
Sharc: Managing Resources in Shared Clusters

Abstract

In this paper, we argue the need for effective resource control
mechanisms for sharing resources in commodity clusters. To
address this issue, we present the design of Sharc—a system
that enables resource sharing among applications in such clus-
ters. Sharc depends on single node resource control mecha-
nisms such as reservations or shares and extends the benefits of
such mechanisms to clustered environments. Our Sharc proto-
type (i) supports resource reservation for applications, (ii) en-
ables dynamic resource allocation based on resource usages,
(iii) provides performance isolation to applications, and (iv)
handles a variety of failure scenarios. Our experimental evalu-
ation has shown that Sharc can scale to 256 node clusters run-
ning 100,000 applications. Our results demonstrate that Sharc
can be an effective approach for sharing resources among com-
peting applications in moderate size clusters.

1 Introduction

1.1 Motivation
Due to the rapid advances in computing and networking tech-
nologies and falling hardware prices, server clusters built using
commodity hardware have become an attractive alternative to
the traditional large multiprocessor servers. Commodity clus-
ters are being increasingly used in a variety of environments
such as third-party hosting platforms and workgroup servers.
For instance, hosting platforms are using commodity clusters to
provide computational resources to third-party applications—
application owners pay for resources on the platform and the
platform provider in turn guarantees resource availability to ap-
plications [18]. Workgroups (e.g., a research group in a uni-
versity department) are using commodity clusters as compute
servers to run scientific applications, large-scale simulations,
and batch jobs such as application builds.
In this paper, we focus on the design of a shared cluster—

a commodity cluster in which the number of applications is
significantly larger than the number of nodes, necessitating re-
source sharing among applications. Shared clusters are differ-
ent from dedicated clusters, where a single application runs on
a cluster of nodes (e.g., clustered mail servers [19], replicated
web servers with a load balancing switch [2]) or each appli-
cation runs on a dedicated node in the cluster (e.g., dedicated
hosting platforms such as those used by application service
providers). Due to economic reasons of space, power, cool-
ing and cost, shared clusters are more attractive for many ap-
plication environments than dedicated clusters. Whereas dedi-

cated clusters are widely used for many niche applications that
warrant their additional cost, the widespread deployment and
use of shared clusters has been hampered by the lack of ef-
fective mechanisms to share cluster resources among applica-
tions. Consequently, today’s clusters avoid resource sharing
altogether (i.e., employ a dedicated cluster model), or share
resources either in a best-effort manner or based on informal
agreements among users (e.g., researchers wanting to run sim-
ulation experiments agree to do so at mutually exclusive times
or on mutually exclusive nodes).
There are a number of research issues that must be ad-

dressed to enable effective resource sharing in commodity clus-
ters. Since lots of applications share a relatively small number
of machines, resource control is a central issue in shared clus-
ters. The ability to reserve resources for individual applica-
tions (especially when application owners may be paying for
these resources), the ability to isolate applications from one an-
other, and the need to manage the heterogeneous performance
requirements of applications are some challenges that must be
addressed in shared environments. High availability and scal-
ability are other important issues, although they are common
to dedicated clusters as well. This paper focuses on the design
of resource management mechanisms for shared clusters that
meet these requirements.

1.2 Research Contributions of this Paper
In this paper, we present Sharc: a system for managing re-
sources in shared clusters.1 Sharc allows the advantages of
resource control mechanisms designed for a single node to be
extended to clustered environments.
The primary advantage of Sharc is its simplicity. Sharc typ-

ically requires no changes to the operating system—so long
as the operating system supports resource control mechanisms
such as reservations or shares, Sharc can be built on top of
commodity hardware and commodity operating systems. Sharc
is not a cluster middleware; rather it operates in conjunction
with the operating system to facilitate resource allocation on a
cluster-wide basis. Applications continue to interact with the
operating system and with one another using standard OS in-
terfaces and libraries, while benefiting from the resource al-
location features provided by Sharc. Sharc supports resource
reservation both within a node and across nodes; the latter func-
tionality enables aggregate reservations for distributed applica-
tions that span multiple nodes of the cluster (e.g., replicated

1As an acronym, SHARC stands for Scalable Hierarchical Allocation of
Resources in Clusters. As an abbreviation, Sharc is short for a shared cluster.
We prefer the latter connotation.

1

web servers). The resource control mechanisms employed by
Sharc provide performance isolation to applications, and when
desirable, allow distributed applications to dynamically share
resources among resource principals based on their instanta-
neous needs. Finally, Sharc provides high availability of clus-
ter resources by detecting and recovering from many types of
failures.
We have implemented a prototype of Sharc on a cluster of

Linux PCs and have demonstrated its efficacy using an exper-
imental evaluation. Our results have shown that Sharc can (i)
provide predictable allocation of resources, (ii) isolate appli-
cations from one another, and (iii) handle a variety of failure
scenarios. Our experiments to quantify the overheads imposed
by Sharc have shown that these techniques can easily scale to
moderate size-clusters with 256 nodes running 100,000 appli-
cations.
The rest of this paper is structured as follows. Section 2

lists the requirements for managing resources in shared clus-
ters. Section 3 presents an overview of the Sharc architecture,
while Section 4 discusses the mechanisms and policies em-
ployed by Sharc. Section 5 describes the failure handling tech-
niques employed by Sharc. Section 6 describes our prototype
implementation, while Section 7 presents our experimental re-
sults. We present directions for future work and related work in
Sections 8 and 9, respectively. Finally Section 10 presents our
conclusions.

2 Resource Management in Shared Clus-
ters: Requirements

Consider a shared cluster built using commodity hardware and
software. Applications running on such a cluster could be cen-
tralized or distributed and could span multiple nodes in the clus-
ter. We borrow terminology from [18] and refer to that com-
ponent of an application that runs on an individual node as a
capsule. Each application has at least one capsule and more
if the application is distributed. Each capsule consists of one
or more resource principals (processes, threads), all of which
belong to the same application. The component of the cluster
that manages resources (and capsules) on each individual node
is referred to as the nucleus. The component of the cluster that
coordinates the nuclei and manages resources on a cluster-wide
basis is referred to as the control plane. Together the control
plane and the nuclei enable the cluster to share resources among
multiple applications. In such a scenario, the control plane and
the nuclei should address the following requirements.
Application Heterogeneity. Applications running on a

shared cluster will have diverse performance requirements. To
illustrate, a third-party hosting platform can be expected to
run a mix of applications such as game servers (e.g., Quake),
vanilla web servers, streaming media servers, and ecommerce
applications. Similarly, shared clusters in workgroup environ-
ments will run a mix of scientific applications, simulations, and
batch jobs. Observe that these applications have heterogeneous
performance requirements. For instance, game servers need
good interactive performance and thus low average response

times, ecommerce applications need high aggregate through-
put (in terms of transactions per second), and streaming media
servers require real-time performance guarantees. In addition
to heterogeneity across applications, there could be heterogene-
ity within each application. For instance, an ecommerce appli-
cation might consist of capsules to service HTTP requests, to
handle electronic payments, and to manage product catalogs.
Each such capsule imposes a different performance require-
ment. Consequently, the resource management mechanisms in
a shared cluster will need to handle the diverse performance
requirements of capsules within and across applications.
Resource Reservation. Since the number of applications

exceeds the number of nodes in a shared cluster, applications in
this environment compete for resources. In such a scenario, soft
real-time applications such as streaming media servers need to
be guaranteed a certain level of service in order to meet timeli-
ness requirements of streaming media. Resource guarantees
may be necessary even for non-real-time applications, espe-
cially in environments where applications owners are paying
for resources. Consequently, a shared cluster should provide
the ability to reserve resources for each application and enforce
these allocations on a sufficiently fine time-scale.
Resources could be reserved either based on the aggregate

needs of the application or based on the needs of individual
capsules. In the former case, applications specify their aggre-
gate resource needs but do not specify how these resources are
to be partitioned among individual capsules. An example of
such an application is a replicated web server that runs on mul-
tiple cluster nodes—the aggregate throughput achieved by such
an application is of greater concern that the throughput of any
individual replica server. At the other end of the spectrum are
applications that need fine-grain control over the allocation to
each individual capsule. An ecommerce application exempli-
fies this scenario, since each individual capsule (e.g., catalog
database, payment handler) performs a different task and has
a different resource need. For such applications, the cluster
should provide the flexibility of resource reservation on a per-
capsule basis. Finally, the ability of a capsule to trade resources
with other peer capsules is also important. For instance, appli-
cation capsules that are not utilizing their allocations should be
able to temporarily lend resources, such as CPU cycles, to other
needy capsules of that application [3]. Since resource trading
is not suitable for all applications, the cluster should allow ap-
plications to refrain from trading resources when undesirable.
Capsule Placement and Admission Control. A shared

cluster that supports resource reservation for applications
should ensure that sufficient resources exist on the cluster be-
fore admitting each new application. In addition to determining
resource availability, the cluster also needs to determine where
to place each application capsule—due to the large number of
application capsules in shared environments, manual mapping
of capsules to nodes may be infeasible. Admission control and
capsule placement are interrelated tasks—both need to identify
cluster nodes with sufficient unused resources to achieve their
goals. Consequently, a shared cluster can employ an unified
technique that integrates both tasks. Further, due to the po-

