Comparison process specification for a repeatable comparison of
architecting processes *

(Research-In-Progress, approx. word count 2700)

Rodion M. Podorozhny
University of Texas
ECE Department
Austin, TX 78712
USA
phone: +1 512 232 7931
fax: +1 512 471 3621
podorozh@mail.utexas.edu

Leon J. Osterweil
University of Massachusetts
Dept. of Computer Science

Amherst, MA 01003

USA
phone: +1 413 545 2186

fax: +1 413 545 1249

ljo@cs.umass.edu

February 19, 2001

Dewayne E. Perry
University of Texas
ECE Department
Austin, TX 78712
USA
phone: +1 512 471 2050
fax: +1 512 471 3621
perry@mail.utexas.edu

“This work was supported in part by the Air Force Materiel Command, Rome Laboratory, and the Advanced

Research Projects Agency under Contract F30602-94-C-0137.

Comparison process specification for a repeatable
comparison of architecting processes

Abstract

We describe experimentation aimed at making the comparison of processes and process
specification formalisms more of an exact science. Our aim is to lay the foundations for this
more exact science by establishing fixed methods and conceptual frameworks that are able to
assure that comparisons will yield predictable, reproducible results.

The focus is on the comparison of architecture description languages (ADLs) by comparing
architecting processes. Earlier work on comparing ADLs ([6], [2]) did not use a systematic
comparison process. Nor did they take into account the context in which ADLs are used.

This work-in-progress paper concentrates on the comparison process and the design of the
experiments. In the first experiment two architecting processes are modeled and executed with
the same ADL. The other related experiment uses two ADLs for the same process. Then we
intend to compare the product artifacts and particular paths traversed.

Keywords Architecture Description Languages, Architecting Process, Software Process,
Process Formalism, Comparison, Base Framework

1 Introduction
1.1 Background

In earlier work ([7], [11]) we have argued that processes should be viewed as products of a process-
development activity.

Processes, just like software, must be thought of as being products of thought. They are intellectual
products. They can be sensed, understood, and evaluated only by indirect means through their
effects and manifestations. They have important dynamic properties, yet obey no laws of Physics
and defy physical measurement.

We have also suggested that many of the ideas, approaches, techniques, and formalisms of software
engineering should be applied to the engineering of processes as well. In particular, we suggested
n [12], [9] that software design notations and software process programming formalisms could
be useful in establishing baselines that could be effective bases for the objective classification and
comparison of processes. This paper builds upon this work and provides further evidence to support
this suggestion. We focus on the effects that the choice of a process has on the applicability and
usefulness of ADLs used in software processes.

1.2 Discussion of Problem

We believe that one of the hallmarks of a mature scientific or engineering discipline is its ability
to compare and evaluate its artifacts. Comparison, in turn, rests, in large part, upon classifica-
tion. Thus we believe that the establishment of a discipline of process engineering requires the
development of techniques and structures for classifying, comparing, and evaluating processes.

In [12] we have proposed CDM (Comparison of Design Methodologies) and presented a model of
this process for the comparison of design processes. There we have also proposed the use of a BF
(base framework), a classification schema for organizing the key components of design processes. In
[11], [12] we demonstrated the use of CDM and BF in comparing some software design processes.

We felt that it was important to show that the results of a comparison conducted according to
CDM are repeatable. In [12] CDM was specified formally in a graphical notation and informally
described in text. The formal specification though was at a rather high level of abstraction. We
believe that there is a dependency between the level of detail of a process specification and the
likelihood of the repeatability of results obtained. In other words, the greater the detail level,
the more likely the results will be repeatable. Therefore, to further increase the potential for
repeatability of the results, we specified two main substeps of CDM (namely, Classify_Components
and Make_Comparisons) in greater detail. For the specification of these substeps we used Little-JIL,
a software process language ([13]).

In earlier work we evaluated the sensitivity of a comparison of software design processes to the
modeling formalisms used ([8]). Here we evaluate the sensitivity of a comparison of architecting
processes (APs) to the ADL used.

