
Proxy-based Distribution of Streaming Video
over Unicast/Multicast Connections1

Dept. of Computer Science
University of Massachusetts
Amherst, MA 01003

{bing,sen,micah,towsley}@cs.umass.edu

Abstract— In this paper, we address the problem
of efficiently streaming a set of heterogeneous videos
from a remote server through a proxy to multiple asyn-
chronous clients so that they can experience playback
with low startup delays. We develop a technique to an-
alytically determine the optimal proxy prefix cache al-
location to the videos that minimizes the aggregate net-
work bandwidth cost. We integrate proxy caching with
traditional server-based reactive transmission schemes
such as batching, patching and stream merging to de-
velop a set of proxy-assisted schemes. We then quanti-
tatively explore the impact of the choice of transmission
scheme, cache allocation policy, proxy cache size, and
availability of unicast versus multicast capability, on
the resultant transmission cost. Our evaluations show
that even a relatively small prefix cache (10%-20% of
the video repository) is sufficient to realize substantial
savings in transmission cost. Carefully designed proxy-
assisted reactive transmission schemes can produce sig-
nificant cost savings even in predominantly unicast en-
vironments such as the Internet.

I. INTRODUCTION

The emergence of the Internet as a pervasive com-
munication medium, and a mature digital video tech-
nology have led to the rise of several networked
streaming media applications such as live video broad-
casts, distance education, corporate telecasts, etc.
However, due to the high bandwidth requirements and
the long-lived nature (tens of minutes to a couple
of hours) of digital video, server and network band-
widths are proving to be major limiting factors in the

1This research was supported in part by the National Science
Foundation under NSF grants EIA-0080119, NSF ANI-9973092,
ANI9977635, and CDA-9502639. Any opinions, findings, and
conclusions or recomendations expressed in this material are those
of the authors and do not necessarily reflect the views of the fund-
ing agencies.

widespread usage of video streaming over the Internet.
This is further complicated by the fact that the client
population is likely to be large, with different clients
asynchronously issuing requests to receive their cho-
sen media streams. Also different video clips can
have very different sizes (playback bandwidths and
durations) and popularities. In this paper, we address
the problem of efficiently streaming a set of heteroge-
neous videos from a remote server through a proxy to
multiple asynchronous clients so that they can expe-
rience playback with low startup delays. Before pre-
senting the main contributions, we discuss some key
challenges and limitations of existing techniques in
reaching this goal.

Existing research has focused on developing reac-
tive transmission schemes that use multicast or broad-
cast connections in innovative ways to reduce server
and network loads, for serving a popular video to mul-
tiple asynchronous clients. The techniques are reac-
tive in that the server transmits video data only on-
demand, in response to arriving client requests. Batch-
ing, patching and stream merging belong to this cat-
egory. In batching, the server batches requests that
arrive close together in time [1], and multicasts the
stream to the set of clients. In patching or stream
tapping [2–4], the server streams the entire video se-
quentially to the very first client. A later client re-
ceives (part of) its future playback data by listening to
an existing ongoing multicast of the same video, with
the server transmitting afresh only the missing prefix.
Stream merging [5] is a related technique where all
streams (complete and prefix) are transmitted using
multicast, and clients can patch onto any earlier mul-
ticast stream.

2

An underlying requirement for the above schemes
is the existence of multicast or broadcast connectiv-
ity between the server and the clients. However, IP
multicast deployment in the Internet has been slow
and even today remains severely limited in scope and
reach. Therefore, transmission schemes that can sup-
port efficient delivery in such predominantly unicast
settings need to be developed. In addition, with the ex-
isting schemes, data still has to traverse the entire end-
end path from the server to the clients, and network
delays can cause substantial playback startup delays
at the clients.

An orthogonal technique for reducing server loads,
network traffic and access latencies is the use of proxy
caches. This technique has proven to be quite ef-
fective for delivering Web objects. However, video
files can be very large, and traditional techniques for
caching entire objects are not appropriate for such me-
dia. Caching strategies have been proposed in recent
years [6–9], that cache a portion of a video file at the
proxy. In particular, caching an initial prefix of the
video [7] has a number of advantages including shield-
ing clients from delays and jitter on the server-proxy
path, while reducing traffic along that path. However,
existing research has, for the most part, been in the
context of unicast delivery of a separate stream to each
client. Recent work [10–13] combines caching with
scalable video transmission. However, the focus has
mostly been on transmitting a single video or using
non-reactive schemes such as periodic broadcast [12].
To the best of our knowledge, there has been no sys-
tematic evaluation of the resource (proxy cache space
and transmission bandwidth) issues in techniques that
combine proxy prefix caching with reactive transmis-
sion for delivering multiple heterogeneous videos.

In this paper, we explore the combination of proxy
prefix caching with proxy-assisted reactive transmis-
sion schemes to reduce the transmission cost over
multiple heterogeneous videos. Integrating the two
techniques has the potential to realize the bandwidth
efficiencies of both approaches, while also masking
network delays from clients. In patching, for instance,
the initial parts of the video are transmitted more
frequently than the later parts, suggesting that pre-

fix caching would be particularly effective for band-
width reduction. Ideally, a proxy-assisted transmis-
sion scheme should be incrementally deployable and
be able to work with existing unicast-based servers.
We address the following questions in this paper:

• What are suitable proxy-assisted reactive trans-
mission schemes?

• For a given transmission scheme, what is the op-
timal proxy prefix caching scheme that minimizes
the transmission cost?

• What are the resource (proxy cache space and
transmission bandwidth) tradeoffs for the differ-
ent transmission schemes?

A. Contributions

The following are the main contributions of this
work:

• We develop a generalized allocation technique for
analytically determining the solution to the sec-
ond question posed above. It is general in that
it applies to any reactive transmission scheme. It
is transmission-scheme aware in that the alloca-
tion is based on the transmission cost of a given
scheme.