2

tential lack of trust among applications in shared clusters, es-
pecially in third-party hosting environments, such a technique
will need to consider trust (or lack thereof) among applications,
in addition to resource availability, while admitting applications
and determining their placement onto nodes.
Application Isolation. Third party applications running on

a shared cluster could be untrusted or mutually antagonistic.
Even in workgroup environments where there is more trust be-
tween users (and applications), applications couldmisbehave or
get overloaded and affect the performance of other applications.
Consequently, a shared cluster should isolate applications from
one another and prevent prevent untrusted or misbehaving ap-
plications from affecting the performance of other applications.
This could be achieved, for instance, by employing resource
control techniques that also provide performance isolation.
High Availability. A shared cluster can experience a num-

ber of failures such as nucleus or capsule failure, node failure,
link failure, and application failure. In addition, since resources
on a node may be overbooked to extract statistical multiplex-
ing gains, resource exhaustion due to the instantaneous demand
exceeding capacity also constitutes a “failure”—the failure to
meet resource guarantees. A shared cluster should provide high
availability of resources by detecting common types of failures
and recovering from them with minimal or no human interven-
tion (for instance, by restarting failed nodes or by offloading
capsules from an overloaded node to another node).
Scalability. Most commonly used clusters have sizes rang-

ing from a few nodes to a few hundred nodes; each such node
runs tens or hundreds of application capsules. Consequently,
one of the goals of our work is to develop techniques that scale
to clusters of these sizes. We are primarily interested in tech-
niques that scale to moderate size clusters consisting of several
hundred nodes running tens of thousands of applications; tech-
niques that scale to very large clusters consisting of thousands
or tens of thousands of nodes are beyond the scope of our cur-
rent work.
Compatibility with Existing OS Interfaces. Whereas the

use of a middleware is one approach for managing resources in
clustered environments [6, 7], this approach typically requires
applications to use the interface exported by the middleware
to realize its benefits. Sharc employs a different design phi-
losophy. We are interested in exploring techniques that allow
applications to use standard operating system interfaces and
yet benefit from cluster-wide resource allocation mechanisms.
Compatibility with existing OS interfaces and libraries is espe-
cially important in commercial environments such as hosting
platforms where it is infeasible to require third-party applica-
tions to use proprietary or non-standard APIs. Such an ap-
proach also allows existing and legacy applications to benefit
from these resource allocation mechanismswithout any modifi-
cations. Our goal is to use commodity PCs running commodity
operating systems as the building block for designing shared
clusters. The only requirement we impose on the underlying
operating system is that it support some notion of quality of
service such as reservations [13, 14] or shares [8, 11]. Many
commercial and open-source operating systems such as Solaris

Figure 1: The Sharc Architecture.

[21], IRIX [20] and FreeBSD [5] already support such features.
Next we present the architecture, mechanisms and policies

employed by Sharc to address these requirements.

3 Sharc Architecture Overview

Sharc consists of two main components—the control plane and
the nucleus—that are responsible for managing resources in the
cluster (see Figure 1). Whereas the control plane manages re-
sources on a cluster-wide basis, the nucleus is responsible for
doing so on each individual node. Architecturally, the nucleus
is distinct from the operating system kernel on a node. More-
over, unlike a middleware, the nucleus does not sit between ap-
plications and the kernel; rather it complements the functional-
ity of the operating system kernel. In general, applications are
oblivious of the nucleus and the control plane, except at appli-
cation startup time where they interact with these components
to reserve resources. Once resources are reserved, applications
interact solely with the OS kernel and with one another, with
no further interactions with Sharc. The control plane and the
nucleus act on the behalf of applications and determine appro-
priate reservations for applications and their capsules; the task
of enforcing these reservations is left to the operating system
kernel. This provides a clean separation of functionality be-
tween resource reservation and resource scheduling.
In this paper, we focus primarily on one resource, namely

the CPU, and demonstrate how to allocate CPU bandwidth to
applications in a shared cluster. Techniques proposed in this
paper are easily extended to other cluster resources such as disk
and network interface bandwidth.

3.1 The Control Plane
As shown in Figure 1, the Sharc control plane consists of a re-
source manager, an admission control and capsule placement
module, and a fault-tolerance module. The admission control
and capsule placement module performs two tasks: (i) it en-
sures that sufficient resources exist for each new application,
and (ii) it determines the placement of capsules onto nodes in
the cluster. Capsule placement is necessary not only at appli-
cation startup time but also to recover from node failures or

3

Figure 2: Sharc abstractions: A sample cluster-wide virtual
hierarchy, a physical hierarchy on a node and the relationship
between the two.

resource exhaustion on a node, since this involves moving af-
fected capsules to other nodes. Once an application is admitted
into the system, the resource manager is responsible for ensur-
ing that the aggregate allocation of each application and those
of individual capsules are met. For those applications where
trading of resources across capsules is permitted, the resource
manager periodically determines how to reallocate resources
unused by under-utilized capsules to other needy capsules of
that application. The fault-tolerance module is responsible for
detecting and recovering from node and nucleus failures.
The key abstraction employed by the control plane to

achieve these tasks is that of a cluster-wide virtual hierarchy
(see Figure 2(a)). The virtual hierarchy maintains information
about what resources are currently in use in the cluster and by
whom. This information is represented hierarchically in the
form of a tree. The root of the tree represents the all the re-
sources in the cluster. Each child represents an application in
the cluster. Information about the number of capsules and the
aggregate reservation for that application is maintained in each
application node. Each child of an application node represents
a capsule. A capsule node maintains information about the lo-
cation of that capsule (i.e., the node on which the capsule re-
sides), its reservation on that node, its current resource usage
and the current allocation (the terms reservation and allocation
are used interchangeably in this paper). Note that the current
allocation may be different from the initial reservation if the
capsule borrows (or lends) resources from another capsule

3.2 The Nucleus
As shown in Figure 1, the nucleus on each node consists of a
resource manager and a fault-tolerance module. The resource
manager is responsible for reserving resources for capsules as
directed by the control plane. It also tracks resource usage for
each capsule and periodically reports these statistics to the con-
trol plane; this usage information is then used to adjust the in-
stantaneous allocation of capsules if necessary. The fault toler-
ance module is responsible for detecting and recovering from
control plane failures and is described in Section 5.2
The nucleus uses the abstraction of a physical hierarchy to

achieve these goals (see Figure 2(b)). The physical hierarchy

maintains information about what resources are in use on a
node and by whom. Like the virtual hierarchy, the physical
hierarchy is a tree with the root representing all the resources
on that node. Each child represents a capsule on that node; in-
formation about the initial reservation for the capsule, the cur-
rent usage, and the current allocation is maintained with each
capsule node. As shown in Figure 2, there exists a one to one
mapping between the virtual hierarchy and the physical hierar-
chy; this mapping and the resulting replication of state infor-
mation in the two hierarchies is exploited by Sharc to recover
from failures.

