New Resource Control Issues in Shared Clusters

Timothy Roscoe
Sprint Advanced Technology Labs
1 Adrian Court
Burlingame, CA 94010, USA
troscoe@sprintlabs.com

Abstract— We claim that the renting of machine
resources on clusters of servers introduces new sys-
tems challenges which are different from those hith-
erto encountered, either in multimedia systems or
cluster-based computing. We characterize the re-
quirements for such “public computing platforms”
and discuss both how the scenario differs from more
traditional multimedia resource control situations,
and how some ideas from multimedia systems work
can be reapplied in this new context. Finally, we
discuss our work building a prototype public com-
puting platform.

I. INTRODUCTION AND MOTIVATION

HIS paper argues that the growth of shared com-

puting platforms poses new problems in the field
of resource control that are not addressed by the cur-
rent state of the art, and consequently there exist im-
portant unresolved resource control issues of interest
to the multimedia systems community.

The scenario we examine in detail is that of a pub-
lic computing platform. Such a platform provides
computational resources to a large number of small
service providers who pay the provider of the plat-
form for the resources: CPU cycles, network band-
width, storage space, storage bandwidth, etc. The
platform provider offers service providers a platform
which can be, for example, highly available, managed,
and located in a geographically advantageous location
such as a metropolitan area. In return, the platform
provider can use economies of scale to offer service
hosting at an attractive rate and still generate profit.

Public computing platforms differ from current
hosting solutions in that there are many more ser-
vices than machines: lots of services share a relatively
small number of machines. The challenge for the plat-
form provider is to be able to sell resources like pro-
cessor cycles and predictable service to many service
providers, who may be mutually antagonistic, in a
cost-effective manner.

This engineering problem subsumes other impor-
tant scenarios as well. Omne examples is workgroup

Prashant Shenoy
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003, USA
shenoy@cs.umass.edu

clusters: a cluster of compute servers shared by a
workgroup or university department. Here the ba-
sic challenges are the same, but there can be more
trust between applications sharing the computing fa-
cility and users are not necessarily directly paying for
computation.

There is evidence that this problem is becoming
important. Systems for running one, specialized class
of application (e.g. web servers, caches, some Appli-
cation Service Providers) in this manner are already
appearing in the marketplace. However, the lack of
solutions for the more general problem has prevented
the range of services offered in this way from being
widened, for example to include multimedia traffic.

Two research areas feed directly in to this area:
both have much to offer, but do not address areas
specific to the support of time- and resource-sensitive
applications on public computing platforms.

A. Resource control in multimedia systems

Resource control has been central question in mul-
timedia systems research for at least the past 10 years
or so. Control of resource allocation within a ma-
chine is now relatively well-understood: it has been
addressed in completely new operating systems (e.g.
[1], [2]), modifications to existing operating systems
(e.g. [?], schedulers, and abstractions (e.g. [3]).

Many of the advances above were motivated by the
desire to handle multimedia and other time-sensitive
applications. Such mechanisms clearly have a place
in a public computing platform designed to handle a
diversity of services, not simply for multimedia appli-
cations but to provide performance isolation between
services owned by providers who are paying for re-
sources. However, our research has shown that exist-
ing resource allocation techniques do not directly gen-
eralize to multi-resource environments (multiproces-
sors, clusters), necessitating the design of novel tech-
niques for such environments [4].



B. Cluster-based computing platforms

Much work has been performed recently on the use
of clustered computing platforms for network services
(see [5] for an example and convincing arguments in
favor of the approach). This work aims at delivering
high-capacity, scalable, highly-available applications,
usually web-based.

Typically, a single application is supported, or
else the applications are assumed to be mutually
trusting—a reasonable assumption in the large enter-
prise case. Consequently, little attention is paid to
resource control, either for real-time guarantees to ap-
plications or performance isolation between them [6].
Similarly, intra-cluster security is relaxed as a simpli-
fying assumption within the platform][7].