• Starting from traditional reactive transmission
schemes, we develop corresponding schemes that
use proxy prefix caching as an integral part for
bandwidth-efficient delivery in Internet-like en-
vironments, where the end-end network connec-
tions provide unicast-only service, or at best of-
fers multicast capability only on the last mile
proxy-client path.

• We use the optimal cache allocation technique
in conjunction with the developed transmission
schemes to quantitatively explore the impact of
the choice of transmission scheme, cache allo-
cation policy, proxy cache size, and availabil-
ity of unicast versus multicast capability, on the
resultant transmission cost. We develop guide-
lines for aggregate proxy cache sizing, and iden-
tify the combination of transmission and caching
schemes that provides the best performance under
different scenarios.

3

Fig. 1. Streaming video in the Internet: The video stream
originates from a remote server and travels through the
network to the end client. The proxies performing pre-
fix caching are located close to the clients, e.g., at the
head-end of the local access network.

The remainder of the paper is organized as follows.
Section II presents the problem setting, and introduces
key concepts and terminology used in the remainder
of the paper. Section III presents our optimal proxy
prefix caching technique. Section IV presents a set
of proxy-assisted reactive transmission schemes. Our
evaluations are presented in Section V. Finally, Sec-
tion VI concludes the paper and describes ongoing
work.

II. PROBLEM SETTING AND MODEL

Consider a group of clients receiving videos
streamed across the Internet from a server via a sin-
gle proxy (Fig. 1). We assume that clients always re-
quest playback from the beginning of a video. The
proxy intercepts the client request and, if a prefix of
the video is present locally, streams the prefix directly
to the client. If the video is not stored in its entirety at
the proxy, the latter contacts the server for the suffix of
the stream, and relays the incoming data to the client.
In today’s Internet, the network route from the

server to the client often traverses multiple ISP do-
mains, and predominantly uses unicast delivery, since
IP Multicast is not widely deployed. We note that
while many-to-many inter-domain multicast has been
slow to be deployed, one-to-many intra-domain multi-
cast (as would be used in an enterprise or cable/DSL-
based last-hop network video server) is much sim-

pler to deploy and manage [14]. We therefore as-
sume that the server-proxy network path is unicast-
enabled, while the network paths from the proxy to
the clients are either unicast or multicast/broadcast en-
abled. Since the proxy is located close to the clients,
we assume the bandwidth required to send one bit to
multiple clients using multicast/broadcast is still one
bit. Finally, for simplicity of exposition, we focus on
a single server and a single proxy. The multiple-proxy
case is discussed in Section VI.

A. Model

We next provide a formal model of the system, and
introduce notation and key concepts that will be used
in the rest of the paper. Table I presents the key pa-
rameters in the model.
We consider a server with a repository of N

Constant-Bit-Rate (CBR) videos. We assume the ac-
cess probabilities of all the videos and the aggregate
access rate to the video repository are known a priori.
In a real system, these parameters can be obtained by
monitoring the system. Without loss of generality, we
number the videos in non-increasing order of their ac-
cess probabilities. Let fi be the access probability of
video i,

∑N
i=1 fi = 1. fi measures the relative popu-

larity of a video: every access to the video repository
has a probability of fi requesting video i. Let λi be the
access rate of video i and λ be the aggregate access
rate to the video repository, λi = λfi, 1 ≤ i ≤ N .
We introduce a caching grain of size u to be the

smallest unit of cache allocation and all allocations are
in multiples of this unit. It can be one bit or 1minute’s
worth of data, etc. We express the size of video i and
the proxy cache size as a multiple of a caching grain.
Video i has playback bandwidth bi bps, length Li sec-
onds, and size ni units, niu = biLi. We assume that
the proxy can store S units and S ≤

∑N
i=1 ni. The

storage vector v = (v1, v2, · · · , vN) specifies that a
prefix of length vi seconds for each video i is cached
at the proxy, i = 1, 2, · · · , N . Note that the videos
cached at the proxy cannot exceed the storage con-
straint of the proxy, that is,

∑N
i=1 bivi ≤ uS. Let cs

and cp respectively represent the costs associated with
transmitting one bit of video data on the server-proxy

4

path and on the proxy-client path. Our goal is to de-
velop appropriate transmission and caching schemes
that minimize the mean transmission cost per unit time
aggregated over all the videos in the repository, i.e.,
∑N

i=1 Ci(vi), whereCi(vi) is the transmission cost per
unit time for video iwhen a prefix of length vi of video
i is cached at the proxy. In the rest of the paper, unless
otherwise stated, we shall use the term transmission
cost to refer to this metric.
For simplicity of exposition, we ignore network

propagation latency. All the results can be extended
in a straightforward manner when network propaga-
tion latency is considered VI. On receiving a client
request for a video, the proxy calculates a transmis-
sion schedule based on the predetermined transmis-
sion scheme. This transmission schedule specifies, for
each frame in the video, when and on what transmis-
sion channel (unicast or multicast connections) it will
be transmitted by the proxy. The proxy also deter-
mines and requests the suffix from the server. A re-
ception schedule is transmitted from the proxy to the
client. It specifies, for each frame in the video, when
and from which transmission channel the client should
receive that frame. Note that a client may need to re-
ceive data from multiple transmission channels simul-
taneously. Frames received ahead of their playback
times are stored in a client-side workahead buffer. For
simplicity, we shall assume the client has sufficient
buffer space to accommodate an entire video clip. Fi-
nally note that, in our approach, the server only needs
to transmit via unicast a suffix of the video requested
by the proxy. Our delivery techniques are therefore
incrementally deployable as these can work with ex-
isting predominantly unicast-based media servers, in
the context of existing streaming protocols such as
RTSP [15], and require no additional server-side func-
tionality.

