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Abstract

Choosing the best-performing server for a particular
client from a group of replicated proxies is a difficult
task. We offer an empirical evaluation of currently-
used and proposed metrics based on traces to 193 com-
mercial prozies. We show that network-layer met-
rics such as minimizing router and autonomous sys-
tem count poorly predict which server provides the
best performance. These metrics often select servers
with transfer times four to siz times that of the best-
performing server, respectively. Other metrics such
as round-trip time and tests using small files perform
better, but usually select servers that are two to three
times worse than the best transfer time possible. We
offer two novel techniques that chose a small subset of
three to five servers, and isolate testing to that subset
for ten days. We show that our techniques perform
better than any of the other metrics we studied.

1 Introduction

Sites providing web content, multimedia streaming,
networked gaming, or other Internet services com-
monly need to scale to large client bases. One so-
lution is to increase the processing or bandwidth re-
sources of the site’s server. Another solution is to
replicate the server in numerous locations in the In-
ternet. This technique provides a number of advan-
tages over a centralized approach and is often adopted
in practice.

Presenting numerous mirror servers to a client re-
sults in the difficult problem of finding the server
that will perform best. Anycast protocols allow a
client to transparently discover and choose a server
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of a set of replicated servers [18] — hopefully the
best server. Proposals for implementing an anycast
service range from network- to application-layer ap-
proaches and are typically based on specific metrics,
such as hop count or round-trip time. Anycast-like
techniques have also been proposed for use in Internet
distance maps.

In current practice, selection of a server from a
group of proxies commonly requires manual choice
based on geographical labels, though this has no cor-
relation with network distances [4]. Commercial any-
cast services are commonly based on DNS modifica-
tions [1, 9]. Such commercial solutions use propri-
etary metrics and techniques, require costly Internet-
wide infrastructure deployment, and have been shown
to not select the best server in a consistent man-
ner [11].

We address the following fundamental question:
what metric for server selection results in the best
performance for clients? To answer this question we
evaluate, through experimentation and analysis, four
approaches to server selection: minimizing router
counts, autonomous system (AS) counts, round-trip
times, or transfer times of small test files. We also
evaluate a novel technique of our own design called
pre-selection, which is a two-step process for server
selection. The first step isolates a subset of 3-5 well-
performing servers for a period of 10 days; the second
step selects among that subset for downloads during
the 10-day period. Our results indicate that:

e network-layer metrics perform very poorly as
predictors of the best server from which to re-
trieve files;

e purely receiver-driven testing is sufficient to find
servers that deliver very good performance; large
infrastructure deployments for testing are not
needed;



e our techniques of pre-selection can select servers
with very good performance and are efficient
with large server populations; metrics based on
router hops, AS hops, round-trip times, and
small files perform worse.

This paper is organized as follows. Section 2 re-
views previous work on anycast protocols and studies
of metrics for server selection. Section 3 presents our
experiment and methodology. Section 4 discusses our
results. Section 5 offers our concluding remarks.

2 Background

Replicated server networks have three major compo-
nents: the original sources of content; distributed
proxy servers carrying replicated content; and end-
users desiring fast access to that content. In order
to deliver the lower latency made possible by such
a network, anycast protocols allow users to discover
and pick the best of the proxy servers [18].

Anycast protocols can be designed to meet a num-
ber of objectives. Our goal is to determine which
metric allows a client to choose the best-performing
server from a set of servers that can provide the
needed service; in this case, transferring the requested
document to the client. We do not focus on tech-
niques for load-balancing or resource discovery in this
paper. We concentrate instead on situations where
network conditions are the constraints and where all
mirror sites are known and are exact replicas. Load-
balancing can be a priority for applications where lack
of resources at the server produce a bottleneck, but
here we assume servers are well-provisioned and per-
formance is most affected by network conditions.

2.1 Previous Work

Previous work on anycast services may be taxono-
mized into approaches working at the network and
application layers. Most generally, proposed network-
level anycasting protocols [5, 13] are forced to ig-
nore dynamic network conditions and instead focus
on discovering the best server by minimizing net-
work distances. Application-level proposals [6, 2]
tend to consider combinations of network and server
performance in selecting the best server. However,
application-level proposals often require substantial
application-level signaling to configure routing and
are not easily able to aggregate that signaling across
domains. Each domain must perform its own set of
tests to determine anycast routes. Such testing can
be taxing to popular anycast servers as well as inter-
vening network links.

One network-layer approach to anycast attempts
to minimize the number of routers traversed [5, 13].
This approach utilizes existing unicast routing tables
to resolve multiple servers sharing the same anycast
address. This is unscalable as the route toward each
global anycast address would have to be stored at
each router. GIA [12], a recently proposed network-
layer scheme, attempts to minimize the number of
domains crossed (i.e., the number of BGP peers) be-
tween client and server. As we show in this paper,
these approaches are not good predictors of file trans-
fer times between a client and server. Details of GIA
are discussed in Section 4.