As explained earlier, the nucleus on a node is distinct from
the operating system kernel. The nucleus, in conjunction with
the control plane, determines the reservations for capsules and
conveys them to the CPU scheduler; the CPU scheduler is en-
trusted with the task of actually enforcing these reservations.
Sharc does not depend on a particular CPU scheduling algo-
rithm; any scheduler suffices so long as it supports CPU reser-
vations or CPU shares. Depending on the scheduler, the nu-
cleus needs to map capsule requirements into the QoS parame-
ters supported by the CPU scheduler. This mapping is trivial in
case of reservation-based schedulers [13, 14]—capsule reserva-
tion translate directly to corresponding CPU reservations. The
mapping becomes non-trivial if each capsule consists of mul-
tiple resource principals. In such a scenario, this mapping is
simplified if the scheduler supports hierarchical reservations or
aggregate reservations for groups of resource principals (e.g.,
resource containers [4]). In the event that the scheduler sup-
ports reservations only on a per-resource principal-basis, then
the nucleus will need to partition the reservation of a capsule
among its constituents and reserve CPU bandwidth for each in-
dividual resource principal.2

Sharc also supports CPU schedulers that employ shares in-
stead of reservations [8, 11]. A proportional-share scheduler
provides relative allocation of resources—the allocation of each
resource principal is proportional to its weight and the fraction
of the CPU bandwidth decreases as the number of tasks in-
creases. Although a proportional-share scheduler by itself only
provides relative guarantees, it has been shown that such sched-
ulers can provide strong (deterministic) guarantees when com-
bined with admission control—the admission controller lim-
its the number of tasks in the system, enabling the scheduler
to provide bounds on the allocations. Since the control plane
in Sharc employs admission control, it is feasible to employ a
proportional-share scheduler on each node and provide the de-
sired resource guarantees. The mapping of capsule reservations
to CPU shares is discussed in Section 4.1.

Next we describe the resourcemanagementmechanisms and
policies employed by the control-plane and the nucleus

2To do so, the nucleus will need to be made aware of the resource principals
within each capsule. In general, the nucleus only deals with capsules as a unit
of allocation and is unaware of resource principals within a capsule or how the
capsule further partitions its allocation among its constituents.

4

4 Sharc Mechanisms and Policies

In this section, we describe resource specification, admission
control, and capsule placement policies employed by Sharc.
We then describe how Sharc enables capsules to trade resources
with one another based on their current usage.

4.1 Resource Specification, Admission Control
and Capsule Placement

Each application in Sharc specifies its resource requirement to
the control plane at application startup time. The control plane
then determines whether sufficient resources exist in the cluster
to service the new application and the placement of capsules
onto nodes.
The resource requirements of an application are specified

using the notion of a reservation. Formally, a reservation is a
pair that requires units of CPU time to be allocated to
the capsule every time units. To reduce the complexity of
the allocation process, Sharc assumes that all reservations are
made based on a fixed interval of duration . That is,
and is fixed for all applications in the cluster. Consequently, a
reservation in Sharc is a singleton , that spec-
ifies the fraction of the interval reserved for a capsule (i.e.,
specifies that units of CPU time be allocated to the cap-
sule every time units). Let denote the reservation of
the capsule of application , and let denote the aggre-
gate reservation of that application. Assuming that application
has capsules, we have . Observe also that
while is a fraction between and , the aggregate reser-
vation is, by definition, a quantity between and (since

).
Applications specify their resource requirements to Sharc

using a simple resource specification language (see Figure 3).
The specification language allows applications the flexibility of
either specifying the reservation of each individual capsule or
specifying an aggregate reservation for the application without
specifying how this aggregate is to be partitioned among indi-
vidual capsules. The specification language also allows control
over the placement of capsules onto nodes—the application can
either specify the precise mapping of capsules onto nodes or
leave the mapping to the control plane if any such mapping is
acceptable (the latter is specified using a dont-care option for
the mapping). An application is also allowed to specify if re-
source trading is permitted for its capsules. The allocation of
capsules remains fixed if resource trading is prohibited; the al-
location is adjusted based on usages when resource trading is
permitted. Resource trading allows unutilized CPU cycles to
be temporarily lent to other peer capsules under the condition
that they are returned when needed.
Given such a resource specification, the admission control

algorithm first performs checks to ensure that the request is
feasible. A resource specification is said to be feasible if (1)
each capsule requests no more than the total resources on a
node; assuming a unit amount of resource on a node, we have

; and (2) the aggregate reservation does not ex-

Application <id> <New | Modify | Terminate >
AggregateResv <req | *>
TradeResources <yes | no>
Capsules <numCapsules>
Capsule 1 Resv <req | *> Node <nodeId | *>
Capsule 2 Resv <req | *> Node <nodeId | *>
...

Figure 3: The Sharc Resource Specification Language. A “ ”
denotes an unspecified value.

ceed : . Whereas the former feasibility check is used
when reservations for individual capsules are specified, the lat-
ter check is employed when the application specifies only an
aggregate reservation. In the latter case, the reservation of each
individual capsule is initialized to .
Assuming a feasible resource specification, the admission

control algorithm proceeds as follows. First, the control plane
needs to ensure that the total reservation for all applications
does not exceed the capacity of the cluster. Assuming nodes
and existing application, we have

(1)

Next, the admission control algorithms determines if sufficient
spare capacity exists on each individual node. If the resource
specification specifies the desired mapping of capsules onto
nodes, then the control plane only needs to check that the un-
used capacity on those nodes is larger than than the capsule
reservations. That is,

(2)

where capsule is mapped onto node and denotes the
spare capacity on node . If capsule placement is unspecified,
then the capsule placement algorithm needs to determine a fea-
sible mapping. To do so, the capsule placement algorithm sorts
capsules in descending order of reservations and uses a best-fit
strategy to map capsules to nodes in sorted order. For each cap-
sule , it finds a node using best-fit such that the spare capacity
on that nodes exceeds the reservation . Sorting the capsules
in descending order of reservations and using best-fit ensures
that the algorithmwill always find a mapping if one exists (oth-
erwise a capsule with a smaller requirement might get mapped
onto a node with a larger spare capacity, preventing a capsule
with a larger resource requirement from finding such a node).
Our current version of the control plane does not incorporate
statistical overbooking of resources or take trust among appli-
cations into account while determining capsule placement—
techniques for doing so are the subject of future research and
are discussed briefly in Section 8.
If admission control is successful, the control plane cre-

ates a new application node in the virtual hierarchy and noti-
fies all affected nuclei, which then update their physical hier-
archies. Each nucleus in turn sets the appropriate reservation

5

or share for the capsule in the CPU scheduler. If the scheduler
is reservation-based, then the reservation of the capsule is set
to .3 If the scheduler supports CPU shares, then the
reservation is mapped onto a weight by setting ; do-
ing so guarantees at least time units to each capsule (a
capsule may receive more than its allocation if there is unused
bandwidth on a node, since unused bandwidth is fairly redis-
tributed by a proportional-share scheduler).

4.2 Trading Resources based on Capsule
Needs

Consider a shared cluster with nodes that runs applica-
tions. Let and denote the current allocation and cur-
rent resource usage of the capsule of application . Like
the reservation , both and denote the fraction of
CPU time allocated and used over an interval of duration ;

and .
The nucleus on each node tracks the CPU usage of all cap-

sules over an interval and periodically reports the correspond-
ing usage vector to the control plane. Nu-
clei on different nodes are assumed to be unsynchronized, and
hence, usage statistics from nodes arrive at the control plane at
arbitrary instants (but approximately every time units).
Resource trading is the problem of temporarily increasing

or decreasing the reservation of a capsule based on its usage,
subject to aggregate reservation constraints for that application.
The resource manager in the control plane uses usage vectors
reported by various nuclei to compute new allocations every
time units. Before doing so, it first uses an exponential smooth-
ing function to smooth the reported usage for each capsule.