III. OPTIMAL PROXY CACHE ALLOCATION

In this section, we discuss how to determine the
storage vector that minimizes the aggregate trans-
mission cost for a given proxy-assisted transmission
scheme. We first study the optimal allocation of
videos to a proxy when each video can either be

cached in its entirety or not at all at the proxy (opti-
mal 0-1 caching) and when caching a prefix is allowed
(optimal prefix caching). Optimal 0-1 caching can be
easily modeled as a 0-1 knapsack problem. For op-
timal prefix caching, we propose a general technique
to determine the optimal proxy prefix cache allocation
for any given proxy-assisted transmission scheme.
For a given transmission scheme, the average trans-

mission cost per unit of time for video i, Ci(vi), is
a function of the prefix vi cached at the proxy, 0 ≤
vi ≤ Li. We make no assumption regarding Ci(vi);
it may not exhibit properties such as monotonicity or
convexity. For some transmission schemes, there may
not even exist a closed-form expression for Ci(vi). In
this case we assume that this value can be obtained by
monitoring a running system.

A. Optimal 0-1 caching

According to this policy, videos are either stored en-
tirely or not at all at the proxy. That is, vi equals either
0 or Li. Let si = Ci(0) − Ci(Li). Storing video i
entirely at the proxy saves si in the transmission cost
over storing nothing of video i at the proxy. We can
model this problem as a 0-1 knapsack problem: there
are N videos to be put into a knapsack (proxy) with
size of S units (recall that a caching grain is regarded
as a unit). The savings afforded by placing video i
into the knapsack is si. The goal is to determine how
to cache the videos so that the savings thus obtained is
maximized, and hence the aggregate transmission cost
is minimized.
In the case of all the transmission schemes dis-

cussed in Section IV, the allocation under optimal 0-1
caching policy is obtained using dynamic program-
ming for 0-1 knapsack problem [16]. The running
time of the algorithm is O(NS), whereN is the num-
ber of videos in the video repository and S is the proxy
cache size.

B. Optimal prefix caching

According to prefix caching policy, prefixes of
videos are stored at the proxy, that is, 0 ≤ vi ≤ Li.
Recall that we use a caching grain u as the smallest
unit of cache allocation (see Section II). The size of

5

Parameter Definition
N Number of videos
Li Length of video i (sec.)
bi Mean bandwidth of video i (bits per sec.)
u Caching grain
ni Size of video i (units)
fi Access probability of video i
λi Request rate for video i
λ Aggregate request arrival rate
S Proxy cache size (units)
vi Length (sec) of cached prefix for video i
v Storage vector, v = (v1, v2, · · · , vN)
cs Transmission cost on server-proxy path (per bit)
cp Transmission cost on proxy-client path (per bit)
Ci(vi) Transmission cost per unit time for video i

when a prefix of length vi for video i is cached

TABLE I
PARAMETERS IN THE MODEL.

video i is ni units and the size of the proxy is S units.
Let Ai = {mi | 0 ≤ mi ≤ ni} denote the set of pos-
sible prefixes for video i, where mi units is the size
and miu/bi seconds is the length of a possible prefix
of video i. Let saving(mi) denote the saving in trans-
mission cost when caching an mi-unit prefix of video
i over caching no prefix of the video at the proxy, i.e.,
saving(mi) = Ci(0) − Ci(miu/bi). Our goal is to
maximize the aggregate savings and, hence, minimize
the aggregate transmission cost over all the videos.
The optimization problem can therefore be formulated
as :

maximize:
N∑

i=1

saving(mi)

s.t.
N∑

i=1

mi ≤ S, mi ∈ Ai

Note that this formulation is a variant of the 0-1
knapsack problem, where the items to be placed into
the knapsack are partitioned into sets and at most one
item from each set can be chosen. We next use the fol-
lowing dynamic programming algorithm to determine
the optimal allocation.
Let B be a two-dimensional matrix, where entry

B(i, j) represents the maximum saving in the trans-

mission cost when using videos up to video i (0 ≤
i ≤ N) and j (0 ≤ j ≤ S) units of the proxy cache.

B(i, j) =
{

0, i = 0
max{B(i − 1, j), B′(i, j)}, i > 0

where

B′(i, j) = max
∀mi∈Ai

{B(i − 1, j − mi) + saving(mi)}

This matrix is filled in row-order starting from
B(0, j), j = 0, · · · , S. The valueB(N, S) is the max-
imum saving in transmission cost when all N videos
have been used. The minimum transmission cost is

N∑

i=1

Ci(0) − B(N, S)

since the saving is relative to storing nothing at the
proxy. The optimal cache allocation can now be com-
puted as follows. For each entry, we store a pointer
to an entry from which this current entry is computed.
By tracing back the pointers from the entry B(N, S),
the optimal allocation is obtained.
The execution time of the algorithm is O(NSK),

where K = max1≤i≤N |Ai|. If the caching grain is

6

increased by a factor of k, both the number of columns
in matrix B and the cardinality of Ai (1 ≤ i ≤ N) are
reduced by a factor of k. Therefore the complexity
is reduced by a factor of k2. In Section V, we shall
examine the impact of the choice of caching grain on
the resultant transmission cost.

IV. PROXY-ASSISTED TRANSMISSION SCHEMES

In this section, we develop a set of reactive transmis-
sion schemes that use proxy prefix caching as an inte-
gral part for bandwidth-efficient delivery in Internet-
like environments, where the end-end network con-
nections provide unicast-only service, or at best of-
fers multicast capability on the proxy-client path. For
each scheme, we develop a closed-form expression for
the transmission cost Ci(vi) associated with video i,
1 ≤ i ≤ N . The transmission cost Ci(vi) is used
in Section III to determine the proxy cache allocation
for each video that minimizes the aggregate transmis-
sion cost. The transmission schemes we propose are
completely general and apply to any sequence of client
arrivals. However, we shall assume a Poisson arrival
process for analyzing the transmission costs. Our on-
going work shows that Poisson arrival is a reasonable
and conservative assumption for reactive schemes. A
similar conjecture is presented in [17].