An application-layer approach to anycast has been
proposed [2] that involves a resolver situated within
a domain. Clients query the resolver with an Any-
cast Domain Name that identifies the desired ser-
vice and the resolver chooses a server and provides
that choice to the client. The resolver is configured
to make server choices based on metrics, policies, or
some combination of the two, or through arbitrary
means. We find that architecture to be flexible and
compatible with our work, as we evaluate a variety of
metrics that could be utilized in the context of that
approach.

Also related are techniques for creating Internet
distance maps [10, 7], which allow an arbitrary ma-
chine to determine its distance to any other point on
the Internet. The maps are created with a distributed
set of tracer machines. In this paper, we evaluate the
metrics that have been used to build IDMaps, hop
count and ping times, and we believe the contribu-
tions of this paper can be applied to distance map
techniques for more accurate maps.

Previous work [14, 16] has also shown that there
may exist consistency in server rankings even when
exact performance may change between sessions.

There have been several past studies on determin-
ing appropriate server selection metrics [4, 20, 17, 6,
2]. Some of these studies produced results that differ
from ours. We comment on these results where ap-
propriate in Section 4 of this paper. In contrast to
those studies, our measurement study uses six clients,
increases the number of servers by an order of magni-
tude to almost 200, has longer measurement period of
41 days, uses larger file sizes up to 1 Meg, compares
many selection metrics at once, and for the first time
considers the two-step pre-selection process for server
selection. Additionally, our study uses actual transfer
times for files of varying sizes where some have used
estimates or not considered transfer times at all.



Client File Downloads | Failure Rate
UNC 416,168 4.45%
Purdue 337,379 4.96%
U. Delaware 330,685 4.94%
U. Mass 164,843 6.22%
UC Santa Cruz 367,292 4.36%
USC 297,658 4.44%

Table 1: Client Sites and Data Characteristics

3 Experimental and

Methodology

Setup

Our experimental setup included six client machines
located at the Univ. of Massachusetts, the Univ. of
North Carolina, the Univ. of Delaware, Purdue Univ,,
the U.C. Santa Cruz, and the Univ. of Southern Cal-
ifornia (Table 1). Each of these clients interacted
with 193 servers that are part of the tucows.com net-
work of web mirrors. The tucows servers were located
throughout the U.S. and Canada.

Data was collected via a script that ran continu-
ously at each client over the course of 41 days, from
September 30 — November 9, 2000. The script was im-
plemented in Tcl/Expect, and made use of standard
system utilities. At each run of the script, the client
collected several types of data regarding the charac-
teristics of the network path between the client and
each server:

e a series of 5 ICMP pings;
e a traceroute;

o transfer times of files of the following approx-
imate byte sizes: 10k, 30k, 100k, 250k, 500k,
750k, and 1M.

We then explored several different ways in which
such data could be used in server selection. Ping
results were used to evaluate the performance of a
server chosen by minimizing round-trip times. We
computed both router hop counts and autonomous
system counts from the traceroutes. We used these
counts to characterize the performance of selection
schemes that minimize router hop counts or au-
tonomous system (AS) counts. Domain-hops were
calculated by querying a whois database for an AS
number for each IP address in the trace.

At each client there were occasional instances in
which a run was aborted due to client failure or dis-
connection from the network. These aborted runs
were relatively rare (Table 1). The disparity among
clients in the numbers of runs performed is a result
of variation in the time required for each run. This is

due to variations in the clients’ system resources as
well as the quality of their connections to the Inter-
net.

Due to the extended time it took to contact 193
servers from each client, network conditions may have
changed from the beginning to the end of a run. On
the other hand, accessing even a small number of
servers in parallel would have the file transfers com-
peting with each other for bandwidth. Therefore,
we cannot account for short-term changes in network
conditions in our analysis. However, we observed that
our results remain stable over periods of ten days, so
we believe short-term effects are not significant.

For much of the analysis in this paper, we consid-
ered the whole set of 193 servers; we also considered
subsets. For example, we viewed our experiment as
ten separate experiments of about 20 servers. The
servers in each subset were created by simply par-
titioning the list of servers into groups as they ap-
peared in order in the script that each client ran: the
first 20 in the first set, the second 20 in the second
set, and so on. We also consider four experiments of
about 50 servers and two experiments of about 100
servers in order to measure the effects of different
server populations. We refer to a group of n servers
as an n-subset. Conducting the analyses on different
subsets and averaging the results of the experiments
increased our confidence that results were not due to
one particularly good server for a particular client.

It is possible that one or more servers in our ex-
periment employed DNS rotation techniques to map
a textual address to more than one server. We don'’t
know if this is the case, but since our study focuses
on performance as experienced by a client, this would
not affect our results.

4 Server Selection Metrics

Recall that our goal is to find the metric that is best
able to predict which server will provide the best per-
formance. For the file transfer applications we wish
to support, we define best performance as follows. As
described in the previous section, each client peri-
odically performs a run of measurements, contacting
each of the 193 servers and performing five pings,
a traceroute, and a series of downloads of given file
sizes. For a given file size, the “best” performance is
the minimum download time for that file size from
among the 193 contacted for that measurement run.
We compared metrics which select servers based on

e hop counts,

e AS counts,



round-trip times,

transfer times of a 10k file,

random selection,

ping set pre-selection,
e transfer set pre-selection

Transfer sets and pings sets are two techniques we
designed that base server selection on a two-step
process: first, they pre-select a subset of 3-5 well-
performing servers; second, they select among the
servers in that subset for downloads during a 10-day
period. Transfer sets isolate subsets based on ping
times and then 250k file transfers; ping sets isolate
subsets based on ping times only. We discuss the
details of the pre-selection techniques in Section 4.5.