1.3 Proposed Experiments

The experiments were designed to determine how repeatability is influenced by variation in the
architecting process and in the ADL. In the first of the two experiments we evaluated how the
comparison results produced by the CDM process are influenced by the architecting process. The
second experiment measures the influence of the ADL on the comparison results produced by the
CDM process.

The explanation of the first experiment follows. The reader is advised to refer to the diagram
in Fig. 1. The goal of this experiment was to compare the results obtained by the use of two
different architecting processes with a similar purpose, in this case discovery of a software system’s
architecture, by executing CDM, enhanced by precise JIL specification and using a single fixed
classification schema (depicted in Fig. 1 as CS). The modeling formalism (MF) to be used is Little-
JIL ([13]). The two architecting processes are “Focus” by Lei Ding and Nenad Medvidovic ([3])
and “Renaissance” (www.comp.lancs.ac.uk/projects/renaissance), these choices are explained in
sections 2.3— 2.6. We intend to compare the results obtained by the two processes and draw
conclusions about the influence of the process differences. We will refer to this experiment as the

Execution
Of Process
Models

~| Feature
Comparator

AP Instance Comparisons
based upon MF, CS, ADL

Extract
- Features

Legend:
0) iy () amifect > data flow

---> guiding control

Figure 1: Model of the Two Processes experiment

Two Processes experiment throughout the rest of the paper.

The second experiment is aimed at evaluation of the sensitivity of the comparison results to the
choice of ADL selected. Please refer to Fig. 2 for the diagram of this experiment. In this experiment,
a single architecting process is first executed on some input with ADL1 as a language to represent its
architecture related artifacts. Next the same architecting process with the same input is executed
with ADL2 instead of ADL1. We then intend to compare the results obtained by the two executions
of the same architecting process and draw conclusions on the influence of differences in ADLs. We
will refer to this experiment as the Two ADLs experiment. Both experiments will use a combination
of classification schemas for software processes (extension of BF suggested in [9]) and a classification
schema for ADLs (extension of classification in [6]). The latter is used for comparison of artifacts
represented in an ADL. “Wright” ([1]) and “C2ADL” ([5]) have been chosen as ADLs for the

ADLI
\
Execution
Of Process

Model \
Execution
Of Process /

Model

AP instance
ADLI

Feature
Comparator

7 e [AP Instance Comparisons }

ADL2 based upon MF, CS, ADL

| Extract
Features

Sets.
of

features

Legend:
0 T iviey () amtifaet —= data flow

---> guiding control

Figure 2: Model of the Two ADLs Experiment

experiments. The rationale for these choices is briefly described in sections 2.3— 2.6.

2 Approach

2.1 Comparison of the results of two architecting processes as a way to determine
the influence of the ADL used

Fig. 1 models a comparison process that is similar to CDM (described in [12]). This model em-
phasizes the major functional components in the process and focuses on comparing architecting
processes. The version of CDM in Fig. 1 pays attention to comparing particular process instances
as opposed to process “templates”. The functional decomposition provides a conceptual framework
that seems convenient as the basis for establishing a discipline of process comparison. The figure

also shows dependencies between these functional components. Note that although the diagram
is strictly sequential, the process of comparison may be iterated using different formalisms and
classification schemas.

The figure highlights the critical role played by the choice of MF, the process modeling formalism
and CS, the feature classification schema, and the choice of an ADL. Any formalism allows us to
see only those components of an architecting process that can be expressed in it. A classification
schema allows us to compare only the components in those classes and categories that it includes.
Thus, if an architecting process has an aspect not captured by the formalism and/or schema, that
aspect will not be considered and hence comparison results may be skewed and/or inaccurate.
Similar reasoning applies to an ADL used to capture artifacts of an architecting process.

We now use functional notation to express the comparison process of Fig. 1 more rigorously. The
process consists of four principal functional transformations:

e Process_Modelingnr : AP — AP _Modelpyr , where AP is the space of all architect-
ing processes and AP_Modelyrr is the space of models of APs in the modeling formalism
MF.

o Extract_Featuresyrr,cs : AP_Modelpyr — Feature_Structurecs,mr,
where Feature_Structurecs,ar is the space of all feature sets, structured by CS.

e Executionap_model,ADL : AP_Modelpy r — AP_Model_Instancecs,MF,ADL,APinput
where AP_Model_Instancecs mr,ADL,APinput 18 an instance of a particular execution path
through an AP_Modely;r when given a certain input.

e Feature_.Comparatorcs : Feature_Structurecs,mr X Feature_Structurecs mr
— AP_Comparisonscs , where AP_Comparisonscg is the space of comparisons of fea-
tures identified by CS.