One notable exception to this is recent work on pro-
viding differential service to web-based applications,
for example Cluster Reserves[8]. This work assumes a
large application running on a cluster of servers, where
the aim is to provide differential service to clients
based on some notion of service class, for example re-
quested content or source address. Most, though not
all, services on the Internet today fall into this cate-
gory. In the future, however, we can expect a wider
variety of services with a wider range of resource re-
quirements.

While the arguments for an approach based on clus-
ters of commodity machines carry over into the pub-
lic computing space, the assumptions about resource
control and trust clearly do not: the applications we
can expect to be running on such platforms will have
diverse requirements and the operators of such ap-
plications will be paying money to ensure that those
requirements are met. In addition, they may be in
competition with each other. Lack of trust between
competing applications as well as between applica-
tions and the platform provider introduces new chal-
lenges in design of cluster control systems.

However, techniques developed for existing cluster-
based platforms for managing the cluster can still be
highly appropriate for managing a public computing
platform, providing that the additional requirements
for security and resource control are met.

C. What’s different about public computing platforms

This paper argues that the systems problems of
public computing platforms are conveniently similar
to the two fields above, but have a specificity of their
own. They both present new challenges, but also have
properties that help to ground and concretize general

classes of solutions.

The most significant property of systems like this
that set them apart from traditional multimedia sys-
tems and cluster-based servers is that resources are
being sold. From a cluster architecture point of view
this means that performance isolation becomes cen-
tral: it is essential to provide some kind of quantita-
tive resource guarantees since this is what people are
paying for.

From a multimedia systems point of view this prop-
erty has two effects. Firstly, resource allocation must
extend over multiple machines running a large number
of services. This amounts to a problem of placement:
which components of which services are to share a
machine?

Secondly, the policies used to drive both this place-
ment and the resource control mechanisms on the in-
dividual machines are now driven by a clear business
case. Resource control research in the past has been
marked by a lack of clear consensus over what is be-
ing optimized by the various mechanisms and poli-
cies: processor utilization, application predictability,
application performance, etc. The notion of graceful
degradation is also made more quantitative in this sce-
nario: we can relate degradation of service to a change
in platform revenue. This represents a significant ad-
vance over current so-called “economic” or “market-
driven” resource allocation policies since they can now
be explicitly linked to a “real” market.

We elaborate on these issues below.

II. REQUIREMENTS OF A PUBLIC COMPUTING
PLATFORM

A. Resource Control Mechanisms for Heterogeneous
Applications

In the recent past, server clusters have been em-
ployed for specialized scenarios such as dedicated
hosting where each application runs on a dedicated
node, and for providing replicated services where the
application is replicated on all nodes of the cluster
(e.g., cluster-based web servers). A public computing
platform subsumes these two extremes by allowing ap-
plications to run on an arbitrary subset of the nodes.
Moreover, since applications share resources on the
platform, these subsets can overlap in arbitrary ways.
We refer to that component of an application that
runs on a given node as a capsule; each application
can have one or more capsules, but not more than
one per node.

Applications running on the platform are assumed



to be inherently heterogeneous. We envisage a mix
of applications such as streaming audio and video
serviers, game servers (e.g., Quake), vanilla web
servers, and ecommerce applications. Observe that
these applications have diverse performance require-
ments. For instance, game servers need good interac-
tive performance and thus low average response times,
ecommerce applications need high aggregate through-
put (in terms of transactions per second), and stream-
ing media servers require real-time performance guar-
antees. In addition to heterogeneity across applica-
tions, there could be heterogeneity within each appli-
cation. For instance, an ecommerce application might
consist of capsules to service HTTP requests, to han-
dle electronic payments and to manage product cat-
alogs. Each such capsule might impose a different
performance requirement.