(3)

where is a tunable smoothing parameter; . Use of
an exponentially smoothed moving average ensures that small
transient changes in usages do not result in corresponding fluc-
tuations in allocations, yielding a more stable system behavior.
Since nuclei on nodes are not synchronized, a nucleus might
fail to report its usage vector within the allocated interval
(due to clock drift, failure or overload problems, all of which
delay updates from the node). In the absence of usage informa-
tion from a node, the resource manager conservatively assumes
that the usages for capsules on that node equal their reserva-
tions (i.e., is set to in Eq. 3). As explained in Section
5, this assumption also helps deal with possible failures on that
node.
Our algorithm to recompute capsule allocations is based on

three key principles: (1) Trading of resources among capsules
should never violate the invariant .
That is, redistribution of resources among capsules should
never cause the aggregate reservation of the application to be
exceeded. (2) A capsule can borrow CPU bandwidth only

3If there are multiple resource principals, say , within a capsule and the
scheduler does not support reservations for groups of resource principals, then
the reservation of each resource principal is set to .

Figure 4: Various scenarios that occur while trading resources
among capsules.

if there is another capsule of that application that is under-
utilizing its allocation (i.e., there exists a capsule such that

). Further there should be sufficient spare capacity
on the node to permit borrowing of CPU cycles. (3) A capsule
that lends its resources to a peer capsule is guaranteed to get
it back at any time; moreover the capsule does not accumulate
credit for the period of time it lends these resources.4 Resource
trading is only permitted between capsules of the same appli-
cation, never across applications.
Our recomputation algorithm proceeds in three steps. First,

capsules that lent resources to other peer capsules but need it
back reclaim their allocations. Second, allocations of under-
utilized capsules are reduced appropriately. Third, this unuti-
lized bandwidth is distributed (lent) to any capsules that could
benefit from additional resources. Thus, the algorithm proceeds
as follows, one application at a time.
Step 0: Determine capsule allocations when resource trad-

ing is prohibited. If resource trading is prohibited, then the
allocations of all capsules of that application are simply set to
their reservations () and the algorithm moves on
to the next application.
Step 1: Needy capsules reclaim lent CPU bandwidth. A

capsule is said to have lent bandwidth if its current allocation
is smaller than its reservation (i.e., allocation reserva-
tion). Each such capsule signals its desire to reclaim its
due share if its resource usage equals or exceeds its allocation
(i.e., usage allocation). Figure 4, Case 1 pictorially
depicts this scenario.
For each such capsule, the resource manager returns lent

bandwidth by setting

where is a small positive constant, . Rather than
resetting the allocation of the capsule to its reservation, the cap-
sule is allocated the smaller of its reservation and the current
usage. This ensures that the capsule is returned only as much
bandwidth as it needs (see Figure 4). The parameter ensures
that the new allocation is slightly larger than the current usage,
enabling the capsule to (gradually) reclaim lent resources.

4Accumulating credit for unused resources can cause starvation. For ex-
ample, a capsule that could sleep for an extended duration of time and use its
accumulated credit to continuously run on the CPU, thereby starving other ap-
plications. CPU schedulers that allow accumulation of credit need to employ
techniques to explicitly avoid this problem [3].

6

Step 2: Underutilized capsules give up CPU bandwidth. A
capsule is said to be under-utilizing resources if its current us-
age is strictly smaller than its allocation (i.e., usage allo-
cation). Figure 4, Case 2 depicts this scenario.
Since the allocated resources are under-utilized, the resource

manager should reduce the new allocation of the capsule. The
exact reduction in allocation depends on the relationship of the
current allocation and the reservation. If the current allocation
is greater then the reservation (Case 2(a) in Figure 4), then the
new allocation is set to the usage (i.e., the allocation of a cap-
sule that borrowed bandwidth but didn’t use it is reduced to
its actual usage). On the other hand, if the current allocation
is smaller the reservation (implying that the capsule is lending
bandwidth), then any further reductions in the allocations are
made gradually (case 2(b) in Figure 4). Thus,

if
if (4)

where is a small positive constant.
After examining all capsules of the application in Steps 1

and 2, the resourcemanager can then allocate any unused band-
width to the remaining capsules of that application.
Step 3: Needy capsules are lent additional (unused) band-

width. A capsule signal its need to borrow additional bandwidth
if its usage exceeds its allocation (i.e., usage allocation

. An additional requirement is that the capsule shouldn’t
already be lending bandwidth to other capsules (),
else it would have been considered in Step 1. Figure 4, Case 3
depicts this scenario.
The resource manager lends additional bandwidth to such a

capsule. The additional bandwidth allocated to the capsule is
smaller of the spare capacity on that node and the unallocated
bandwidth for that application. That is,

(5)

where is the spare capacity on a node,
is the unallocated bandwidth for the application, and and

are the number of needy capsules on the node and for the
application, respectively, all of whom desire additional band-
width. Thus, the resource manager distributes unused band-
width equally among all needy capsules.
An important point to note is that the spare capacity on a

node or the unallocated bandwidth for the application could be
negative quantities. This scenario occurs when the amount of
resource reclaimed in Step 1 is greater than the unutilized band-
width recouped in Step 2. In such a scenario, the net effect of
Equation 5 is to reduce the total allocation of the capsule; this
is permissible since the capsule was already borrowing band-
width which is returned back.5 Thus, Equation 5 accounts for
both positive and negative spare bandwidth in one unified step.

5For simplicity of exposition, we omitted one detail in Eq. 5. After com-
puting in Eq. 5, the allocation is constrained as to
prevent it from becoming smaller than when the spare capacity is negative.

Step 4: Ensure the invariant for the application. After per-
forming the above steps for all capsules of the application, the
resource manager checks to ensure that the invariant

holds. Additionally, should
hold for each node. Under certain circumstances, it is possible
that the total allocation may be slightly larger or smaller than
the aggregate reservation for the application after the above
three steps, or an increase in capsule allocation in Step 1 may
cause the capacity of the node to be exceeded. These scenarios
occur when capacity constraints on a node prevent redistribu-
tion of all unused bandwidth or the total reclaimed bandwidth
is larger than the total unutilized bandwidth. In either case, the
resource manager needs to adjust the new allocations to ensure
these invariants. This requires one additional scan of all cap-
sules so as to increase or decrease their allocations slightly us-
ing a simple heuristic (details omitted due to space constraints).
A salient feature of the above algorithm is that it has two

tunable parameters—the interval length and the smoothing
parameter . As will be shown experimentally in Section 7, use
of a small recomputation interval enables fine-grain resource
trading based on small changes in resource usage, whereas a
large interval focuses the algorithm on long-term changes in
resource usage of capsules. Similarly, a large causes the re-
source manager to focus on immediate past usages while com-
puting allocations, while a small smoothes out the contri-
bution of recent usage measurements. Thus, and can be
chosen appropriately to control the sensitivity of the algorithm
to small, short-term changes in resource usage.

5 Failure Handling in Sharc

In this section, we describe the failure recovery techniques em-
ployed by Sharc. We consider three types of failures—nucleus
failure, control plane failure, and node and link failures. The
key principle employed by Sharc to recover from these failures
is replication of state information—the virtual and the physi-
cal hierarchies replicate state information maintained by Sharc
(see Figure 2); this replication is intentional and enables recon-
struction of state lost due to a failure.

5.1 Nucleus Failure
A nucleus failure occurs when the nucleus on a node fails but
the node itself remains operational. It is the responsibility of
the control plane to detect a nucleus failure. If a nucleus fails
to report usage statistics for two consecutive intervals of dura-
tion , then the fault tolerance module on the control plane is
invoked to diagnose the problem. The fault-tolerance module
first checks if the node is alive by sending echo messages to
the node and then executing a remote script that examines the
health of various operating system services. If the node is found
to be healthy, the module then attempts to contact the nucleus.
If the nucleus fails to respond, a nucleus failure is flagged.
The fault tolerancemodule then attempts to recover from the

failure by starting a new nucleus (using a remote script that first
cleans up the remnants of the previous nucleus and then starts

7

up a new one). The control plane then synchronizes its state
with the nucleus by (i) examining the virtual hierarchy to deter-
mine all capsules residing on that node, and (ii) reconstructing
the physical hierarchy using this information. Since the kernel
is unaffected by the nucleus failure, the QoS parameters main-
tained by the CPU scheduler for individual capsules are also
unaffected. Note that the control plane disables resource trad-
ing for capsules on that node until failure recovery is complete;
this is done by setting for all resident cap-
sules in the absence of usage reports from the node.