The repeatability of results is an important characteristic of a high quality process. We believe
that specification of the comparison process (or any process for that matter) in greater detail will
help to increase the repeatability of the results. Therefore, Extract_Featuresy r,cs and
Feature_Comparatorcs functions have been elaborated in the Little-JIL process specifica-
tion language ([13]). To ease the understanding of the process principal steps the following
sections summarize the steps in an Ada-like language, a language which is more common than
Little-JIL and more likely to be known by the reader. The corresponding specifications for the
Feature_Comparatorcs step are presented in Figs. 3 & 4. The space limitations do not per-
mit to go into greater detail about the rest of the comparison process. Here we will briefly describe
the details of this step in informal natural language.

1 PROCEDURE Make_Comparisons(BF_modell: IN classif_table;

2 BF_model2: IN classif_table; artifact_topic_list: IN topic_list;

3 BF: IN class_list; Comp_Results: IN OUT comparison_results)

4 IS

5 loc_class: BF_structures.class;

6 topic_comp: pair_comparison;

7 BEGIN

8 FOR domain_model IN BF.Domain_Models LOOP

9 FOR loc_class IN BF.domain_model LOOP

10 CASE MCTH_Level (loc_class) IS

11 WHEN artifact =>

12 Compare_Classes(loc_class, BF_modell.loc_class,
13 BF_model2.loc_class, artifact_topic_list,

14 Comp_Results);

15 WHEN activity =>

16 Compare_Classes(loc_class, BF_modell.loc_class,
17 BF_model2.loc_class, activity_topic_list,

18 Comp_Results) ;

19 WHEN concept =>

20 Compare_Classes(loc_class, BF_modell.loc_class,
21 BF_model2.loc_class, concept_topic_list,

22 Comp_Results);

23 END CASE;

24 Final_Summary(Comp_Results, summary_topics, summary);
25 END LOOP;

26 END LOOP;

27 END Make_Comparisons;

Figure 3: The code of Make_Comparisons step

1 PROCEDURE Compare_Classes(Class: IN string, component_setl:

2 IN component_list; component_set2: IN component_list; Topics: IN topic_list;
3 Comp_Results: IN OUT comparison_results)

4 IS

5 componentl, component2: Formalism_Structures.component;

6 pair_comp: pair_comparison;

7 pairs_list: array (POSITIVE range <>) of pair;

8 summary: string;

9 BEGIN

10 Identify_pairs(pairs_list, component_setl,

11 component_set2) ;

12 FOR component_pair IN pairs_list LOOP

13 Compare (component_pair.componentl,

14 component_pair.component2, topic_list, pair_comp);
15 Add (Comp_Results, pair_comp);

16 END LOOP;

17 Summarize_comparison(Comp_Results, summary);

18 Add (Comp_Results, Class, summary);

19 RETURN;

20 END Compare_Classes;

Figure 4: The code of Compare_Classes step

2.2 The Feature_Comparatorcs step

The reader is advised to refer to Figs. 3, 4 for the Ada-like specification of this step. The purpose
of this step is to conduct a comparison of the features that belong to the same CS class according
to previously defined comparison topics. Let us give a brief overview of the process.

This process uses the sets of features that were extracted from the two models and deemed relevant
to the specified comparison topics. To arrive at the comparison of two software processes, first, a
comparison is done between pairs of sets of comparable components in every CS leaf class according
to the pair comparison topics, then a summary is done according to class comparison topics for
every class of the CS. Consequently, a composite comparison is constructed. Carefully chosen topic
lists will help the comparer to see the differences between the processes in the areas of interest.