Previous work regarding the performance of mir-
ror servers [14] has shown that the past performance
of a server is often a reliable predictor of the future
performance of that server. Our related work has
shown that servers with the best transfer times are
even more stable than the average server [16]. This
observation lead us to design the pre-selection tech-
niques.

Our study indicates that our pre-selection tech-
niques perform best and require the least work of all
metrics. Network-layer metrics — minimizing hop
count and AS count — perform poorly as predictors
of file transfer times, often as poorly as random selec-
tion. RTT times are also poorly-correlated to transfer
times and are not accurate predictors. Additionally,
we found transfer times of small files to be poor pre-
dictors of transfer times of larger files.

Our experiment offers no results on the affect of
a large set of clients all following the same tech-
nique. None of the techniques prevent many clients
from choosing the same server. However, we conjec-
ture that for techniques that are reactive to network
conditions, it is unlikely that all clients from a large
client base would choose the same server; a substan-
tial group of clients gravitating toward a single server
would affect the tests of later clients.

Our results are presented over a variety of file
sizes. For smaller file sizes, the metrics did not dis-
tinguish themselves greatly. Additionally, small files
make it difficult to justify taking time to test servers.
Web pages often contain many small files, but their
transfer is commonly aggregated with persistent and
pipelined HTTP connections, and therefore it is likely
that our results for larger file sizes are more widely
applicable.
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4.1 Hop Counts

Server selection based on minimizing the number of
router hops between a client and server is used by
many proposed server selection services. The use of
a hop count metric can be either by direct measure-
ment [8, 7, 10, 21] at the application layer or by mod-
ifications to unicast or multicast routing [5, 13]. In
our analysis, when multiple servers were at minimum
distance, we averaged their observed transfer times as
no other information would allow a resolver to make
a distinguishing choice in the most generic case.

Our results for some clients are shown in Figs. 1-
5 for a variety of metrics at once, each represented
with a different line on the graph. The y-axis of
the graphs represent the average transfer time of the
servers selected by a metric; the performance of the
server selection for different file sizes are shown along
the x-axis. Error bars represent a 95% confidence in-
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terval of the averages. The number of run completed
at each client ranged from 235-328 for the 41-day pe-
riod of data collection, except for U. Mass where only
131 runs were completed.

Our results suggest that hop-count metrics perform
less well than other metrics, such as round-trip times,
in predicting the server with the best download time.
Often the performance of hop-count based server se-
lection was similar to picking a server at random!

Figs. 6 and 7 offer explanation as to why hop count
performs poorly as a server selection method. The
figures show the distribution of hop counts for the
best server across all fetches for all file sizes at UCSC
and USC; error bars represent 95% confidence inter-
vals of the data. Though not marked on the graph,
the nearest server to UCSC was on average 10 router
hops away with almost no variation, and the nearest
server to USC was 11 hops away with almost no vari-
ation. The location of the best server varied quite a
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bit while the server selected by minimizing hop count
did not.

Purdue’s performance with a minimal hop count
policy (Fig. 5) relative to the best server was signif-
icantly better than UCSC and USC, as well as that
of the other clients. Fortunately, this gave us insight
into the general performance of hop counts as a met-
ric.

At Purdue, the difference in transfer times on av-
erage between consecutively ranked servers was strik-
ingly small, as shown in Figure 8 for both 1 Meg and
100k file sizes. Figure 9 shows the relative server per-
formance as observed at UCSC for 1 Meg and 100k
files, which is representative of all clients except Pur-
due across all file sizes.

We believe that for Purdue, static measures such
as hop count and AS count (discussed subsequently)
performed better because the relative performance
of servers was more similar: the chances of picking
a server with performance comparable to the best
servers was good. We see that randomly choosing a
server also performed better at Purdue, relative to
the best server, again due to the closer relative per-
formance of servers. In other words, hop count is only
slightly better than picking a server at random.

Many factors in a network will cause file transfer
times and TCP performance to vary over different
servers, including packet loss, available bandwidth,
and round-trip time. We conjecture that the similar
performance of servers observed at Purdue was likely
to be caused by a common network bottleneck lim-
iting the peak performance of all servers to a client.
(We do know that the Purdue client was on a con-
stantly congested subnet and running on a slow In-
tel 80486 machine with limited memory.) The more
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common case in our experiment were clients that had
varied relative server performance.

The shape of the relative performance curves
shown in Fig. 9 for servers was extremely similar for
all clients except Purdue. We expect such varied per-
formance to be typical. We also expect that resource
limitations of the mirror servers themselves will gen-
erally not be responsible for observed network perfor-
mance. We recorded the processor load at 44 servers
for one week, and found the loads to be negligible and
not correlated with transfer times; network transfers
are not processor-intensive operations. For commer-
cial deployments, mirror servers can be expected to
be moderately resourceful.

