Finding Patterns that Correspond to Episodes

Paul Cohen (1) Niall Adams (2) and David J. Hand (2)

1 University of Massachusetts, Amherst, USA and 2 Imperial College, UK

Abstract

We present two algorithms for elucidat-
ing structures in time series. These are
unsupervised algorithms; they discover
patterns without any knowledge about
the episodic structures in the time series
data. Yet, these patterns correspond with
episodes, at least in an experiment with
data from robot episodes. We offer a pre-
liminary explanation for this result based
on the idea that episodes persist. If this
explanation is correct, then the algorithms
are apt to be more generally applicable.

1 Introduction

Here is the problem we want to solve: We sus-
pect a multivariate time series contains several
episodes, but we don’t know the episode bound-
aries, the number of episodes, or the structures
of the episodes. We suspect that at least some
of the episodes are similar, but perhaps no two
episodes are identical. Finally, we suspect that
episodes have a hierarchical structure in the sense
that shorter episodes can be nested inside longer
ones. The challenge is to find the episodes and
elucidate their structure. We collected a dataset of
48 trials in which a robot approaches and pushes
an object until it stalls. Each trial comprises sev-
eral sub-episodes: a quick-approach sequence, a
slow-approach sequence, a contact event, a push
sequence, followed by a stall-and-backup sequence.
Two approach-and-push sequences may be are sim-
ilar in the sense that each comprises the same sub-
episodes, and they even look roughly the same
— the time series have roughly similar morphol-
ogy — but they are not identical. If someone
helpfully marks up a time series with episode
and sub-episode boundaries, then it is relatively
easy to characterize the structures of episodes and
subepisodes (e.g., [2,5]. The problem is more dif-
ficult if episode boundaries are not known. This is

the problem we address here.

Note that episode is a semantic concept, one
that makes implicit reference to the processes that
generate time series, to what a time series rep-
resents. The corresponding syntactic concept is
pattern. One can see several patterns in the se-
quence ABCABCCBACBA, including the triples
ty = ABC and ty = ('BA; the sequences tity,
toty and tqtytaty; as well as the palindromic struc-
ture of the sequence. One doesn’t need to know
what the sequence represents — what it means,
or denotes in the real world — in order to find
these patterns. Suppose that the real world is, in
fact, characterized by episodes of the form ABC
and C'BA. Then, an algorithm that finds these
patterns will fortuituously have identified episodes.
Unfortunately, there are usually many more pat-
terns in data than episodes in the world, so one
easily finds many patterns that do not correspond
to episodes. The challenge, then, is to find syntac-
tic patterns that correspond to semantic episodes.
An episode boundary is a point or an interval at
which a time series stops representing one thing
and starts representing another; for example, the
point at which a robot stops approaching an object
and starts pushing it. The trick is to find a syn-
tactic basis for dividing sequences such that the
resulting subsequences are semantically coherent,
that is, episodes.

Many Al problems can be characterized in this
way. For example, computer vision researchers dis-
tinguish image features such as lines from scene
features such as edges. Finding lines is a formal
operation, interpreting them as edges is a seman-
tic one, and, as all vision researchers know, the
syntactic, formal, line structure only roughly in-
dicates the semantic or scene structure. One is
always looking for formal features that indicate se-
mantic ones.

In general, the more one knows about the se-
mantic structures, the more effectively one can
find, design, or otherwise exploit syntactic indi-
cators for them. For example, one might have
expectations about the transition probabilities in

episode, or a rough sense of how long episodes
should be, or knowledge that particular sensor val-
ues tend to be more likely in some kinds of episodes
than in others. All these can help elucidate pat-
terns that correspond to episodes. Sometimes it
suffices to know that subsequences of a time se-
ries belong to one class or another. In such cases,
one can find syntactic features of the subsequences
that predict class membership, and these are apt
to have good semantic interpretations (see, for ex-
ample, [1]).

Alternatively, one could design supervised
learning algorithms to associate syntactic patterns
with episodes. In this work, we do have a time se-
ries marked up (by hand) with episodes, so in prin-
ciple we could try to learn the correspondences be-
tween patterns and episodes. However, many real-
world problems do not provide us with time series
nicely marked with their episode structure. For
instance, ethologists and psychologists must iden-
tify prototypical behaviors by observing continu-
ous behavior; economists must identify periods of
inflation and recession by observing economic data;
and mobile robots that are learning to plan must
figure out which action sequences “go together” in
the sense of producing reliable, predictable results.
Our methods are for problems like these. They
are knowledge-free ways to find patterns that cor-
respond to episodes.

2 The Data

The dataset is a time series of 22535 binary vec-
tors of length 9, generated by a mobile robot as it
executed 48 replications of a simple approach-and-
push plan. In each trial, the robot visually located
an object, oriented to it, approached it rapidly for
a while, slowed down to make contact, attempted
to push the object, and, after a variable period of
time, stalled and backed up. The sample of trials
comprised three blocks. In the first, 18 trials, the
object was attached to the wall, so the robot was
unable to push it and stalled shortly after trying.
In 18 trials, the robot was able to push the object,
but the object soon bumped into a wall, and once
again the robot stalled. In the remaining 12 trials,
the robot pushed the block unimpeded for a few
feet. In one trial, the robot got hopelessly wedged
in a corner of its playpen.