We can now define the entire process of using CDM, MF, and CS to compare two instances of APs
requiring an ADL and some input as (Fig. 1):

CDMMF,CS,ADL,API,APZ,AP_input : AP X AP — AP_C’omparisonscs ,

Similarly, the process of comparing the influence of an ADL on an architecting process can be
represented as (Fig. 2):

CDMnF,cS,ADL1,ADL2,AP,AP_input : AP X AP — AP_Comparisonscs ,

The Process_M odeling function of CDM entails the construction of process models. In

the Extract_Features phase the features of the processes are extracted from the process models,
based on the classification schema used. The last phase, Feature_.Comparator, takes two
structures of features, one per process model, compares them, and outputs a comparison of the
two feature structures. In this research we attempt to study the sensitivity of an ADL modeling
capability to the context it is used in (i.e. an architecting process). We also intend to study the
sensitivity of an architecting process to the ADL used.

This work is a continuation of assessing the influence of the choices of formalisms on the results
of software process comparisons. In our previous work we evaluated the influence of a modeling
formalism on the comparison results ([8]). Now we are suggesting the use of a similar approach to
evaluate the influence of a modeling formalism used by processes being compared (i.e. ADLs). As
another objective, we are suggesting a comparison of formalisms in a particular context. We hope
that the results of these experiments will enable us to better understand the rigorous methodology
of software process comparison.

2.3 The Classification Schema used

Ideally, a comprehensive classification schema should include all the details of all the features of
a software process with a particular purpose. In that case, we would be sure that no comparison
could overlook any features of the software process models being compared. While it is doubtful
that such an ideal classification schema can be created, we believe it is feasible to develop a sequence
of approximations to this ideal through iterative creation and modification. Each time a new or
different process feature is encountered, we envisage classifying it and putting it in the proper place
in the classification schema. Thus, analysts performing comparisons should be prepared to check
whether all the features of compared process models are captured by the classification schema used
and suggest modifications needed. Ideally, this would be done as a community activity leading
to an increasingly broadly accepted classification schema. The classification schema used for this
experiment is based on schemas suggested for comparison of software processes and ADLs in [10],

[4], and [6].

2.4 The architecting processes used

The following criteria were used to choose architecting processes for our experiments:

e processes have to be of similar purpose so that their comparison would make sense

e processes have to explicitly mention the use of an architecture (supposedly captured in an
ADL)

e processes have to be defined in a formal way with the use of some notation that can be
regarded as a modeling formalism

e processes have to be developed by people other than the comparers

Architecture discovery processes suggested by Lei Ding and Nenad Medvidovic ([3]) and the RE-
NAISSANCE consortium (www.comp.lancs.ac.uk/projects/renaissance) have been chosen for the
experiments because they satisfy these criteria. They are similar in purpose as both strive to recre-
ate a software system’s architecture based on its code as input. Both processes also support
evolution of the software system. The experiments imply executing these processes in a process
execution environment with the same input. Small (5000-7000 lines) software systems are intended
to be used as input to the processes in the experiments. The processes are not completely automatic
thus another requirement is that the software system used is not developed by the person aiding in
the processes execution.

2.5 The ADLSs used

The ADLs to be used for experiments should not have widely different, explicitly stated problem
domains (i.e. it is more likely that an ADL intended to capture a real-time system will be somewhat
different in the emphasis of its expressiveness from an ADL intended to capture a GUI system;
whether it is indeed so might be a topic of further experimentation). Wright ([1]) and C2ADL ([5])
have been chosen for the experiment. Wright seems to be a “general purpose” ADL while C2 is
leaning towards GUI software systems. The emphasis of the experiment is more on validating the
comparison process than obtaining comparison results for a comprehensive set of ADLs.

2.6 The modeling formalism used

Little-JIL ([13]) has been chosen as the formalism because it is a rather comprehensive process
language and the processes specified can be simulated with some degree of automation in the
corresponding execution environment.

3 Future Work.

We expect that the experiments described above will show the features of architecting processes
and ADLs that contribute to the differences in both quantitative and qualitative ways. Intuitively,
it is the expressiveness of ADLs and possible variations of the execution of an architecting process
that will make the processes execute differently with the same input. The comparison will enable
us to highlight the relationship between the kinds of activities and artifacts of compared processes,
i.e. it will allow to determine the intersection of processes. More experiments will be needed to
validate the comparison process, so further experimentation is a direction worth pursuing.