We expect clients in the Internet to have varied
relative server performance, and therefore we believe
static network-based measures to be generally of less
use and poor predictors of file transfer performance.

Recently, Obraczka and Silva performed a hop
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Figure 9: Avg transfer time of percentile for ranked
servers (UCSC, 1M and 10K files).

count and round-trip time analysis and found the
correlation to usually be higher than 50% [17]. For
completeness, we computed this correlation as well.
The last column of Figure 12 shows correlation co-
efficients between round-trip times computed as the
average of five pings and hop count in our experi-
ment. Our results show much less correlation than
observed by Obraczka and Silva. Carter and Crov-
ella examined the relationship between hop count and
round-trip times in 1995 and found results more simi-
lar to ours [4]. It may be that correlation between hop
count and round-trip time is important for streaming
media applications, but it is likely that the correlation
between hop count and transfer times is more applica-
ble to supporting file transfer applications; but more
importantly, we believe the file transfer times result-
ing from these policies (Figs. 1-5) are more telling
and reliable than correlation measures.



4.2 Autonomous System Hops

Selection of mirror servers can also be based on min-
imizing the number of autonomous systems (AS)
crossed between the client and the server. Katabi
and Wroclawski have proposed the Global Internet
Anycast (GIA) [12] protocol. GIA searches for mir-
ror servers belonging to an Internet-wide anycast ad-
dress. Routers resolve the unicast destination of
the address by distinguishing unpopular and popular
anycast addresses. For unpopular routes, packets are
routed to a default unicast address encoded in a por-
tion of a 32-bit anycast address. For popular routes,
border routers of a domain query Border Gateway
Protocol (BGP) peers for resolution of the address.
If the peers have a mirror server registered to that
anycast address, they will answer the query. Other-
wise, the query is passed to another set of peers, as in
a breadth-first search. The query can travel no fur-
ther than three hops from the BGP router initiating
the query. After collecting replies for a set interval of
time, the initiating domain resolves the anycast route
with the mirror server that minimizes the number of
ASes crossed.

Our experiment provides insight into how well GTA
might perform in practice by analyzing a simulation
of its server selection policy. We conducted tracer-
outes between a client and the servers in each run
of our script. We converted the IP addresses of
the routers in the traces using a tool provided by
www.radb.net for “whois” database lookups. We
then recorded the transfer times of servers that were
closest to each client in terms of AS counts.

In this experiment, there were often several servers
that were of the same minimum distance. GIA col-
lects multiple responses during a set time interval,
but we could not find a specification of how to break
ties so we averaged the transfer times of all such
possible servers. We believe this to be fair because
the BGP routers would have no extra information by
which to distinguish replies. The quickness of BGP
routers in responding to requests may have little cor-
relation with the traffic conditions on the path to that
server. The BGP router may be delayed with other
tasks, but even if the response time of BGP routers is
solely limited by the round-trip time, then the poor
correlation between round-trip time and transfer time
we have observed (see Figure 12) suggests that pick-
ing the earliest response may not be successful.

Figs. 1-5 show results for UCSC, USC, and Pur-
due. Minimizing AS hops was not a good predictor of
servers with low transfer times in our study. Similar
to our results for router hop counts, we found that the
servers that gave the best transfer times were com-
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monly farther than the closest server and up to 10 AS
hops away. Figure 10 shows a histogram for UMass of
the distance in AS hops of the best servers averaged
over all file sizes; this histogram is representative of
all clients.

GIA suggests sending queries with a maximum hop
count of three AS domains, however, as shown Fig-
ure 11, for the UMass client this misses about 80%
of all servers. Setting the maximum hop count of
search queries in GIA higher to find the best server
would create too much query traffic for BGP routers
to handle efficiently [12].

Overall, our study supports the claim that selecting
servers by minimizing AS hops, like router hops, of-
fers an insufficient level of granularity to distinguish
the performance of servers, does not correlate well
with network conditions, and provides performance
similar to that of random server selection.



Client | 10115 31800 107023 236694 524934 765736 1007102 Hop count
UCSC 0.16 0.20 0.21 0.22 0.21 0.21 0.20 0.07
Purdue 0.18 0.23 0.23 0.23 0.21 0.22 0.22 0.19
UDel 0.14 0.21 0.26 0.30 0.30 0.30 0.29 0.11
UMass 0.21 0.24 0.34 0.39 0.45 0.46 0.45 0.09
UNC 0.39 0.49 0.49 0.50 0.48 0.47 0.45 0.28
USC 0.25 0.34 0.38 0.40 0.40 0.41 0.40 0.23

Figure 12: Correlation coefficients between average ping times and transfer times for varying file sizes.

4.3 Round-trip Times

Determining the round-trip time (RTT) to a remote
server using an ICMP echo request is normally a sim-
ple and quick operation compared to determining hop
count or AS counts. Round-trip times, also called
pings, have the additional advantage over hop counts
and AS counts of being responsive to network condi-
tions. In fact, using RTTs appears more commonly
than other metrics. For example, Napster, a popular
peer-to-peer system [15] measures round-trip times to
aid users in selecting the peer from which to retrieve
a file.