The above examples illustrate the need to handle
heterogeneity both across and within distributed ap-
plications. For each such application (or service), a
service provider contracts with the platform provider
for the desired performance requirements along vari-
ous dimensions. Such requirements could include the
desired reservation (or share) for each capsule as well
as average response times, throughput or deadline
guarantees. The platform should be able to determine
whether sufficient resources exist to meet these needs
and reserve these resources on appropriate nodes.
Further, it should employ resource control mecha-
nisms to enforce these allocations on a sufficiently fine
time-scale. As argued earlier, these issues are well
understood for single node environments but these
techniques do not carry over to multi-resource (multi-
node) environments. For instance, it was shown in [4]
that uniprocessor proportional-share scheduling algo-
rithms can cause starvation or unbounded unfairness
when employed for multiprocessors. Consequently,
novel resource control techniques need to be developed
to meet the performance requirements of distributed
applications in public computing platforms.

B. Capsule Placement

A typical public computing platform will consist of
tens or hundreds of nodes running thousands of third-
party applications. Due to the large number of nodes
and applications in the system, manual mapping of
capsules to nodes in the platform is infeasible. Con-
sequently, an automated capsule placement algorithm
is a critical component of any public computing plat-
form. Such an algorithm should meet several require-
ments. First, placement of a capsules to nodes should

be done incrementally without having to recompute
the placement of existing capsules; further this map-
ping should be “optimal” or “near-optimal” to maxi-
mize revenue. Second, since a platform provider may
add nodes to the platform or nodes may fail, it should
be able to reconfigure the placement of modules dy-
namically. Such reconfigurations are also necessary
when an application provider requests additional (or
fewer) resources for the application based on vari-
ations in its popularity. All such reconfigurations
should minimize the number of capsules that need to
be moved from one node to another (since they involve
stopping and restarting of capsules, a potentially dis-
ruptive operation).

Note that capsule placement is more than a simple
bin packing problem, where capsules are assigned to
nodes such that no node is saturated. Applications
in a public computing platform can be mutually an-
tagonistic. More seriously, they could be untrusted
and could deny service to other applications. Hence,
it is critical to isolate antagonistic or untrustworthy
applications from one another. Performance isolation
via resource control is necessary but not sufficient to
address the issue of trust. A capsule placement algo-
rithm should take into account trust (or lack thereof)
among applications while mapping capsules to nodes.
Another issue that impacts capsule placement is crit-
icality. Criticality is a measure of how important a
capsule or an application is to the platform provider.
For example, criticality could be a function of how
much the service provider is paying for the applica-
tion. Clearly, mapping capsules of critical applica-
tions and untrusted applications to the same node is
problematic, since a denial of service attack by the un-
trusted application can result in revenue losses for the
platform provider. Consequently, capsule placement
becomes a multi-dimensional optimization problem—
one that takes into account the trustworthiness of an
application, its criticality and its performance require-
ments [?].

C. Handling Failures

Since high availability is critical to a public comput-
ing platform, the platform should handle failures in a
graceful manner. In contrast to traditional clusters,
the commercial nature of a public computing platform
has an important effect on how failures are handled:
we can classify failures as to whose responsibility it
is to handle them, the platform provider or a service
provider.

We distinguish three kinds of failures in a public



computing platform: (i) platform failures, (ii) appli-
cation failures, and (iii) capsule failures.

A platform failure occurs when a node fails or some
platform-specific software on the node fails. A plat-
form failure can also occur due to resource exhaus-
tion: since resources on each node of the platform
may be overbooked to extract statistical multiplex-
ing gains, resource exhaustion caused due to the total
instantaneous demand exceeding capacity will result
in a violation of performance guarantees. Platform
failures must be dealt with by detecting them in a
timely manner and recovering from them automati-
cally (for instance, by restarting failed nodes or by
offloading capsules from an overloaded node to an-
other node). A special case of a platform failure is a
platform-wide failure—a catastrophic failure that oc-
curs due to multiple simultaneous node failures or the
failure of a critical cluster-wide component (e.g., the
cluster-wide resource manager). We assume that a
typical platform-wide failure will require human in-
tervention.