5.2 Control Plane Failure
A control plane failure is caused by the failure of the node run-
ning the control plane or the failure of the control plane itself.
In either case, the control plane becomes unreachable from the
nuclei.
In the event of a control plane failure, all nuclei run a leader

election algorithm [22] to elect a new node to host the control
plane. This is achieved as follows. Upon detecting an unreach-
able control plane, the fault tolerance module on the nucleus in-
vites all other nuclei, using a broadcast message, to participate
in a voting process to elect a new control plane. Using a vari-
ant of the election algorithm described in [22], the nuclei then
elect the node with the largest ID that has sufficient resources
to run the control plane (the amount of resources required to
run the control place is known a priori, since this is configured
statically at system startup time based on the number of nodes
and applications in the cluster). If the election fails due to the
lack of sufficient resources on nodes to run the control plane,
then the need for human intervention is signalled. If the elec-
tion succeeds, then the nucleus on the elected node starts up a
new control plane with the appropriate reservation. The control
plane then tries to recover the state of the virtual hierarchy—
this is achieved by polling each nucleus for the physical hierar-
chy and creating a union of the physical hierarchies.
Under rare circumstances, the cluster might have two con-

current control planes running. This happens if the node run-
ning the control plane experiences a transient link failure but
the node itself remains operational during the failure. Before
the restoration of the link, the other nuclei could vote and start
up a new control plane. Each control plane broadcasts a peri-
odic heartbeat message and listens for similar messages from
other control planes. If a second control plane is detected then
a simple election algorithm is run to choose between the two—
typically a younger control plane (i.e., one that was started
later) is always given preference and the older control plane
terminates itself.

5.3 Node and Link Failures
A node failure occurs when the operating system on a node
crashes due to a software or hardware fault. A link failure oc-
curs when the link connecting the node to the cluster intercon-
nect fails. From the perspective of the control plane, both kinds
of failures have the same effect—the node becomes unreach-

able. Whereas recovering from a node or link failure requires
human intervention (to reboot the system or to repair faults),
the control plane can aid the recovery process. Upon detecting
an unreachable node, the control plane can examine the vir-
tual hierarchy and automatically reassign any capsule running
on that node to other nodes in the cluster. The reassignment
process involves admission control and capsule placement for
the affected capsules. After determining the new mappings,
the corresponding nuclei are notified and their physical hierar-
chies are updated. The affected application capsules can then
be restarted on that node. Note that this process only helps
determine a new set of nodes to run the capsules residing on
the failed node; it does not help in recovering the state of the
failed capsules—recovery of lost capsule state, if desirable, is
left to the application and requires application-specific mecha-
nisms such as checkpointing or logging.

6 Implementation Considerations and
Complexity

We have implemented a prototype of Sharc on a cluster on
Linux PCs. The entire Sharc system consists of around 4500
lines of code and is publicly available.6 We chose Linux as
the underlying operating system since a number of reservation-
based and share-based CPU scheduler implementations are
available for Linux, allowing us to experiment with how cap-
sule reservations in Sharc map onto different QoS parameters
supported by these schedulers. For the purposes of this paper,
we chose a proportional-share CPU scheduler, since this al-
lows us to demonstrate that Sharc can indeed interoperate with
a non-reservation-based scheduler. We chose a weighted fair
share-based scheduler, namely SFQ, available publicly from
[17]. The CPU scheduler allows a weight to be associated with
each resource principal and allocates processor bandwidth in
proportion to their weights [11]. The scheduler also supports
hierarchical allocation, allowing us to group resource princi-
pals into single capsule and allocate a share (weight) to the en-
tire group.
Our Sharc prototype consists of two components—the con-

trol plane and the nucleus—that run as privileged processes in
user space. The implementation is multi-threaded and is based
on Posix threads. The control plane consists of threads for (i)
admission control and capsule placement, (ii) resource man-
agement and trading, (iii) communication with the nuclei on
various nodes, and (iv) for handling nucleus and node failures.
The resource specification language described in Section 4 is
used to allocate resources to new applications, to modify re-
sources allocated to existing applications, or to terminate appli-
cations and free up allocated resources. Each nucleus consists
of threads that track resource usage, communicate with the con-
trol plane, and handle control plane failures. The nucleus can
use system calls supported by the vanilla Linux kernel and the
CPU scheduler to query CPU usage and set or modify shares

6The URL for download has been withheld for purposes of blind reviewing.
Interested reviewers may contact us with the permission of the program chair.

8

for capsules. However, since these system calls operate on a
single capsule at a time, to improve efficiency, we have imple-
mented two new system calls that allow the nucleus to query
CPU usages or set shares for multiple capsules simultaneously.
This was the only change to the operating system interface; no
other changes were made in line with our goal of backward
compatibility with operating system interfaces and libraries.
The CPU and the nuclei communicate with one another us-

ing sockets with well-known port numbers. We chose raw sock-
ets over remote procedure calls for reasons of efficiency. Each
nucleus is required to register with the control plane at system
startup time to enable this communication.
Next we describe the complexity of the mechanisms em-

ployed by the control plane and the nucleus.
Admission Control and Capsule Placement. For each new

application, the control plane first sorts capsules in order of
their resource requirements, which is an operation
for capsules. The control plane is assumed to maintain a
list of nodes sorted on their spare capacities (if not, this takes

) time for nodes). The control plane then uses
a best-fit technique to match capsules with nodes. Since both
capsules and nodes are in sorted order, this can be achieved in
a single linear scan of the capsules and nodes (an op-
eration). Thus, the overall complexity of admission control and
capsule placement is .
Resource trading. The resource trading algorithm de-

scribed in Section 4.2 proceeds one application at a time; cap-
sules of an application need to be scanned no more than twice
to determine their new allocations (once for the first three steps
and once in Step 4). Thus, the overall complexity is linear in the
number of capsules and takes time in a system with
applications, each with capsules (total of capsules). Each
nucleus on a node participates in this process by determining
CPU usages of capsules and setting new allocations; the over-
head of these tasks is two system calls every time units.
Communication overheads. The number of bytes ex-

changed between the control plane and the various nuclei
is a function of the total number of capsules in the system
and the number of nodes. Although the precise overhead is

, it reduces to bytes in practice, since
in shared clusters (, are constants).

7 Experimental Evaluation

In this section, we experimentally evaluate our Sharc prototype
using two types of workloads—a commercial third-party host-
ing platform workload and a research workgroup environment
workload. Using these workloads and micro-benchmarks, we
demonstrate that Sharc: (i) provides predictable allocation of
CPU based on the specified resource requirements, (ii) can iso-
late applications from one another, (iii) can scale to clusters
with a few hundred nodes running 100,000 capsules, and (iv)
can handle a variety of failure scenarios. In what follows, we
first describe the test-bed for our experiments and then describe
our experimental results.

7.1 Experimental Setup
The testbed for our experiments consists of a cluster of five
Linux-based PCs. Each PC is a 350 MHz Pentium II with
64MB RAM and runs Redhat Linux 5.2 with the 2.2.0 version
of the Linux kernel. We used the publicly available implemen-
tation of the SFQ CPU scheduler from [17]; the process in-
volved downloading a kernel patch and recompiling the patched
kernel. All PCs are equipped with a 100Mb/s 3Com ethernet
card (model 3c595) and are interconnected by a 3Com Super-
Stack II ethernet switch. Our experiments assumed a lightly
loaded network, and unless specified otherwise, the Sharc con-
trol plane was run on a dedicated cluster node, as would be
typical on a third-party hosting platform.
Our experiments involved two types of workloads. Our first

workload is representative of a third-party hosting platform
and consists of the following applications: (i) the Apache web
server version 1.3.9, (ii) a home-grown streaming media server
that streams variable bit-rateMPEG-1 files, (ii) the Quake game
server (based on the publicly-available LinuxQuake version
2.30), and (iv) the mySQL database server version 3.23. Our
second workload is representative of a research workgroup en-
vironment and consists of (i) Scientific, a compute-intensive
scientific application that involved matrix manipulations, (ii)
Summarize, an information retrieval application, (iii) Disksim,
a publicly-available compute-intensive disk simulator, and (iv)
Make, an application build job that compiles the Linux 2.2.0
kernel using GNU make.
Next, we present the results of our experimental evaluation

using these applications.