In our experiment, clients performed five pings in
immediate succession to servers. We found that this
RTT metric is better-correlated to actual file transfer
duration than is hop count or AS count. Moreover,
we found that the servers picked by a RTT metric per-
formed better on average than those picked by min-
imizing hop count or AS count. Unfortunately, for
large files, we found RTT is not a fully reliable pre-
dictor of server performance as it often picked servers
with transfer times 2-5 times the transfer time of the
best server except for Purdue where all metrics fared
well, as discussed previously. The performance of the
RTT metric can be observed in Figs 1-5'. Figure 12
shows correlation coeflicients between average RTT
and transfer times for all file sizes in our study. For
all clients except UNC the correlations are quite low.
We believe that this is a result of the effect of TCP’s
congestion control mechanism on file transfer times.
Since ICMP messages such as those used for ping are
not subject to this mechanism, the resulting round-
trip times do not accurately reflect time required to
transfer files. The client at UNC experienced faster
transfer times than most of the other clients. We
speculate that lower congestion during most trans-
fers at UNC resulted in better correlation.

1The good performance of RTT for USC 193-set shown in
Fig. 3 was not observed for all smaller sets for USC (e.g., Fig 4),
leading us to believe there was a single server uncommonly
predictable by RTT.

4.4 Small Files as Predictors

Another server selection method is to choose a server
based on the time it takes to retrieve a small file.
We are unaware of another study that has considered
the performance of this metric. To use this metric,
an entity initiates small downloads from all available
servers. The server that completes this transfer first
is then used for downloading larger files. For exam-
ple, for choosing between a small group of five servers,
a client might first try a 2k transfer from each. This
method is clearly impractical for larger sets of servers,
but we found using a 10k file as a metric for picking
the best server for larger file transfers fared well in our
experiment. For most clients, on average, a 10k ex-
perimental transfer usually picked a server that per-
formed as well as or better than those picked by best
ping times. As we show in the next section, if the set
of servers can be trimmed by the client through the
use of other metrics, a small file transfer is the best
metric and a reasonable choice for choosing a server
from that small subset.

Not surprisingly, we found larger files were better
predictors. In our experiment we found little correla-
tion between the time required to retrieve small files
and that required to retrieve large files. Figure 13
shows the correlations of transfer times of smaller file
sizes to the transfer times of 1M files. These cor-
relations are between the transfer times of files dur-
ing the same run of the script, i.e., the transfer took
place within a minute or two. We speculate that the
poor correlation of small file sizes to larger file sizes
is the result of TCP slow-start dominating the trans-
fer times of small files. The performance observed
during this phase does not accurately predict perfor-
mance during the rest of a transfer. There is a steady
trend, and we conjecture that files smaller than 10k
will not have an increase in their correlation or re-
sulting performance in predicting server file transfer
times.



Client | 10115 31800 107023 236694 524934 765736
UCSC 0.31 0.53 0.72 0.80 0.88 0.92
Purdue 0.29 0.36 0.50 0.60 0.69 0.72
UDel 0.36 0.54 0.74 0.84 0.89 0.93
UMass 0.24 0.34 0.55 0.66 0.79 0.85
UNC 0.44 0.66 0.80 0.87 0.91 0.95
USC 0.35 0.55 0.75 0.84 0.90 0.92

Figure 13: Correlation coefficients between 1M file transfer and varying file sizes.

4.5 Pre-selection Methods

In this section, we propose the use of a pre-selection
scheme that divides the testing phase of server se-
lection into two parts. First, an entity chooses a
subset of potential servers from the full set of avail-
able servers, possibly by a somewhat imprecise, light-
weight means. The subset remains constant for a
length of time; in our experiment we re-selected sub-
sets every ten days. For each download, the sec-
ond step is taken: a server is chosen from the subset
through a different testing method. We believe the
success of this method is derived from the good stabil-
ity of the best servers, which we have observed for this
same experiment and have reported elsewhere [16];
poor performing servers did not exhibit this stabil-
ity. The first step in the pre-selection scheme aims to
identify servers which perform better and therefore
are likely to have better and more stable performance
over long periods of time; the second step aims to pick
the best of those candidates for each download.

Our previous work [16] demonstrated the perfor-
mance achievable by identifying top servers and rely-
ing on their stability, showing that past performance
of a server is a reliable metric for future performance.
The server with the smallest 250k download time was
kept as a choice for 29 days and gave the client near-
best performance on average for the 29 day period.
That method involved lengthy testing — a 250k file
transfer from each client, taking on average 11 min-
utes to complete — its feasibility may depend on sev-
eral factors, including the number of available servers
to be queried, and whether testing is performed at
each client or by a resolver shared by many clients.