A. Unicast suffix batching (SBatch)

SBatch is a simple batching scheme that takes ad-
vantage of the video prefix cached at the proxy to pro-
vide instantaneous playback to clients. This scheme
is designed for environments where the proxy-client
path is only unicast-capable.
Suppose the first request for video i arrives at

time 0. The proxy immediately begins transmit-
ting the video prefix to the client. SBatch schedules
the transmission of the suffix from the server to the
proxy as late as possible, just in time to guarantee
discontinuity-free playback at the client. That is, the
first frame of the suffix is scheduled to reach the proxy
at time vi, the length of the prefix. For any request
arriving in time (0, vi], the proxy just forwards the
single incoming suffix (of length Li − vi) to the new
client, and no new suffix transmission is needed from

prefix suffix threshold

from proxy

0

 from server

from ongoing stream

Time

Fig. 2. Unicast patching with prefix caching (UPatch).

the server. In effect, multiple demands for the suffix
of the video are batched together. Note that in con-
trast to traditional batching, SBatch does not incur any
startup playback delay. Assuming a Poisson arrival
process, the average number of requests in time [0, vi]
is 1 + viλi. These requests incur only one transmis-
sion of the suffix [vi, Li] from the server. The average
transmission cost for delivering video i is

Ci(vi) = (cs
Li − vi

1 + viλi
+ cpLi)λibi

where the first and the second term in the sum corre-
sponds to the server-proxy and proxy-client transmis-
sion cost respectively.
When vi = 0 (vi = Li), video i is transmitted from

the server (proxy) using unicast, since it is impossible
to batch multiple requests.

B. Unicast patching with prefix caching (UPatch)

SBatch can be further improved by using patching
for the suffix. Note that here we use patching in the
context of unicast. This is possible because the proxy
can forward one copy of data from the server to mul-
tiple clients.
Suppose that the first request for video i arrives at

time 0 and the suffix reaches the proxy from the server
at time vi, as shown in Fig. 2. Suppose another client’s
request for video i comes at time t2, vi < t2 < Li.
The proxy can schedule a transmission of the com-
plete suffix at time t2 + vi from the server. Another
option is to schedule a patch of [vi, t2) of the suffix

7

from the server since segment [t2, Li] has already been
scheduled to be transmitted. Note that this patch can
be scheduled at time t2 + vi so that the client is still
required to receive from at most two channels at the
same time. The decision to transmit a complete suffix
or a patch depends on a suffix threshold Gi, measured
from the beginning of the suffix. If one request arrives
withinGi units from when the nearest complete trans-
mission of the suffix was started, the proxy schedules
a patch from the server for it. Otherwise, it starts a
new complete transmission of the suffix. Assuming
a Poisson arrival process, between the initiations of
two consecutive transmissions of the suffix, the aver-
age number of requests is 1 + λi(vi + Gi). These re-
quests incur only one transmission of the suffix [vi, Li]
from the server. The total length of patches from the
server for these requests is

λiGi

∫ Gi

0
x/Gidx = λiG

2
i /2

This is because, the distribution of arrivals in time
interval [vi, vi + Gi] follows Uniform distribution in
a Poission arrival process. The average transmission
cost for video i is

Ci(vi) = csλibi
λiG2

i /2 + Li − vi

1 + λi(vi + Gi)
+ cpλibiLi

where the first and the second term corresponds to the
server-proxy and the proxy-client transmission cost
respectively.
The suffix threshold Gi is chosen to minimize the

transmission cost for video i for a given prefix vi. Fi-
nally, when vi = Li, video i is transmitted from the
proxy to clients using unicast.

C. Multicast patching with prefix caching (MPatch)

If the proxy-client path is multicast capable, the
proxy can use a multicast transmission scheme. We
describe MPatch, a patching scheme that exploits pre-
fix caching at the proxy.
Suppose the first request for video i arrives at time 0

(Fig. 3). Then the proxy starts to transmit the prefix of
the video via multicast at time 0. The server starts to
transmit the suffix of the video to the proxy at time vi

and the proxy transmits the received data via multicast
to the clients. Later requests can start a new complete
multicast stream or join the ongoing multicast of the
stream and use a separate unicast channels to obtain
the missing data. Let Ti be a threshold to regulate the
frequency at which the complete stream is transmitted.
Suppose a request arrives at t2 (0 < t2 ≤ Ti) units
after the beginning of the nearest ongoing complete
stream. Video delivery for this client can be classified
into the following cases depending on the relationship
of vi and Ti:

• Case 1: Ti ≤ vi ≤ Li. This is shown in
Fig. 3 (a). The client receives segment [0, t2] from
a separate channel via unicast from the proxy
and segment (t2, Li] via the ongoing multicast
stream. Assuming a Poisson arrival, the trans-
mission cost function in this case g1(vi, Ti) is
g1(vi, Ti) = λibi

1+λiTi
[(Li − vi)cs+

Licp + λiTi
2

2 cp]
This is computed by modelling the patching sys-
tem as a renewal process, since requests arriv-
ing more than Ti units after the previous com-
plete stream initiates a new complete stream. The
above computation is carried out over the interval
between the initiation of two complete streams.
In this interval, the average total length of patches
is λiTi

2

2 [4].
• Case 2: 0 ≤ vi < Ti. This is shown in Fig. 3 (b).
If 0 < t2 ≤ vi, then the transmission mecha-
nism is the same as in Case 1. If vi < t2 ≤ Ti,
the client receives segment [0, vi] from a sepa-
rate channel via unicast from the proxy and re-
ceives segment (t2, Li] via the ongoing multi-
cast stream. Segment (vi, t2] is transmitted from
the server to the client via the proxy using uni-
cast. Assuming a Poisson arrival, the trans-
mission cost function in this case g2(vi, Ti) is
g2(vi, Ti) = λibi

1+λiTi
[(Li − vi)cs + Licp

+λivi
2

2 cp + λi(Ti−vi)2

2 (cs + cp)]
Similar to Case 1, this computation is also carried
out over the interval between the initiation of two
complete streams. In this interval, the average to-
tal length of patches from the proxy is λiTi

2

2 . The

8

threshold

prefix

from proxy,unicast

0

from proxy, multicast

Time

(a) Case 1: Ti ≤ vi ≤ Li.

prefix

threshold

from proxy,unicast

0

from proxy, multicast

Time

 from server

(b) Case 2: 0 ≤ vi < Ti.