7.2 Predictable CPU Allocation and Resource
Trading

We conducted an experiment to demonstrate resource trading
among capsules and predictable allocation of CPU bandwidth.
We chose a research workgroup environment with the four ap-
plications listed in Section 7.1. The placement of various cap-
sules and their reservations are listed in Table 1. As shown in
the table, the first two applications arrive in the first few min-
utes and are allocated their reserved shares by Sharc. The cap-
sule of the scientific application running on node 2 is put to
sleep at min, until min. This allows the other
capsules of that application on nodes 3 and 4 to borrow band-
width unused by the sleeping capsule. The diskSim application
arrives at min and the bandwidth borrowed on node 3
by the scientific application has to be returned (since the total
allocation on the node reaches 100%, there is no longer any
spare capacity on the node, preventing any further borrowing).
Finally, two kernel builds startup at min and are allo-
cated their reserved shares. We measured the CPU allocations
and the actual CPU usages of each capsule. Since there are ten
capsule in this experiment, due to space constraints, we only
present results for the three capsules on node 3. As shown
in Figure 5, the allocations of the three capsule closely match
the above scenario. The actual CPU usages are initially larger
than the allocations, since SFQ is a fair-share CPU scheduler

9

Table 1: Capsule Placement and Reservations
Applications Arrival Capsules & their Reservations

(min) N1 N2 N3 N4
Summarizer 1 20% 30% 20% —
Scientific 2.5 — 20% 30% 20%
Disksim 36 50% — 50% —
Make 37 — 50% — 50%

and fairly redistributes unused CPU bandwidth on that node to
runnable capsules (regardless of their allocations). Note that,
at min, the total allocation reaches 100%; at this point,
there in no longer any unused CPU bandwidth that can be re-
distributed and the CPU usages closely match their allocations
as expected. Thus, a proportional-share scheduler behaves ex-
actly like a reservation-based scheduler at full capacity, while
redistributing unused bandwidth in presence of space capacity;
this behavior is independent of Sharc, which continues to al-
locate bandwidth to capsules based on their initial reservations
and instantaneous needs.

7.3 Application Isolation in Sharc
We demonstrate application isolation in Sharc using a work-
load representative of a shared hosting platform. We use the
following setup: (i) Node 1: mySQL server (50% reservation),
(ii) Node 2: Quake server (15% reservation), and (iii) Node
3: streaming media server (15% reservation). We used the
benchmark suite distributed with the mySQL server to emulate
a heavy database workload. The Quake and streaming media
servers are lightly loaded at all times. We ran a replicated web
server (server) with capsules on nodes 1 and 2; the aggregate
reservationwas set to 80% (40% per capsule) and resource trad-
ing was permitted. A second replicated web server (server)
was run on nodes 2 and 3 with a reservation of 20% per cap-
sule; resource trading was turned off for this application. The
following experiment demonstrates that Sharc can effective iso-
late applications from one another in the presence of bursty web
workloads. We used the httperf tool [16] to send a burst of
web requests to server on node 1. The burst consists of re-
quests for static web pages as well as dynamically generated
web pages (Apache’s PHP3 scripting language is used for dy-
namic web page generation). The burst causes the capsule on
node 1 to borrow bandwidth from its peer on node 2, but does
not affect the database server (see Figure 6(a)). Next we send
a simultaneous burst to both capsules of server ; this causes
the bandwidth borrowed on node 1 to be returned to node 2, but
other applications are unaffected (see Figures 6(a) and (b)). Fi-
nally, we send a burst of web requests to the capsule of server
on node 3 (while maintaining a bursty workload on server).
Since resource trading is prohibited for server , the capsule
is unable to borrow bandwidth from its peer, even though the
latter has bandwidth to spare. Again, the bursts do not affect
other applications on the cluster (see Figure 6). This demon-
strates that Sharc can effectively isolate applications from one

another.

7.4 Scalability of Sharc
To demonstrate the scalability of Sharc, we conducted experi-
ments to measure the CPU and communication overheads im-
posed by the control plane and the nucleus. Observe that these
overheads depend solely on the number of capsules and nodes
in the system and are relatively independent of the characteris-
tic of each capsule.

7.4.1 Overheads Imposed by the Nucleus

We first measured the CPU usage of the nucleus for varying
loads; the usages were computed using the times system call
and profiling tools such as gprof. We varied the number of
capsules on a node from 10 to 10,000 and measured the CPU
usage of the nucleus for different interval lengths. Figure 7(a)
plots our results. As shown, the CPU overheads decrease with
increasing interval lengths. This is because the nucleus needs
to the query the kernel for CPU usages and notify it of new
allocations once in each interval . The larger the interval du-
ration, the less frequent are these operations, and consequently,
the smaller is the resulting CPU overhead. As shown in the
figure, the CPU overheads for 1000 capsules was less than 2%
when s. Even with 10,000 capsules, the CPU usage was
29% when s and less than 10% when s.
Figure 7(b) plots the system call overhead incurred by the

nucleus for querying CPU usages and for notifying new alloca-
tions. As shown, the overhead increases linearly with increas-
ing number of capsules; the average overhead of these system
calls for 500 capsules was only 191 s and 102 s, respectively
Figure 7(c) plots the communication overhead incurred by

the nucleus for varying number of capsules. The communi-
cation overhead is defined to be the total number of bytes re-
quired to report the usage vector to the control plane and re-
ceive new allocations for capsules. As shown in the Figure,
when s, the overhead is around 640KB for 10,000 cap-
sules (21.3 KB/s) and is less than 64KB per interval (2.1 KB/s)
for 1000 capsules. Together these results show that the over-
heads imposed by the nucleus for most realistic workloads is
small in practice.

7.4.2 Control Plane Overheads

Next we conducted experiments to examine the scalability of
the control plane. Since we were restricted by a five PC clus-
ter, we emulated larger clusters by starting up multiple nuclei
on each node and having each nucleus emulate all operations
as if it controlled the entire node. Due to memory constraints
on our machines, we didn’t actually start up a large number of
applications but simulated them by having the nuclei manage
the corresponding physical hierarchies and report varying CPU
usages. The nuclei on each node were unsynchronized and re-
ported usages to the control plane every time units. From the
perspective of the control plane, such a setup was no different
from an actual cluster with a large number of nodes.

10

0

20

40

60

80

100

0 10 20 30 40 50 60

CP
U

Ba
nd

wi
dt

h
(%

)

Time in minutes

Allocations and Usages

Summarizer: Usage
Summarizer: Allocation

0

20

40

60

80

100

0 10 20 30 40 50 60

CP
U

Ba
nd

wi
dt

h
(%

)

Time in minutes

Allocations and Usages

Scientific: Usage
Scientific: Allocation

0

20

40

60

80

100

0 10 20 30 40 50 60

CP
U

Ba
nd

wi
dt

h
(%

)

Time in minutes

Allocations and Usages

DiskSim: Usage
DiskSim: Allocation

(a) Summarizer (b) Scientific (c) Disksim

Figure 5: Predictable allocation and resource trading. Figure (a), (b) and (c) depict CPU usages and allocations of capsules
residing on node 3.

0

20

40

60

80

100

5 10 15 20 25

Al
lo

ca
tio

n
(%

)

Time in minutes

Allocations on Node 1

Database server
Web Server A

0

20

40

60

80

100

5 10 15 20 25

Al
lo

ca
tio

n
(%

)

Time in minutes

Allocations on Node 2

Game Server
Web Server A
Web Server B

0

20

40

60

80

100

5 10 15 20 25

Al
lo

ca
tio

n
(%

)

Time in minutes

Allocations on Node 3

Streaming Media Server
Web Server B

(a) Node 1 (b) Node 2 (c) Node 3

Figure 6: Application Isolation in Sharc. The allocations of all capsules on the three nodes are shown (due to space constraints,
CPU usages of these capsules have been omitted).