In this section, we show that pre-selection methods
show promise of performance similar to the heavy-
weight selection metric [16] but with testing that is
significantly less costly. We outline two pre-selection
schemes, ping sets and transfer sets, both of which
culminate in server selection by a parallel transfer
method. Several papers have proposed improving
file transfer performance by retrieving replicated con-

tent in parallel from several servers [3, 19]. In these
schemes clients contact a set of servers hosting the de-
sired content and retrieve different portions of the file
from each. In the case of TCP file transfers, we be-
lieve that parallel transfer methods result in a client
receiving an unfair share of bandwidth. This is due to
the additive increase, multiplicative decrease (AIMD)
congestion control algorithm employed by TCP. As
congestion on a link grows, AIMD ensures that all
flows receive roughly equal bandwidth on that link.
When more than one flow to a client travels across a
link, the client receives multiple shares of the band-
width. In one parallel transfer scheme [19], the au-
thors assume that the servers in use do not share
bottleneck links. We believe that this assumption is
unrealistic in practice. However, we propose that par-
allel transfer methods be applied to selecting a server
for file transfers.

In our schemes, we assume an algorithm that be-
gins a parallel transfer, monitoring the performance
of each server. Connections to all but the best-
performing server are quickly dropped and the down-
load continues from the chosen server. We do not
offer a specific method of parallel server selection
here, but we do offer an evaluation of the best and
worst performance such an algorithm can achieve,
discounting practical overhead. We present the fol-
lowing results for our pre-selection methods: ping set
best, transfer set best, worst, and naive. Our ping
set best and transfer set best represent results that
assume a parallel method that chooses perfectly and
always finds the best server from the chosen subset.
Worst represents the results of a random choice from
the subset with 1% of outliers removed, illustrating
the worst a parallel selection algorithm could perform
with no work. The naive results represent a parallel
algorithm that chooses from the subset based on the
results of the first 10k transferred. (We did not sub-
tract the time that would be saved by downloading
the first 10k of the file in presenting the resulting
transfer time; the time reported is the total transfer
time of the entire file after selection of the server.)



We compare these three results with the result of
picking the best server, as well as the results of choos-
ing the best performer of a 10k file transfer from the
complete set (the same best and 10k file metrics used
for Figs. 1-5). Due to space limitations we are un-
able to present all of our results. The results that
we do present are generally representative of other
clients and different sizes of server subsets. We have
observed some variation over the full set of results; we
present variations when they are significantly anoma-
lous or run counter to our general claims.

As shown in subsection 4.5.2 the best performance
that can be achieved by pre-selection methods is quite
good. For most of the clients in our experiment,
the worst that can be expected — random selection
from the subset — is still better than the perfor-
mance achieved using RT'T metrics (discussed in Sec-
tion 4.3). That is, for most clients, if a parallel selec-
tion algorithm can make a better-than-random choice
even some of the time, that server will, on average,
perform better than servers chosen by a round-trip
time metric or 10k file transfer metric while requir-
ing considerably less work. As shown by the ping-
set best and transfer-set best results, a sophisticated
metric could produce results that are close to select-
ing the best server.

4.5.1 Ping Sets

In Section 4.3 we have shown that selecting a server
based on round-trip times as measured by pings, al-
though better than network-layer approaches, cannot
be relied upon to produce desirable results. We pro-
pose a method that uses ping results to pre-select
a small set of servers, which we call a ping set. This
method improves upon ping metrics, while taking ad-
vantage of their light-weight nature. In order to cre-
ate a ping set an application pings all available servers
and selects the n servers with the best results. From
that ping set, a parallel algorithm is used each down-
load to select the current best server. In our study, we
found retaining the subset for 10 days maintained the
same average performance, whereas for longer time
periods, performance began to drop off.

We found that the size of a ping set greatly in-
fluences the performance of the metric. The ping
sets for the results shown in Figures 15 and 16 were
of size five, constructed from the entire set of 193
servers. Ping sets of size three performed significantly
worse. As expected, the chances that a server pro-
viding good performance is part of the set increases
as the size of the set increases. In our experiment
we found that, on average, 40% of servers that were
ever ranked first could be found within the top 20%
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Figure 14: Percentage of ranked pings needed to find
best servers at UNC.

of ranked pings. Additionally, for four of the clients,
50% of the top servers were found within the top 12%
of ranked pings. The results for UNC, which was a
part of the latter group, are given in Figure 14.

The results for ping sets at UCSC and USC
(Figs. 15 and 16), which include 95% confidence in-
tervals, are representative of all clients. For reference
with Figs. 1 and 3, the 10k metric is repeated. For
a variety of file sizes, the ping-set best metric is clos-
est to best of all metrics we tested, usually not more
than one half to one second from the best server for
a 1M file. In the worst case (a random choice of
server from the ping set for each download), ping set
techniques perform better than selection based on a
10k file transfer with significantly less work required
of the client. Additionally, random ping set selec-
tion performs better than a RTT metric also for less
work. A naive selection among the ping set performs
moderately and consistently better than worse case
selection, but not as well as the best case selection
for the ping set. We believe future work can find a
selection method for ping sets that is closer to best
than the naive approach.

4.5.2 Transfer Sets

Implementation of a parallel selection algorithm is
beyond the scope of this paper. Therefore, we do
not know the number of servers such an algorithm
can efficiently employ. We offer another pre-selection
method that can reduce the number of servers in the
resulting set, while providing performance compara-
ble to that of ping sets.