Fig. 3. Multicast patching with prefix caching (MPatch).

average total length of patches from the server is
λi(Ti−vi)2

2 . This is because the average number of
arrivals in this time interval is λi(Ti − vi) with
average length of patch of (Ti − vi)/2.

Let hk(vi) be the transmission cost function and the
minimum transmission cost in Case k, k = 1, 2. That
is,

hk(vi) = min
Ti

{gk(vi, Ti), 0 ≤ Ti ≤ Li}, k = 1, 2

For a given prefix vi, the average transmission cost
is

Ci(vi) = min{h1(vi), h2(vi)}

Finally, note that if video i is streamed entirely from
a single location (either the server or the proxy), the
MPatch transmission scheme reduces to Controlled
Multicast (CM) patching [4].

D. Multicast merging with prefix caching (MMerge)

The key issue in stream merging is deciding how
to merge a later stream into an earlier stream. Clos-
est Target [5] is one online heuristic merging pol-
icy whose performance is close to optimal offline
stream merging. This policy chooses the closest ear-
lier stream still in the system as the next merge target.
Our MMerge scheme integrates proxy caching and

stream merging. It uses the Closest Target policy to
decide how to merge a later stream into an earlier

stream. For a video segment required by the client,
if a prefix of the segment is at the proxy, it is transmit-
ted directly from the proxy to the client; the suffix not
cached at the proxy is transmitted from the server as
late as possible while still ensuring continuous play-
back at the client. Let pj be the probability of re-
quiring a j-second prefix per unit of time for video
i, 0 ≤ j ≤ Li. This can be obtained by monitoring
a running system. Then the average transmission cost
for video i is

Ci(vi) =
vi∑

j=1

jpjbicp +
Li∑

j=vi+1

(j(cp + cs)− vics)pjbi

where the first summation in the sum corresponds
to the case where the required prefix streams are no
longer than the prefix cached at the proxy, while the
second summation corresponds to the case where the
required prefix streams are longer than the prefix at the
proxy. Finally, note that if video i is streamed entirely
from a single location (either the server or the proxy),
MMerge reduces to Closest Target stream merging.

V. PERFORMANCE EVALUATION

In this section, we examine the resource tradeoffs
under the previously described caching and transmis-
sion schemes. We consider a repository of 100 CBR
video clips with access probabilities drawn from a
Zipf distribution with parameter θ = 0.271 [1]. For

9

simplicity, we assume all videos are two hours long,
and have the same bandwidth. We normalize the trans-
mission cost by both the video bandwidth and the
value of cs. That is, the normalized transmission cost
is

∑N
i=1 Ci(vi)/(csbi). Let ĉp = cp/cs. In this section,

we assume ĉp ∈ [0, 1]. Observe that ĉp = 0 corre-
sponds to cp = 0 and ĉp = 1 corresponds cp = cs. We
represent the proxy cache size as a percentage, r, of
the size of the video repository. We take 10 seconds
and 1 minute worth of data as the caching grain for
the optimal prefix caching. Our evaluation shows that
the transmission costs differ little for these two grains.
Therefore, we only provide results using the latter.
We first compare the transmission costs using opti-

mal prefix caching and optimal 0-1 caching. We then
investigate differences in transmission cost under opti-
mal prefix caching and a heuristic, Proportional Prior-
ity (PP) caching. In PP caching, the size of the proxy
cache allocated to a video is proportional to the prod-
uct of the size of the video and its access probabil-
ity, under the constraint that the allocated space is no
larger than the size of the video. PP caching takes ac-
count of both the popularity and the size of the video.
A similar heuristic is suggested in [13]. In our setting,
the size of proxy cache allocated to a video is propor-
tional to its popularity under PP caching since all the
videos are of the same size. For each scheme, we plot
the optimal proxy cache allocation across the videos
for small (r = 1%), medium (r = 10%) and large
(r = 50%) proxy caches.

A. Optimal prefix caching v.s. optimal 0-1 caching

The allocation under optimal 0-1 caching can be
solved as shown in Section III-A. When the length
and bandwidth of the videos are the same, the opti-
mal 0-1 scheme caches videos in the order of their
popularities. We find that optimal prefix caching sig-
nificantly outperforms optimal 0-1 caching for all the
schemes we examine. Fig. 4 plots the transmission
costs under the two caching schemes for UPatch and
MMerge when ĉp is 0 and the arrival rate λ is 100 re-
quests per minute. UPatch and MMerge under optimal
prefix caching results in substantially lower costs than
under optimal 0-1 caching across the range of proxy

0
200
400
600
800

1000
1200
1400
1600

0 5 10 15 20 25 30 35 40 45 50

Tr
an

sm
iss

io
n

Co
st

 (n
or

m
al

ize
d)

Proxy cache size (%)

UPatch, opt. 0-1
UPatch, opt. prefix

MMerge, opt. 0-1
MMerge, opt. prefix

Fig. 4. Normalized transmission cost v.s. proxy cache size,
λ = 100/min, ĉp = 0.