The comparison process itself can be evolved. One evolution direction is mathematical formalization
of the classification and functional comparison steps. The problems to be solved include the rigorous

mathematical modeling approach of certain aspects of processes and the discovery of useful process
properties that can have rigorous definitions amenable to verification. Higher degrees of automation
of the classification step can also be achieved by the analysis of functional correspondences between
process steps and artifacts expressed in mathematical notation.

It also seems important to set this line of research on a more solid foundation of rigor by using
formalisms to define the CS comparison framework and the features within. A formalism captur-
ing the structure of comparison topics also will be very helpful. The comparison topics of our
experiment were not rigorously defined (i.e., activities, concepts, techniques, additional properties
of methods). Such definitions would certainly make the comparison results more objective, since
there would be less room for ambiguity. In addition, the comparer would have clear guidelines
concerning the actual comparison of process components and the comparison job would become
easier and more repeatable. Furthermore, it would be beneficial to introduce a more formal measure
between processes based on the CS used and comparison topics used to compare features identified
by the CS.

In closing, it is important to emphasize that this experiment is strongly encouraging in that it indi-
cates that rigorous, reproducible comparison of processes is quite feasible. This line of research was
undertaken in reaction to a long string of process comparison work that was completely informal,
offering no basis for scientific validation through reproducible experimentation. It was our goal that
process comparison be made rigorous, semantically well-founded, and reproducible through the use
of formally defined comparison processes (such as CDM), comparison schemas (such as BF), and
semantically well-based modeling formalisms. This work continues to provide evidence that this
sort of rigor and reproducibility is possible.

References

[1] R.J. Allen. A Formal Approach to Software Architecture. Technical Report CMU-CS-97-144,
Carnegie Mellon University, 1997.

[2] P. C. Clements. A Survey of Architecture Description Languages. 8th Int’l Workshop Software
Specification and Design, March 1996.

[3] Lei Ding and Nenad Medvidovic. Focus: A Light-Weight, Incremental Approach to Soft-
ware Architecture Recovery and Evolution. Technical report, Computer Science Department,
University of Southern California, Los Angeles, CA.

[4] Sjaak Brinkkemper Geert van den Goor, Shuguang Hong. A Comparison of Six Object-
Oriented Analysis and Design Methods. Technical report, University of Twente, Enschede,
the Netherlands, 1992.

[5] N. Medvidovic, R.N. Taylor, and E.J. Whitehead Jr. Formal Modeling of Software Architec-
tures at Multiple Levels of Abstraction. In Proceedings of the California Software Symposium,
pages 28-40, April 1996. Los Angeles, California.

10

[6]

Nenad Medvidovic and Richard Taylor. A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software Engineering,
26(1):70-93, January 2000.

Leon J. Osterweil. Software Process Interpretation and Software Environments. Technical
Report CU-CS-324-86, Department of Computer Science, University of Colorado, Boulder,
CO, April 1986.

Rodion M. Podorozhny and Leon J. Osterweil. The Criticality of Modeling Formalisms in
Software Design Method Comparison,. In Proceedings of the 19th International Conference of
Software Engineering, pages 303-313, 1997.

Xiping Song and Leon Osterweil. Toward Objective, Systematic Design-Method Comparisons.
IEEE Software, pages 43-53, May 1992.

Xiping Song and Leon J. Osterweil. The Models of the Design Methodologies. Technical
Report UCI-91-19, University of California, Irvine, Irvine, CA 92717, 1991.

Xiping Song and Leon J. Osterweil. Engineering Software Design Processes to Guide Process
Execution,. Technical Report TR-94-23, University of Massachusetts, Computer Science De-
partment, Amherst, MA, February 1994. Appendix accepted and published in Preprints of
the Eighth International Software Proces Workshop.

Xiping Song and Leon J. Osterweil. Experience with an approach to comparing software design
methodologies. IEEE Transactions on Software Engineering, 20(5):364-384, May 1994.

Stanley M. Sutton, Jr. and Leon J. Osterweil. The design of a next-generation process language.
In Proceedings of the Joint 6th FEuropean Software Engineering Conference and the 5th ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 142-158. Springer-
Verlag, 1997.

11