Figure 8(a) plots the CPU usage of the control plane for
varying cluster sizes and interval lengths. The figure shows that
a control plane running on a dedicated node can easily handle
the load imposed by a 256 node cluster with 10,000 capsules
(the CPU usage was less than 15% when s). Figure 8(b)
plots the total busy time for a 256 node cluster. The busy time
is defined to the total CPU overhead plus the total time to send
and receive messages to all the nuclei. As shown in the fig-
ure, the control plane can handle up to 100,000 capsules before
reaching saturation when s. Furthermore, smaller in-
terval lengths increase these overheads, since all control plane
operations occur more frequently. This indicates that a larger
interval length should be chosen to scale to larger cluster sizes.
Finally, Figure 8(c) plots the total communication overhead in-
curred by the control plane. Assuming s, the figure
shows that a cluster of 256 nodes running 100,000 capsules im-
poses an overhead of 1.71Mb/s, which is less than 2% of the
available bandwidth on a FastEthernet LAN. The figure also
shows that the communication overhead is largely dominated
by the number of capsules in the system and is relatively inde-
pendent on the number of nodes in the cluster.

Table 2: Failure Handing Times (with 95% Confidence Inter-
vals)

Failure Time to detect Time to recover
type

Nucleus 80.7s 5.91 11.18s 0.45
Node 79.27s 5.79 55.1ms 3.89

Control plane 19.85s 5.89 17.41s 1.99

7.5 Handling Failures

We used fault injection to study the effect on failures in Sharc.
We ran 100 capsules of our workgroup applications on each of
the four nodes and ran the control plane on a dedicated node
and set s. We killed the nucleus on various nodes at
random time instants and measured the times to detect and re-
cover from the failure. As shown in Table 2, the control plane
was able to detect the failure in 80.7s (around). Once
detected, starting up a new nucleus remotely took around 11.13
sec, while reconstructing the 100 node physical hierarchy and
resynchronizing state with the nucleus took an additional 54ms

11

0

5

10

15

20

25

30

0 20 40 60 80 100 120

CP
U

Us
ag

e
(%

)

Interval Length (sec)

CPU Overhead of a Nucleus

10 capsules
100 capsules

1000 capsules
10000 capsules

0
20
40
60
80

100
120
140
160
180
200

 100 200 300 400

Sy
st

em
 C

al
l O

ve
rh

ea
d

(m
icr

os
ec

)

Number of Capsules

System Call Overhead

Querying Usages
Changing Allocations

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000

O
ve

rh
ea

d
(K

B/
In

te
rv

al
)

Number of Capsules

Communication Overhead Per Interval, I=30s

(a) CPU overhead (b) System call overhead (c) Communication Overhead

Figure 7: Overheads imposed by the nucleus.

0

5

10

15

20

25

0 20 40 60 80 100 120

CP
U

Us
ag

e
(%

)

Interval Length (sec)

CPU Overhead

32 nodes, 500 capsules
100 nodes, 1000 capsules

256 nodes, 10000 capsules

0
10
20
30
40
50
60
70
80
90

100

 20000 40000 60000 80000 100000

Pe
rc

en
ta

ge
 B

us
y

Ti
m

e

Number of Capsules

CPU Overhead

I = 15 sec
I = 30 sec
I = 60 sec

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20000 40000 60000 80000 100000

Da
ta

 T
ra

ns
fe

r O
ve

rh
ea

d
(M

b/
s)

Total number of capsules

Communication Overhead Per Second

32 nodes
100 nodes
256 nodes

(a) CPU overhead (b) Total Busy Time (c) Communication Overhead

Figure 8: Overheads imposed by the control plane.

(total recovery time was 11.18s). Next we studied the effect of
node failures by halting the OS on nodes at arbitrary time in-
stants. Detecting a node failure took around 79.27s; the control
plane then attempted to reassign the 100 capsules on the failed
node to other nodes. The resulting admission control, capsule
placement and sending updates to nuclei took 55.1ms. In one
case, we used a heavily loaded system, and as expected, the
control plane signalled its inability to reassign capsules to other
nodes due to lack of sufficient resources. Finally, we studied
the impact of control plane failures. The control plane was run
on a dedicated cluster node and was killed at random instants.
The nuclei were able to detect the failure in 19.8s; running the
election algorithm took 16.63s, starting up a new control plane
took 9.45ms, while reconstruction of the 400 capsule virtual hi-
erarchy took another 294.9ms (total recovery time was 17.41s).
Our current prototype can only handles the case where a control
plane running on a dedicated node fails; handling the failure of
a control plane that runs on a node with active capsules is more
complex and is not currently handled.

7.6 Effect of Tunable Parameters
To demonstrate the effect of tunable parameters and , we
used the same set of workgroup applications described in Table
1. We put a capsule of the scientific application to sleep for a

short duration. We varied the interval length and measured
its impact on the allocation of the capsule. As shown in Figure
9(a), increasing the interval length causes the CPU usage to
be averaged over a larger measurement interval and diminishes
the impact of the transient sleep on the allocation of the capsule
(with a large of 5min the effect of the sleep was negligibly
small on the allocation). Next we put a capsule of Disksim to
sleep for a few minutes and measured the effect of varying on
the allocations. As shown in Figure 9(b), use of a large makes
the allocation more sensitive to such transient changes, while
a small diminishes the contribution of transient changes in
usage on the allocations. This demonstrates that an appropriate
choice of and can be used to control the sensitivity of the
allocations to short-term changes in usage.

8 Limitations and Directions for Future
Work

In this section, we present some limitations of our current de-
sign and discuss directions for future research.
Heterogeneous clusters: Our current design assumes that all

nodes in the cluster are homogeneous. We are currently en-
hancing Sharc to accommodate nodes with different processor
speeds or different number of processors. Our approach in-

12

10

20

30

40

50

60

0 2.5 5 7.5 10 12.5

Al
lo

ca
tio

n
(%

)

Time in minutes

Effect of Interval Length

I = 5 sec
I = 30 sec
I = 5 min

20

40

60

80

100

0 5 10 15

Al
lo

ca
tio

n
(%

)

Time in minutes

Effect of alpha

alpha=0.1
alpha=0.5
alpha=0.9

(a) Effect of (b) Effect of

Figure 9: Impact of tunable parameters on capsule allocations.

volves modeling the slowest node in the system as a unit re-
sources and modeling resources on other nodes relative to this
node. The admission control, capsule placement, and resource
trading techniques need to be modified accordingly. To illus-
trate, the current uniprocessor admission control that requires

for each capsule generalizes to
where denotes the number of processors on that node and
denotes the number of resource principals in that capsule.
Managing other cluster resources: Although Sharc cur-

rently supports only cluster-wide allocation of CPU bandwidth,
our techniques are applicable to other cluster resources such
as disk and network interface bandwidth. We plan to enhance
Sharc to manage all of these resources. Our design philosophy
for these enhancements is similar—allow Sharc to determine
per-capsule reservations for each such resource and let the OS
scheduler enforce these allocations.
Security considerations: We are examining various secu-

rity implications of running untrusted applications on shared
clusters. One of our goals is to prevent malicious applications
from sending fake messages by masquerading as the nucleus
or the control plane (communication between the nucleus and
the kernel requires root privileges and is more difficult to com-
promise). Public key cryptography is one possible approach
to address this issue—all communications between the nucleus
and the control plane is encrypted using the public key of the re-
cipient and digitally signed using the private key of the sender.
We also plan to study the performance implications of using
encryption on the scalability of the system.
Resource overbooking and trust: Currently the control plane

does not support overbooking of resources on a node or take
trust among applications into account during capsule place-
ment. Overbooking of resources requires more sophisticated
admission control techniques as well as enhanced techniques
to map reservations on an overbooked node to underlying CPU
reservations or shares. Similarly, taking trust among applica-
tions into account, in addition to resource availability, during
capsule placement makes placement a multi-dimensional opti-
mization problem with several constraints. The design of such

techniques is the subject of future research.