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45 50

Tr
an

sm
iss

io
n

Co
st

 (n
or

m
al

ize
d)

Proxy cache size (%)

SBatch, PP
SBatch, opt.
UPatch, PP

UPatch, opt.

Fig. 5. Normalized transmission cost v.s. proxy cache size,
λ = 100/min, ĉp = 0.

cache sizes. For instance, when the proxy cache is
20% of the size of the video repository, optimal prefix
caching reduces the costs over optimal 0-1 caching by
60% and 35% for UPatch and MMerge respectively.
We therefore focus on prefix caching for the rest of
the paper.

B. Transmission and caching schemes under unicast

We first investigate the transmission cost when the
proxy-client path is only unicast capable. Fig. 5 de-
picts the transmission cost as a function of r, when ĉp

is 0 and the aggregate arrival rate λ is 100 requests per
minute. The performance of SBatch and UPatch un-
der both PP and optimal prefix caching are plotted on

10

200
300
400
500
600
700
800
900

1000
1100
1200
1300

10 20 30 40 50 60 70 80 90 100

Tr
an

sm
iss

io
n

Co
st

 (n
or

m
al

ize
d)

Arrival rate (per min)

SBatch, PP
SBatch, opt
UPatch, PP

UPatch, opt.

Fig. 6. Normalized transmission cost v.s. arrival rate, r =
10%, ĉp = 0.

the graph. The percentage of reduction by using op-
timal prefix caching over PP caching increases as the
proxy size increases. When r = 20%, the reduction is
36% for SBatch and 21% for UPatch. Fig. 6 displays
the transmission cost as a function of the arrival rate.
We can see that the cost reduction using optimal pre-
fix caching over PP caching increases as the aggregate
arrival rate increases. The reason will become clear in
Section V-B.1.
We observe from Fig. 5 that a small amount of cache

at the proxy results in substantial cost savings for both
transmission schemes under optimal prefix caching.
For instance, with a proxy cache that is 10% of the size
of the video repository, the transmission costs reduce
to 88% and 48% of the corresponding costs without a
proxy cache for SBatch and UPatch respectively.
We find that UPatch substantially reduces cost over

SBatch under optimal prefix caching, particularly for
small and moderate proxy sizes (see Fig. 5). For in-
stance, when r = 1%, the reduction under UPatch
over SBatch is 74%. However, this is under the as-
sumption that the optimal threshold for UPatch can
be obtained. The choice of the threshold critically
impacts the cost savings for UPatch - an arbitrary
threshold value can result in performance degradation.
Hence for situations where the appropriate threshold
cannot be properly determined, SBatch may be pre-
ferred. SBatch, being simpler to implement, is also
preferred for larger proxy cache sizes, where its per-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90100

Fr
ac

tio
n

at
 th

e
pr

ox
y

Video ID

r=50%
r=10%

r=1%

(a) λ=10/min

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90100

Fr
ac

tio
n

at
 th

e
pr

ox
y

Video ID

r=50%
r=10%

r=1%

(b) λ=100/min

Fig. 7. Proxy cache allocation for SBatch under optimal
prefix caching, ĉp=0.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90100

Fr
ac

tio
n

st
or

ed
 in

 p
ro

xy

Video ID

r=50%
r=10%

r=1%

(a) λ=10/min

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90100

Fr
ac

tio
n

at
 th

e
pr

ox
y

Video ID

r=50%
r=10%

r=1%

(b) λ=100/min

Fig. 8. Proxy cache allocation for UPatch under optimal
prefix caching, ĉp=0.

formance is very close to that of UPatch.
The above discussion focussed on the case of

ĉp = 0. When ĉp > 0, we observe similar per-
formance trends for the different transmission and
caching schemes. This is because when the proxy-
client path is only unicast-capable, the proxy has to
transmit a copy of each data unit separately to each
client. Hence, for a fixed ĉp, the transmission costs
on the proxy-client path are identical for all transmis-
sion (unicast-based) and caching schemes.

B.1 Proxy cache allocation across the videos

We next examine the proxy cache allocation for
SBatch and UPatch under optimal prefix caching.
When the proxy-client path is only unicast-capable,
the optimal prefix cache allocation is identical for all
values of ĉp for a given transmission scheme. This is
because, as mentioned earlier, the transmission cost on
the proxy-client path for a fixed ĉp does not depend on
cache allocation. Therefore allocating the proxy cache

11

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30 35 40 45 50

Tr
an

sm
iss

io
n

Co
st

 (n
or

m
al

ize
d)

Proxy cache size (%)

MPatch, PP
MPatch, opt.
MMerge, PP

MMerge, opt.

Fig. 9. Normalized transmission cost v.s. proxy cache size
when λ = 100/min and ĉp = 0.5.

to minimize the total transmission cost is the same as
that required to minimize the transmission cost on the
server-proxy path, which is independent of the value
of ĉp. In the following, ĉp is chosen to be 0.
Fig. 7 and Fig. 8 depict the proxy cache allocations

under SBatch and UPatch respectively, for arrival rates
of 10 and 100 requests per minute. We see that, when
the proxy cache size is small, only the most popular
videos are cached. As the the proxy cache size in-
creases, more videos are cached. For low aggregate
arrival rates, the size of the proxy storage allocated to
a video increases as a function of its access probabil-
ity. At high arrival rates, the proxy storage tends to
be more evenly distributed among all the videos; this
differs substantially from the proportional allocation
under PP caching and helps to explain the difference
in transmission cost under the two caching schemes.

