system translates
the source code into an intermediate high and low-level mixed representation called Scribble.
Scribble keeps the high-level program structure such as loop and array references and, at the same
time, the low-level operations. The analyses proposed in Section 4 and Section 5 are applied
to Scribble. The reuse levels or EM tags are annotated in Scribble through the Anonymous
annotation tool. The back-end translates Scribble to C with annotations of reuse levels or EM
tags. The annotations are implemented as special inline assembly instructions. We feed the C
code with assembly inline to SimpleScalar 2.0, an architecture simulator [7]. We updated the
SimpleScalar simulator to accept the special instructions. We also implement an 8-way fully
associative victim cache. In our simulation results, we do not show the cycles because the cycle
count in this version of SimpleScalar is accurate only when the memory system is lightly utilized
[3]. The simulator reports accurate miss counts.

The last two columns of Table 3 list the percentage of static tags set by compiler and the
percentage of the tags used at run time for replacement decisions. Although, at runtime, fewer
than 12% of EM tags are used for cache replacement decision, we observe more than 12%
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improvement in our simulations. In Figure 8 thru 14, we show the normalized miss rate of
LRU, LRU with victim cache, EM, EM with victim cache, LRU on fully-associative cache, and
the 16-bit Prediction algorithm with cache sizes from 8k to 64K and a cache line size of 32
bytes.We observe that EM provides up to 45% improvement in the number of misses in Vpenta
for a 4-way 64K cache. This result is significant considering the minor architectural support we
need. We improve the miss rate of Swim, Tomcatv, and Jacobi by 10-20% in the best cases.
Appsp, Arc2d, and Erlebacher improve by 5-6% in best cases. EM never degrades the miss rate,
although the miss-predictions we mentioned in Section 5 could possibly degrade the miss rate.
Both EM and the 16-bit Prediction algorithm present significant improvements in certain cache
configurations but very minor ones in others. Generally, EM and the Prediction algorithm
reduce conflict misses. When the cache size is very big, there are few conflicts available for
them to resolve. When the cache size is very small, the conflicts become so intense that no
replacement algorithm can do well. The improvement is sensitive to the degree of associativity
and cache line size, because those factors affect the distribution of conflict misses. Increasing
the degree of associativity can reduce conflict misses and also give the EM algorithm and the
Prediction algorithm more flexibility. We expect the EM and Prediction algorithms to increase
their relative performance, as compared to LRU, in proportion to the increase in the degree of
associativity when associativity is small. An interesting comparison between the EM algorithm
for a 2-way cache and the LRU algorithm for a 4-way cache is illustrated in column 8 in Table 3.
In six out of seven programs, 2-way EM is either much better than or very close to 4-way LRU.
The only exception is Arc2d, where the increase of associativity significantly reduces the miss
rate. This result suggests that 2-way EM is probably a good idea considering the complexity
and the hit cycle latency of a 4-way cache. The results of the 16-bit Prediction algorithm in
4-way caches are also shown in the figures. We notice that the 16-bit Prediction algorithm
can further improve miss rate in some cases. In particular, for Vpenta and Swim at 64k, it
accomplishes more than 20% improvement even compared with 4-way EM. This result means
there is still some room for the compiler to improve, although we observe that the one-bit EM
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is sufficient in most cases. Compared with fully associative cache, we notice that both victim
cache and EM cache can attack certain capacity misses. There are a number cases where the
two strategies beat fully-associative LRU. However, we would rather attribute the results to the
loose definition of capacity misses. Victim caches do a great work in Tomcatv and Swim when
cache size is small. However, in Jacobi, victim caches have no effects at all, but EM shows 16%
improvement at 8K. A further observation is that the two strategies can work together. For
example, the miss rate is reduced from 8.9%, when applying victim cache only, to 6.4%, when
applying both. Our results show that putting the two strategies together always dominate using
only one of them.

7 Conclusions

In this paper, we have developed a theoretical model for static compilation analysis to direct
cache replacement and prove that it is at least as good as using the LRU algorithm. We present
and implement 16 and 1-bit versions of our algorithm. We demonstrate that the 1-bit version
is practical enough to implement in current set-associative level 1 caches. Furthermore, our
simulation results show that our technique consistently improves miss rates when compared to
the LRU replacement algorithm. In the future, we want to investigate applying this technique
to non-numerical programs.
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Theorem 3. For the same cache configuration (same degree of associativity and same block
size), at each reference point, if there is an LRU hit, there is also a Prediction hit.

Proof. The proof is based on the trace we defined at the beginning of Section 5.1.

Say that we are working on a w-way set associative cache. Assume, for contradiction, that

at reference alf;(’ip there is a miss for Prediction algorithm and a hit for LRU. Let abii “;’ " b
1 J

the nearest reference to the same block address where j < i. We know that f(i) = f(j).

Claim 1: There are no more than w distinct references mapped into the same set between
<]73j> <i,s,‘> 3
ay. and ap. included.
To simplify the discussion, assume that each block in a set is aged from 1 to w by the access
order. The block with the smallest order has age w, the one with the largest order has age 1.