9 Related Work

Several techniques for predictable allocation of resources
within a single machine have been developed over the past
decade [4, 8, 13, 14, 23]. A key contribution of Sharc is to
extend the benefits of such single node resource management
techniques to clustered environments.
Research on clustered environments has spanned a number

of issues. Systems such as Condor have investigated techniques
for harvesting idle CPU cycles on a cluster of workstations to
run batch jobs [15]. The design of scalable, fault-tolerant net-
work services running on server clusters has been studied in
[9, 12]. Use of virtual clusters to manage resources and con-
tain faults in large multiprocessor systems has been studied in
[10]. Scalability, availability and performance issues in ded-
icated clusters have been studied in the context of clustered
mail servers [19] and replicated web servers [2]. Numerous
middleware-based approaches for clustered environments have
also been proposed [6, 7].
Two recent efforts have focused on the specific issue

of resource management in shared commodity clusters. A
proportional-share scheduling technique for a network of work-
stations was proposed in [3]. Whereas there are some simi-
larities between their approach and Sharc, there are some no-
table differences. The primary difference is that their approach
is based on fair relative allocation of cluster resources us-
ing proportional-share scheduling, whereas we focus on abso-
lute allocation of resources using reservations (reservations and
shares are fundamentally different resource allocation mecha-
nisms). Even with an underlying proportional-share scheduler,
Sharc can provide absolute bounds on allocations using admis-
sion control—the admission controller guarantees resources to
applications and constrains that the underlying proportional-
share scheduler to fair redistribution of unused bandwidth (in-
stead of fair allocation of the total bandwidth as in [3]). A sec-
ond difference is that lending resources in [3] results in accu-

13

mulation of credit that can be used by the task at a later time; the
notion of lending resources in Sharc is inherently different—no
credit is ever accumulated and trading is constrained by the ag-
gregate reservation for an application. The Cluster Reserves
work has also investigated resource allocation in server clusters
[1]. The work assumes a large application running on a cluster,
where the aim is to provide differential service to clients based
on some notion of service class. The approach uses resource
containers [4] and employs a linear programming formulation
for allocating resources, resulting in polynomial time complex-
ity. Sharc employs a simpler linear time algorithm to trade re-
sources among capsules. Although our approach is more scal-
able due to its reduced complexity, Cluster Reserves can yield
better allocation, especially in Step 4 of our trading algorithm
where we revert to a heuristic. Finally, unlike Sharc, neither of
these efforts have considered failure handling techniques.

10 Concluding Remarks

In this paper, we argued the need for effective resource con-
trol mechanisms for sharing resources in commodity clusters.
To address this issue, we presented the design of Sharc—a sys-
tem that enables resource sharing in such clusters. Sharc de-
pends on resource control mechanisms such as reservations or
shares in the underlyingOS and extends the the benefits of such
mechanisms to clustered environments. The control plane and
the nuclei in Sharc achieve this goal by (i) supporting resource
reservation for applications, (iii) providing performance isola-
tion and dynamic resource allocation to application capsules,
and (iv) providing high availability of cluster resources. Our
evaluation of the Sharc prototype showed that Sharc can scale
to 256 node clusters running 100,000 capsules. Our results
demonstrated that a system such as Sharc can be an effective
approach for sharing resources among competing applications
in moderate size clusters.

References
[1] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster Reserves: A Mech-

anism for Resource Management in Cluster-based Network Servers. In
Proceedings of the ACM SIGMETRICS Conference, Santa Clara, CA,
June 2000.

[2] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. Scalable Content-
aware Request Distribution in Cluster-based Network Servers. In Pro-
ceedings of the USENIX 2000 Annual Technical Conference, San Diego,
CA, June 2000.

[3] A. Arpaci-Dusseau and D E. Culler. Extending Proportional-Share
Scheduling to a Network of Workstations. In Proceedings of Parallel
and Distributed Processing Techniques and Applications (PDPTA’97),
Las Vegas, NV, June 1997.

[4] G. Banga, P. Druschel, and J. Mogul. Resource Containers: A New Fa-
cility for Resource Management in Server Systems. In Proceedings of
the third Symposium on Operating System Design and Implementation
(OSDI’99), New Orleans, pages 45–58, February 1999.

[5] J. Blanquer, J. Bruno, M. McShea, B. Ozden, A. Silberschatz, and
A. Singh. Resource Management for QoS in Eclipse/BSD. In Proceed-
ings of the FreeBSD’99 Conference, Berkeley, CA, October 1999.

[6] Corba Documentation. Available from http://www.omg.org.

[7] Distributed Computing Environment Documentation. Available from
http://www.opengroup.org.

[8] K. Duda and D. Cheriton. Borrowed Virtual Time (BVT) Scheduling:
Supporting Lantency-sensitive Threads in a General-Purpose Scheduler.
In Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP’99), Kiawah Island Resort, SC, pages 261–276, December 1999.

[9] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier.
Cluster-based Scalable Network Services. In Proceedings of the sixteenth
ACM symposium on Operating systems principles (SOSP’97), Saint-
Malo, France, pages 78–91, December 1997.

[10] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular Disco:
Resource Management using Virtual Clusters on Shared-memory Multi-
processors. In Proceedings of the ACM Symposium on Operating Sys-
tems Principles (SOSP’99), Kiawah Island Resort, SC, pages 154–169,
December 1999.

[11] P. Goyal, X. Guo, and H.M. Vin. A Hierarchical CPU Scheduler for Mul-
timedia Operating Systems. In Proceedings of Operating System Design
and Implementation (OSDI’96), Seattle, pages 107–122, October 1996.

[12] S. D. Gribble, E A. Brewer, J M. Hellerstein, and D. Culler. Scalable, Dis-
tributed Data Structures for Internet Service Construction. In Proceedings
of the Fourth Symposium on Operating System Design and Implementa-
tion (OSDI 2000), San Diego, CA, pages 319–332, October 2000.

[13] M B. Jones, D Rosu, and M Rosu. CPU Reservations and Time Con-
straints: Efficient, Predictable Scheduling of Independent Activities. In
Proceedings of the sixteenth ACM symposium on Operating Systems
Principles (SOSP’97), Saint-Malo, France, pages 198–211, December
1997.

[14] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul
Barham, David Evers, Robin Fairbairns, and Eoin Hyden. The Design
and Implementation of an Operating System to Support Distributed Mul-
timedia Applications. IEEE Journal on Selected Areas in Communica-
tion, 14(7):1280–1297, September 1996.

[15] M. Litzkow, M. Livny, and Matt Mutka. Condor - A Hunter of Idle
Workstations. In Proceedings of the 8th International Conference of Dis-
tributed Computing Systems, pages 104–111, June 1988.

[16] D. Mosberger and T. Jin. httperf - A Tool for Measuring Web Server
Performance. Technical Report HPL-98-61, HP Labs, 1998.

[17] QLinux Software Distribution. Available from
http://lass.cs.umass.edu/software/qlinux, 1999.

[18] T. Roscoe and B. Lyles. Distributing Computing without DPEs: Design
Considerations for Public Computing Platforms. In Proceedings of the
9th ACM SIGOPS European Workshop, Kolding, Denmark, September
2000.

[19] Y. Saito, B. Bershad, and H. Levy. Manageability, Availability and Per-
formance in Porcupine: A Highly Available, Scalable Cluster-based Mail
Service. In Proceedings of the 17th SOSP, Kiawah Island Resort, SC,
pages 1–15, December 1999.

[20] REACT: IRIX Real-time Extensions. Silicon Graphics, Inc.,
http://www.sgi.com/software/react, 1999.

[21] Solaris Resource Manager 1.0: Controlling System Resources Effec-
tively. Sun Microsystems, Inc., http://www.sun.com/software/white-
papers/wp-srm/, 1998.

[22] A S. Tannenbaum. Distributed Operating Systems. Prentice Hall, 1995.

[23] B. Verghese, A. Gupta, and M. Rosenblum. Performance Isolation: Shar-
ing and Isolation in Shared-Memory Multiprocessors. In Proceedings of
ASPLOS-VIII, San Jose, CA, pages 181–192, October 1998.

14