In order to reduce the number of servers used in the
parallel selection step, we expand the pre-selection
phase to include a second, refining step. A transfer
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Figure 15: Performance of ping set metrics, n =5 Figure 17: Performance of transfer sets n = 5,m =3

(UCSC, 193-set).
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Figure 16: Performance of ping set metrics, n =5
(USC, 193-set).

set is created from a ping set by conducting exper-
imental file transfers to determine the m < n best
servers in the set, where n is the size of the ping set.
This transfer set is then used by the parallel algo-
rithm to choose the best server. We observed that,
on average, transfer sets perform as well as ping sets,
while requiring less work during the parallel selection
phase.

To simulate transfer sets we used ping results from
the full set of servers for our first pre-selection step.
For the second pre-selection step we used file transfer
results from 250k files. We conducted experiments
using both the 1M and 250k files for this second step
and found little discernible performance difference.
This result corroborates our recent work [16] which
has shown that transfer times of 250k files accurately
predict servers with good transfer times for all file
sizes in the same experiment.

We compare these results to the best result possi-
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Figure 18: Performance of transfer sets n = 5,m =3
(UCSC. 48-subset).

ble from the complete server set, as well as to the re-
sult obtained by choosing the server with the shortest
transfer time of a 10k file. Figures 17, 18 and 19 show
the three transfer set results for the clients at UCSC
and USC. In these experiments, n = 5, m = 3; these
values were chosen to show that transfer sets had
performance equal to ping sets while using a smaller
subset during transfers. All of the transfer set meth-
ods perform better than the 10k file method, which,
as shown in Figures 1 and 3, is generally the best-
performing of the simple methods. The transfer set
method using naive parallel selection performs as well
as or better than a random choice from the transfer
set and produces results similar to or better than the
10k file transfer method. Moreover, we believe that
it provides a good approximation of what an actual
parallel algorithm is likely to achieve. It clearly re-
quires less work, as construction of the transfer sets
occurs only once every ten days. This construction
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Figure 19: Performance of transfer sets n = 5,m =3
(USC. 193-set).

involves pinging all available servers and transferring
250k files from a small subset of them. In contrast,
the 10k file transfer method requires transferring files
from all of the available servers at each file request.

5 Conclusion

Our results show the best performance possible from
our pre-selection methods is close to that of choos-
ing the best possible server, while the worst these
methods can perform is better than any of the met-
rics we evaluated. Naive approaches perform consis-
tently better than worst, though not as well as the
best choice possible. Metrics based on minimizing
router hop count and autonomous system count often
choose servers that perform four to six times worse
than choosing the best possible server. Other met-
rics, such as round-trip time as measured by ping
and transfer times of small files deliver performance
on average two to three times worse than choosing
the best possible server.

Our ping-set and transfer-set anycast techniques
achieve very good performance, but do not require a
pre-deployed infrastructure. Our evaluation of these
pre-selection techniques shows that anycast protocols
based on client testing can perform well without the
overhead of constantly testing a large set of servers.
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Appendix A: Correlation Tables

Hop count 10115 31800 107023 236694 524934 765736 1007102 Avg ping

Hop count - 0.07 0.07 0.08 0.09 0.10 0.11 0.11 0.07
10115 0.07 - 0.35 0.33 0.32 0.32 0.32 0.31 0.16
31800 0.07 0.35 - 0.61 0.58 0.57 0.55 0.53 0.20
107023 0.08 0.33 0.61 - 0.79 0.77 0.74 0.72 0.21
236694 0.09 0.32 0.58 0.79 - 0.87 0.82 0.80 0.22
524934 0.10 0.32 0.57 0.77 0.87 - 0.90 0.88 0.21
765736 0.11 0.32 0.55 0.74 0.82 0.90 - 0.92 0.21

1007102 0.11 0.31 0.53 0.72 0.80 0.88 0.92 - 0.20

Avg ping 0.07 0.16 0.20 0.21 0.22 0.21 0.21 0.20 -

Figure 20: Correlation table for UCSC.

Hop count 10115 31800 107023 236694 524934 765736 1007102 Avg ping

Hop count - 0.06 0.06 0.06 0.04 0.04 0.06 0.05 0.19
10115 0.06 - 0.27 0.31 0.29 0.28 0.31 0.29 0.18
31800 0.06 0.27 - 0.37 0.41 0.34 0.37 0.36 0.23
107023 0.06 0.31 0.37 - 0.50 0.51 0.53 0.50 0.23
236694 0.04 0.29 0.41 0.50 - 0.60 0.55 0.60 0.23
524934 0.04 0.28 0.34 0.51 0.60 - 0.72 0.69 0.21
765736 0.06 0.31 0.37 0.53 0.55 0.72 - 0.72 0.22

1007102 0.05 0.29 0.36 0.50 0.60 0.69 0.72 - 0.22

Avg ping 0.19 0.18 0.23 0.23 0.23 0.21 0.22 0.22 -

Figure 21: Correlation table for Purdue.