C. Transmission and caching under multicast

We next investigate the transmission cost when the
proxy-client path is multicast capable. Fig. 9 shows
the normalized transmission cost as a function of r,
when ĉp is 0.5 and the aggregate arrival rate λ is
100 requests per minute. The transmission costs for
MPatch and MMerge under optimal prefix caching
and PP caching are plotted on the graph. In the case
of MPatch, the transmission costs under optimal pre-
fix caching and PP caching are close for very small
and large proxy sizes. In the case of MMerge, the

300

400

500

600

700

800

900

1000

10 20 30 40 50 60 70 80 90 100

Tr
an

sm
iss

io
n

Co
st

 (n
or

m
al

ize
d)

Arrival rate (per min)

MPatch, opt.
MMerge, opt.

Fig. 10. Normalized transmission cost v.s. arrival rate
when r = 20% and ĉp = 0.5.

difference in transmission costs under optimal prefix
caching and PP caching is large for small proxy cache
sizes. For instance, when r = 1%, the transmission
cost under optimal prefix caching is 19% lower than
that under PP caching.
Fig. 9 also demonstrates that a small amount of

proxy buffer results in substantial transmission cost
savings under optimal prefix caching. With a proxy
cache that can hold 10% of the video repository, the
transmission costs reduce to 44% and 61% of the cor-
responding cost without proxy cache for MPatch and
MMerge respectively.
It is interesting to notice that proxy-assisted

MMerge does not always outperform MPatch. This
is different from traditional server-based patching and
stream merging, where stream merging always outper-
forms patching. Fig. 10 depicts the transmission costs
for various arrival rates when r = 20% and ĉp = 0.5.
We observe that, MPatch incurs lower transmission
cost for low arrival rates and MMerge incurs lower
transmission cost for high arrival rates.

C.1 Proxy cache allocation across the videos

We next examine the proxy cache allocation for
MPatch and MMerge under optimal prefix caching.
When ĉp = 0, since the transmission from the proxy
to clients does not incur any cost, using multicast or
unicast along the proxy-client path does not make any
difference to the allocation. Therefore, the allocation
for MPatch is identical to UPatch as shown in Fig. 8.

12

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90100

Fr
ac

tio
n

at
 th

e
pr

ox
y

Video ID

r=50%
r=10%

r=1%

(a) λ=10/min

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90100
Fr

ac
tio

n
at

 th
e

pr
ox

y
Video ID

r=50%
r=10%

r=1%

(b) λ = 100/min

Fig. 11. Proxy cache allocation for MPatch under optimal
prefix caching when ĉp = 0.5.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90100

Fr
ac

tio
n

at
 th

e
pr

ox
y

Video ID

r=50%
r=10%

r=1%

(a) ĉp = 0.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90100

Fr
ac

tio
n

at
 th

e
pr

ox
y

Video ID

r=50%
r=10%

r=1%

(b) ĉp = 0.5.

Fig. 12. Proxy cache allocation for MMerge under optimal
prefix caching when λ=100/min.

Fig. 11 displays proxy cache allocations for MPatch
when ĉp = 0.5, for λ = 10/min and λ = 100/min. We
find that the size of proxy cache allocated to a video is
not a monotonically increasing function of the access
probability. This is because the threshold tends to in-
crease as the access probability decreases. Therefore
some less popular videos may require larger prefixes
than more popular videos to realize the optimal thresh-
old.
Fig. 12 depicts the proxy cache allocations for

MMerge for λ = 100/min, when ĉp = 0 and ĉp = 0.5.
In general, the proxy cache space allocated to a video
decreases as its popularity decreases. However, when
the proxy caches are large and the arrival rates are
high, the size of proxy cache allocated to a video
can increase as the popularity decreases. This is be-
cause the average length of prefix streams increases as
the popularity (hence the arrival rate) decreases. We
also observe that when ĉp = 0.5, only several of the
most popular videos are cached for small and mod-

100
200
300
400
500
600
700
800
900

1000

0 10 20 30 40 50 60 70 80 90100Tr
an

sm
iss

io
n

Co
st

 (n
or

m
al

ize
d)

Proxy cache size (%)

UPatch
MPatch
MMerge

Fig. 13. Normalized Transmission cost v.s. proxy cache
size, when λ = 10/min and ĉp = 0.5.

0
1000
2000
3000
4000
5000
6000
7000

10 20 30 40 50 60 70 80 90100Tr
an

sm
iss

io
n

Co
st

 (n
or

m
al

ize
d)

Arrival rate (per min)

UPatch
MPatch
MMerge

Fig. 14. Normalized Transmission cost v.s. arrival rate,
when r = 10% and ĉp = 0.5.

erate proxy caches. When ĉp = 0, proxy cache is
more evenly distributed among the videos for small
and moderate proxy caches.

D. Comparison between unicast and multicast

When ĉp > 0, using multicast instead of unicast
along the proxy-client path results in substantial sav-
ings. We set ĉp to 0.5 in the following. Fig. 13
depicts the normalized transmission costs of UPatch,
MPatch and MMerge under optimal prefix caching
when λ = 10/min. We observe, in this case, that the
transmission costs of MPatch and MMerge are signif-
icantly lower than those of UPatch across the range
of proxy cache sizes. Fig. 14 shows the transmission
costs as the arrival rate increases from 10 to 100 re-
quests per minute when r = 10%. The savings un-
der MPatch and MMerge over UPatch increase as the

13

arrival rate increases. When the arrival rate is 10 re-
quests per minute, transmission costs under MPatch is
46% lower than under UPatch. When the arrival rate is
100 requests per minute, the reduction becomes 76%.
This clearly illustrates the benefits of using multicast
locally, over the proxy-client path.

E. Summary of Results

We summarize the key inferences from our evalua-
tion.

• For the same proxy size, using prefix caching for
a set of videos results in significantly lower trans-
mission costs compared to entire-object caching
policies. Under optimal prefix caching, even a
relatively small proxy cache (10%-20% of the
video repository) is sufficient to realize substan-
tial savings in transmission cost.