An application failure occurs when an application
running on the platform fails in a manner detectable
by the platform. Depending on the application and
the service contract between the platform provider
and the service provider, handling application failures
could be the responsibility of the platform provider or
the service provider (or both). In the former scenario,
application semantics that constitute a failure will
need to be specified a priori to the platform provider
and the platform will need to incorporate application-
specific mechanisms to detect and recover from such
failures.

A capsule failure occurs when an application cap-
sule fails in a way undetectable to the platform
provider, for example an internal deadlock condition
in an application. Capsule failures must be assumed
to be the responsibility of the service provider and
the platform itself does not provide any support for
dealing with them.

We have found this factorization of failure types
highly useful in designing fault-tolerance mechanisms
into the platform.

D. Tracking Resource Usage

A public computing platform should also employ
efficient techniques to track resource usage so as to
facilitate billing, long-term capacity planning and off-
line diagnostics. Due to the large number of nodes
and the even larger number of applications in the
platform, the sheer volume of usage-based statistics

and the overheads of monitoring and collecting these
statistics can be overwhelming. Consequently, novel
resource monitoring and logging techniques need to
be developed that can capture relevant information
in a succinct manner and also correlate and aggregate
information from different nodes in the cluster.

III. STATUS OF ON-GOING WORK

We are designing a public computing platform that
addresses the requirements outlined in the previous
section. Our initial research focus has been on the
design of resource control mechanisms and security
mechanisms for application isolation in such plat-
forms.

We started by examining two canonical techniques
— reservations [1], [10] and shares [11], [12] — for allo-
cating resources to applications in a cluster. Whereas
a reservation-based approach allocates resources in
absolute terms (e.g., 2ms of CPU time every 20ms
on a node), a proportional-share approach enables
relative allocation of resources. In the latter ap-
proach, each capsule is assigned a weight and re-
ceives resources in proportion to its weight (alloca-
tion is relative because the share of each capsule de-
pends not only on its weight but also the cumula-
tive weights of the remaining capsules). In a pure-
reservation-based approach, each capsule always re-
ceives at most its requested fraction; any unused band-
width is wasted. In the proportional-share approach,
a continuously runnable application always receives
at least its assigned share and possibly more if other
capsules do not utilize their allocations (i.e., unused
bandwidth is redistributed among runnable capsules
in proportion to their weights). Conceptually, re-
sources requirements specified using reservations are
upper bounds, while those specified using weights are
Rather than wasting unused band-
width, it is possible to modify a reservation-based ap-
proach to redistribute unused bandwidth among com-
peting applications. Similarly, it is possible to com-
bine proportional-share scheduling algorithms with
admission control to limit the number of applications
in the system and provide guarantees on delay and
throughput [13]. Due to these similarities, it has been
shown that reservations and shares are duals of one
another [14] in the sense that a single scheduler can si-
multaneously allocate resources based on weights and
reservations.

lower bounds.

We are currently investigating resource control
mechanisms that employ a novel combination of these
two approaches. Our approach employs a reservation-



based cluster-wide hierarchy; application providers
can use this hierarchy to specify their aggregate re-
quirements as well as those of individual capsules.
Once an application is admitted and its capsules are
mapped to individual nodes, the platform translates
these reservations into equivalent shares and employs
a proportional-share scheduler to enforce these allo-
cations. Since the number of capsules at each node is
constrained by admission control each application can
be provided with guarantees on processor bandwidth
and latency. This approach is conceptually equiva-
lent to using a reservation-based scheduler at each
node that can reassign idle bandwidth. Moreover, the
hybrid approach permits a judicious combination of
work conserving behavior and predictable allocation.

We are also developing novel security mechanisms
to isolate untrusting applications from one another.
Our approach consists of dynamically programming
the cluster interconnect using packet filters to isolate
applications from one another.

Over the next few months, we plan to focus on (i)
the design of cluster placement algorithms that take
into account various factors such as trust, criticality
and performance, and (ii) mechanisms to handle fail-
ures in a graceful manner.