Hop count 10115 31800 107023 236694 524934 765736 1007102 Avg ping

Hop count - 0.08 0.07 0.09 0.11 0.12 0.12 0.12 0.11
10115 0.08 - 0.33 0.36 0.37 0.37 0.36 0.36 0.14
31800 0.07 0.33 - 0.58 0.56 0.56 0.55 0.54 0.21
107023 0.09 0.36 0.58 - 0.78 0.78 0.75 0.74 0.26
236694 0.11 0.37 0.56 0.78 - 0.88 0.85 0.84 0.30
524934 0.12 0.37 0.56 0.78 0.88 - 0.92 0.89 0.30
765736 0.12 0.36 0.55 0.75 0.85 0.92 - 0.93 0.30

1007102 0.12 0.36 0.54 0.74 0.84 0.89 0.93 - 0.29

Avg ping 0.11 0.14 0.21 0.26 0.30 0.30 0.30 0.29 -

Figure 22: Correlation table for UDel.
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Hop count 10115 31800 107023 236694 524934 765736 1007102 Avg ping

Hop count - 0.05 0.06 0.07 0.06 0.07 0.07 0.08 0.09
10115 0.05 - 0.17 0.21 0.22 0.25 0.24 0.24 0.21
31800 0.06 0.17 - 0.33 0.33 0.33 0.35 0.34 0.24
107023 0.07 0.21 0.33 - 0.53 0.54 0.55 0.55 0.34
236694 0.06 0.22 0.33 0.53 - 0.67 0.67 0.66 0.39
524934 0.07 0.25 0.33 0.54 0.67 - 0.80 0.79 0.45
765736 0.07 0.24 0.35 0.55 0.67 0.80 - 0.85 0.46

1007102 0.08 0.24 0.34 0.55 0.66 0.79 0.85 - 0.45

Avg ping 0.09 0.21 0.24 0.34 0.39 0.45 0.46 0.45 -

Figure 23: Correlation table for UMass.

Hop count 10115 31800 107023 236694 524934 765736 1007102 Avg ping

Hop count - 0.18 0.6  0.15 0.15 0.14 0.14 0.14 0.28
10115 0.18 - 0.44  0.46 0.45 0.45 0.45 0.44 0.39
31800 0.16 0.44 - 0.70 0.69 0.68 0.67 0.66 0.49
107023 0.15 0.46  0.70 - 0.83 0.83 0.81 0.80 0.49
236694 0.15 045  0.69  0.83 - 0.90 0.88 0.87 0.50
524934 0.14 045  0.68  0.83 0.90 - 0.93 0.91 0.48
765736 0.14 045 067  0.81 0.88 0.93 - 0.95 0.47

1007102 0.14 044  0.66  0.80 0.87 0.91 0.95 - 0.45
Avg ping 0.28 0.39 049 0.9 0.50 0.48 0.47 0.45 -

Figure 24: Correlation table for UNC.

Hop count 10115 31800 107023 236694 524934 765736 1007102 Avg ping

Hop count - 0.07 0.10 0.09 0.09 0.09 0.09 0.10 0.23
10115 0.07 - 0.30 0.34 0.36 0.35 0.36 0.35 0.25
31800 0.10 0.30 - 0.57 0.55 0.55 0.55 0.55 0.34
107023 0.09 0.34 0.57 - 0.76 0.76 0.76 0.75 0.38
236694 0.09 0.36 0.55 0.76 - 0.86 0.85 0.84 0.40
524934 0.09 0.35 0.55 0.76 0.86 - 0.91 0.90 0.40
765736 0.09 0.36 0.55 0.76 0.85 0.91 - 0.92 0.41

1007102 0.10 0.35 0.55 0.75 0.84 0.90 0.92 - 0.40

Avg ping 0.23 0.25 0.34 0.38 0.40 0.40 0.41 0.40 -

Figure 25: Correlation table for USC.
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Appendix B: More Results
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Figure 26: Performance of server selection metrics

(UCSC, 193-set)
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Figure 27: Performance of server selection metrics

(UCSC, 96-subset)
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Figure 28: Performance of server selection metrics

(UCSC, 48-subset)
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Figure 29: Performance of server selection metrics

(UCSC, 19-subset)
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Figure 30: Performance of ping sets n =5 (UCSC,
193-set).
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Figure 31: Performance of ping sets n =5 (UCSC,

96-subset).
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Figure 32: Performance of ping sets n =5 (UCSC,

48-subset).
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Figure 33: Performance of ping sets n =5 (UCSC,

19-subset).
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Figure 34: Performance of transfer sets n = 5,m =3

(UCSC, 193-set).
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Figure 35: Performance of transfer sets n = 5,m =3

(UCSC, 96-subset).
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Figure 36: Performance of transfer sets n = 5,m =3

(UCSC, 48-subset).
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Figure 93: Performance of ping sets n = 5 (UNC, 19- Figure 96: Performance of transfer sets n = 5,m = 3
subset). (UNC, 48-subset).

27



10 experiments of size 19 - UNC

10000 . T .
—— best server
——*-— transfer sets (best)
-—=—- transfer sets, 10k sel. (naive)
- transfer sets (worst)
s 10k file
5000 1

Average Transfer Time (ms)

10 32 100 250 500 750 1024
File Size (kbytes)

Figure 97: Performance of transfer sets n = 5,m =3
(UNC, 19-subset).

28