• The allocation under optimal prefix caching is
sensitive to the transmission scheme, the aggre-
gate arrival rate and the value of ĉp. In some
senarios, the size of proxy cache allocated to a
video is not a monotonically increasing function
of the access probability. Optimal prefix caching
can substantially outperform transmission cost
agnostic PP caching, particularly for high arrival
rates. However, in some cases, such as when the
arrival rates are low, the simpler PP caching per-
forms reasonably well.

• Carefully designed reactive transmission schemes
coupled with optimal proxy prefix caching can
produce significant cost savings over using uni-
cast delivery, even when the underlying network
offers only unicast service. Our results also sug-
gest that, unlike the case of server-client trans-
mission over a multicast-capable network, stream
merging does not always outperform patching in
the presence of proxy prefix caching.

• The optimal cache allocation can realize most of
the cost savings even with a relatively coarse (few
minutes of data) cache allocation grain. The com-
putation overhead of the scheme is well within
the capabilities of todays desktop PCs, suggesting
that the cache allocation scheme can be deployed
in practice.

VI. CONCLUSIONS AND ONGOING WORK

In this paper, we presented a technique to deter-
mine, for a given proxy-assisted transmission scheme,
the optimal proxy prefix caching for a set of videos
that minimizes the aggregate transmission cost. We
presented and explored a set of proxy-assisted reac-
tive transmission schemes that exploit proxy prefix
caching to provide bandwidth efficient delivery. Our
evaluations demonstrate that, with a relatively small
proxy cache, carefully designed transmission schemes
under optimal prefix caching can lead to significant
cost reductions.
For simplicity of exposition, we ignore network

propagation latency throughout the paper. Note that
our technique can be easily adapted to the senario
when the network propagation latency along server-
proxy path is not ignorable. In order to hide the trans-
mission delay for a video from the server, a prefix of
a certain length has to be stored in the server. For a
zero delay service, the proxy cache has to be allocated
to accomodate a prefix for each video. Then the opti-
mal prefix caching can run over the rest of the proxy
cache.
As ongoing work, we are pursuing the following

directions. (i) We are evaluating the performance of
optimal prefix caching and PP caching under realis-
tic network settings. (ii) Our results apply directly to
multiple-proxy Content Distribution Networks where
the server has unicast connections to the proxies, each
proxy serves a different set of clients (no overlapping),
and the proxies do not interact. We are currently ex-
ploring scenarios where the connections between the
server and the proxies are multicast-capable, and prox-
ies can interact. (iii) Our schemes apply equally to
Variable-Bit-Rate (VBR) video transmission, and the
analysis presented here can be extended in a straight-
forward manner to the VBR case. Quantitative evalu-
ation of the different schemes for VBR video distribu-
tion is part of ongoing work.

REFERENCES
[1] C. Aggarwal, J. Wolf, and P. Yu, “On optimal batching poli-

cies for video-on-demand storage servers,” in Proc. IEEE In-
ternational Conference on Multimedia Computing and Sys-
tems, June 1996.

14

[2] S. Carter and D. Long, “Improving video-on-demand server
efficiency through stream tapping,” in Proc. International
Conference on Computer Communications and Networks,
1997.

[3] K. Hua, Y. Cai, and S. Sheu, “Patching: A multicast tech-
nique for true video-on-demand services,” in Proc. ACM
Multimedia, September 1998.

[4] L. Gao and D. Towsley, “Supplying instantaneous video-
on-demand services using controlled multicast,” in Proc.
IEEE International Conference on Multimedia Computing
and Systems, 1999.

[5] D. Eager, M. Vernon, and J. Zahorjan, “Optimal and efficient
merging schedules for video-on-demand servers,” in Proc.
ACM Multimedia, November 1999.

[6] R. Tewari, H. M. Vin, A. Dan, and D. Sitaram, “Resource-
based caching for Web servers,” in Proc. SPIE/ACM Con-
ference on Multimedia Computing and Networking, January
1998.

[7] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching
for multimedia streams,” in Proc. IEEE INFOCOM, April
1999.

[8] J. Almeida, D. Eager, and M. Vernon, “A hybrid caching
strategy for streaming media files,” in Proc. SPIE/ACMCon-
ference on Multimedia Computing and Networking, January
2001.

[9] Y. Wang, Z.-L. Zhang, D. Du, and D. Su, “A network con-
scious approach to end-to-end video delivery over wide area
networks using proxy servers,” in Proc. IEEE INFOCOM,
April 1998.

[10] L. Gao, Z. Zhang, and D. Towsley, “Catching and selective
catching: Efficient latency reduction techniques for deliver-
ing continuous multimedia streams,” in Proc. ACM Multi-
media, 1999.

[11] S. Ramesh, I. Rhee, and K. Guo, “Multicast with cache
(mcache): An adaptive zero-delay video-on-demand ser-
vice,” in Proc. IEEE INFOCOM, April 2001.

[12] D. Eager, M. Ferris, and M. Vernon, “Optimized regional
caching for on-demand data delivery,” in Proc. Multimedia
Computing and Networking (MMCN ’99), January 1999.

[13] O. Verscheure, C. Venkatramani, P. Frossard, and L. Amini,
“Joint server scheduling and proxy caching for video deliv-
ery,” in Proc. 6th International Workshop on Web Caching
and Content Distribution, June 2001.

[14] C. Diot, B. Levine, B. Lyles, H. Kassan, and D. Balsiefien,
“Deployment issues for the ip multicast service and archi-
tecture,” IEEE Network, January 2000.

[15] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time stream-
ing protocol (RTSP), request for comments 2326,” April
1998.

[16] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduc-
tion to Algorithms. The MIT Press and McGraw-Hill Book
Company, 1990.

[17] D. Eager, M. Vernon, and J. Zahorjan, “Minimizing band-
width requirements for on-demand data delivery,” in Proc.
5th Inter. Workshop on Multimedia Information Systems,
October 1999.