With the LRU algorithm, the block with age w is evicted when there is a miss. At the time

when a:f]( ’ij ~ s brought into the cache, its age is 1. Assume for contradiction that at least w
J . .

distinct references are different from by ;) between ab<f] ’,57> and aél(’ip are mapped into the same

J 7

set. All those w references have greater order than that of by(;), so each reference will increase
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the age of by(;) by 1. Thus, when we access the w — 14, reference of that kind, b;(;) has age w.

The access to the wyy, reference of that kind will evict by(;), and no reference will bring by(;) back

because alffi(’,s)p is the most recent reference to block bf(j). This contradicts the hit at aﬁ(’ip .

Next assume that there is an age between 1 and w associated with each block in the list
defined for Prediction cache in Section 4.1. The ages of the blocks are consistent with the
ordering of the list. The < order, reuse level > pair of the block at age 1 is smaller in < ordering
than the pair of the next block in the list, and so on. We let ¢; denote the time when the i,
reference gets accessed and assume after time At, the access completes. We have ¢; + At < t;41
for all i.

Say now that by(;) has age m at time ¢; + At. Because we have a miss of a,ffi(’_‘;p at time ¢;,
there exists a reference a;’;’jp at time tx, for some j < k < ¢, which is also a miss and by ;)

<k—1,5p-1>
by (k1)
Claim 2: All addresses in the cache set at time t;_; + At are referenced at least once between

time t; and ¢;.

Let 751,752, .-y Tjm—1,Tjm, - Tjw De the block addresses in the cache set at time t; + At
and 741,72, ..., Tk,w be those at time ¢;_; + At, where the second subscript denotes the age of
the corresponding address. We know that 7., = 74, = f(j). Let U = {rj1,7j2,..,7jm—1} N
{Tk,l, TE,25 0y oy Tk,w}-

First, all addresses in S = {ry 1,742, .-, -, "k,w } — U must be referenced between time ¢; and
tr_1 + At. Assume, for contradiction, that r; € S is not referenced during this period, then
r; € S must be referenced before time ¢;, and must be in the cache set at time ¢; since it is in
the cache set at time ¢ + At. Then since r; is not in {r;1,rj2,...,7jm—1} because it is in S,
it has an older age than that of by(;) at time ¢; + At. No reference can change this relationship
unless the two references themselves are accessed again between time t; + At and #;_;1. Note
that bf(j) has age w at time t; 1 + At. 7, must be evicted before time t; ; since it is older.
Then it can not be in the set at time t;_; + At, contrary to assumption.

Second, all references in U must be referenced between time t; and ¢;. Notice that all
references in U have < order, reuse level > pairs < that of by(;) at time ¢; + At just after by ;)
is brought into cache. Since the orders of these references are less than j, by the definition of
relation <, they must have smaller reuse levels which means they will be referenced before the
next reference to by(;), which occurs at time ¢;.

The references in the w-block set at time t;_; + At are distinct. Furthermore, the reference
by(r) is distinct from the blocks in the set since it is a miss. The total number of distinct
references mapped into the set between time ¢; and ¢; are at least w + 1. Contradiction. [

Theorem 3 tells us that the Prediction algorithm is at least as good as the LRU algorithm
at any reference point. So if we can find a reuse level for each reference point, we expect to
improve upon the LRU algorithm.

Observation. Note that we do not care about the concrete range of the reuse levels in the
proof. The only point used in the proof is that the reuse levels are comparable and their
semantics should hold, i.e., if one reuse level is less than the other, then the address with the
smaller reuse level should be accessed sooner than the other one.

Theorem 4. In a w-way set-associative cache, if the number of distinct references mapped

has age w when the reference a completes.
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into the same set between a reference and its reuse is greater than w, then evicting the first
reference in the next replacement will not degrade the overall LRU hit rate.

Proof. Let’s say we are working on a w-way set associative cache and a program trace P.
We focus on a specific cache set C. Assume that sub-trace aZ;(l),aZ;(z), ...,ai;‘(n) is the largest
subset of P mapped into set C in its original order. by(;) is the 7 block mapped into C, and
its block address is f(i). s; is the EM tag going with the access. In particular, s; = 0 means
it is a regular access; s; = 1 means the block’s EM tag gets set after this access. Following the

condition of the theorem, we have the following assertion,
Assertion: If s; = 1, then j — i > w for any access by(;) where f(j) = f(i) and j > i.

Now we prove that for any access aZ; 0 in the sub-trace, if LRU results in a hit, then there
is a hit for EM at this access. Assume that we get an LRU hit at azj i Let access ay’ ) be the
closest reference to block by ;) where ¢ < j. Since it is an LRU hit, we have j —i <= w (We
showed proved this in the proof of Theorem 3). Now s; = 0 follows the assertion. Since s; = 0,
the EM algorithm can at most increase the age of by(;) by 1 at each following reference. So at
access aZ; (;-1_1)’ the age of by(;) should be less than w. EM algorithm will leads to a hit at aZ; .
O
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