IV. CONCLUSIONS
ACKNOWLEDGMENTS

The authors would like to acknowledge the sugges-
tions of Bryan Lyles in writing this paper.

REFERENCES

[1] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, and R. Fairbairns, “The design and implemen-
tation of an operating system to support distributed mul-
timedia applications,” IEEFE Journal on Selected Areas in
Communications, vol. 14, no. 7, pp. 1280-1297, 1996.

[2] O. Spatscheck and L. L. Peterson, “Defending Against
Denial of Service Attacks in Scout,” in Proceedings of the
3rd USENIX Symposium on Operating Systems Design and
Implementation, February 1999.

[3] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul, “Re-
source Containers: a new facility for resource management
in server systems,” in Proceedings of the third symposium
on Operating systems design and implementation, New Or-
leans, Louisiana, March 1999, pp. 45-68.

[4] A. Chandra, M. Adler, P. Goyal, and P. Shenoy, “Surplus
fair scheduling: A proportional-share cpu scheduling algo-
rithm for symmetric multiprocessors,” in Proceedings of the
Fourth Symposium on Operating System Design and Imple-
mentation (OSDI 2000), San Diego, CA, October 2000.

[6] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A.
Brewer, and Paul Gauthier, “Cluster-Based Scalable Net-
work Services,” in Proceedings of the 16 ACM Symposium

[10]

[11]

[12]

[13]

on Operating Systems Principles, San Malo, France, Octo-
ber 1997.

M. Litzkow, M. Livny, and Matt Mutka, “Condor - a hunter
of idle workstations,” in Proceedings of the 8th Interna-
tional Conference of Distributed Computing Systems, June
1988, pp. 104-111.

Steven D. Gribble, Matt Welsh, Eric A. Brewer, and David
Culler, “The Multispace: an Evolutionary Platform for
Infrastructural Services,” in Proceedings of the 1999 Usenix
Annual Technical Conference, Monterey, California, June
1999.

Mohit Aron, Peter Druschel, and Willy Zwaenepoel, “Clus-
ter Reserves: A mechanism for Resource Management in
Cluster-based Network Servers,” in Proceedings of the
ACM Sigmetrics 2000 International Conference on Mea-
surement and Modeling of Computer Systems, Santa Clara,
CA, June 2000.

D. Sullivan, R. Haas, and M. Seltzer, “Tickets and curren-
cies revisted: Extensions to multi-resource lottery schedul-
ing,” in Proceedings of the 1999 Workshop on Hot Topics
in Operating Systems (HotOS VII),Rio Rico, AZ, March
1999.

M B. Jones, D Rosu, and M Rosu, “Cpu reservations and
time constraints: Efficient, predictable scheduling of inde-
pendent activities,” in Proceedings of the sizteenth ACM
symposium on Operating Systems Principles (SOSP’97),
Saint-Malo, France, December 1997, pp. 198-211.

K. Duda and D. Cheriton, “Borrowed virtual time (bvt)
scheduling: Supporting lantency-sensitive threads in a
general-purpose scheduler,” in Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP’99),
Kiawah Island Resort, SC, December 1999, pp. 261-276.
P. Goyal, X. Guo, and H.M. Vin, “A hierarchical cpu sched-
uler for multimedia operating systems,” in Proceedings of
Operating System Design and Implementation (OSDI’96),
Seattle, October 1996, pp. 107-122.

P. Goyal, S. S. Lam, and H. M. Vin, “Determin-
ing end-to-end delay bounds in heterogeneous networks,”
ACM/Springer- Verlag Multimedia Systems Journal, vol. 5,
no. 3, pp. 157-163, May 1997.

I. Stoica, H. Abdel-Wahab, and K. Jeffay, “On the du-
ality between resource reservation and proportional share
resource allocation,” in Proceedings of the ACM/SPIE
Conference on Multimedia Computing and Networking
(MMCN’97), San Jose, CA, February 1997, pp. 207-214.