Data from the robot’s sensors were sampled
at 10Hz and passed through a simple percep-
tual system that returned values for nine binary
variables: STOP, ROTATE-RIGHT, ROTATE-LEFT,
MOVE-FORWARD, NEAR-OBSTACLE, PUSH, TOUCH
MOVE-BACKWARD, STALLED. For example, the bi-
nary vector [0 1 0 1 1 0 1 0 0] describes a state
in which the robot is rotating right while moving
forward, near an object, touching it, but not push-

ing it. Of the 2% unique states that could occur,
35 did occur. Some states are very common (e.g.,
more than 5300 instances of [1 0 0 0 0 0 0 0 0],
in which the robot is stopped and nothing else is
happening). Fifteen of the 35 unique states ac-
count for more than 97% of the time series. Said
differently, more than half of the unique states oc-
cur very rarely, and five of them occur fewer than
five times.

Most of the 27 possible states are not semanti-
cally valid; for example, the robot cannot simulta-
neously be moving backward and moving forward.
However, the robot’s sensors are noisy and its per-
ceptual system makes mistakes, and so some of
the 35 observed states contained semantic anoma-
lies; for example, there are 55 instances of states
in which the robot is simultaneously stalled and
moving backward.

Because the robot collected ten data vectors ev-
ery second, and its actions and environment did
not change that quickly, it is common to see long
runs of identical states. The mean, median and
standard deviation of run-length are 9.6, 4, and
15.58, respectively; while most runs are short, some
are quite long.

We transformed the 22535 binary vectors in the
dataset by hashing each vector to a number be-
tween 0 and 34 unique to the vector. This kind of
transformation, in which a multidimensional state
description is replaced by a unique identifier, loses
information about similarities and differences be-
tween the states. We describe how to compensate
this loss in Section 3.2.

3 Two Algorithms

This section describes two algorithms for finding
patterns in the dataset we have just described. The
first is based on dictionary-based compression algo-
rithms, the second is a kind of “fuzzy” compression
in which mismatches are possible.

3.1 Simple Compression

Data compression refers to the process of trans-
forming a sequence in such a way as to make it
shorter yet keep most or all of its constituent in-
formation [6]. For example, the sequence 4 B C 4 B
¢ ¢ B A CB 4 might be compressed as follows: Let
w + ABC and z + (CBA, then the sequence is
wwzz. If, further, we have y + zz and z + yy,
then the sequence is reduced to yz. This kind of
compression, in which subsequences are replaced
by symbols (or by locations in the original data se-
quence) is called dictionary compression, and many
high-performance algorithms have been developed
for it [6]. We are interested in compression algo-
rithms not because we want to reduce the length of

time series, but because we want to find repeating
patterns in the series. That is, we are interested
in the rewrite rules, such as w + ABC, that map
subsequences to symbols. The full expansion of
a symbol corresponds to a subsequence. For in-
stance, the full expansion of z, above, is first to yy
and then, recursively, to CBAC'BA.

We implemented the following simple (and inef-
ficient) algorithm:

Repeat until a stopping criterion is met:

1. Find the most common pair of symbols in the
dataset (break ties randomly if two or more
pairs of symbols are equally common)

2. Replace each instance of this pair with a new
symbol

Given a sequence 121212123434 34, the
algorithm first substitutes a < 1,2, because this
is the most common pair in the dataset, yielding
aaaad43434. Next, the substitution b + 3,4 yields
aaaabbb. Now a,a pairs are most frequent, so the
substitution ¢ < a, a gives ccbbb, and so on until a
stopping criterion is met.

We ran the algorithm on the hashed dataset
(22535 numbers, each representing one of 35
states). The results were unsatisfactory. One prob-
lem is that runs of a single state are compressed to
different symbols. Consider the sequence 11122
t11111111. The first substitution is @ + 1,1,
yielding a122aaaai1. The next is b + a,a, yield-
ing a122bb1. At this point, two symbols expand
to runs of 1: Symbol a expands to 1,1 and symbol b
expands to 1,1,1,1. And because runs may contain
an odd number of symbols, a new rule is needed to
“pick up” the last symbol in a run. For example,
later the algorithm may induce a rule ¢ «+ b, 1, the
only purpose of which is to extend a run of four 1’s
to a run of five.

A slightly better version of the algorithm ad-
dresses these problems. It reduces runs of a sym-
bol to a single symbol after each iteration of the
algorithm. The first fifty iterations of this algo-
rithm are shown in Table 1. The table orders the
substitutions by length, and one can see that the
longest subsequence to be discovered after fifty it-
erations is the one denoted by symbol A43. This
symbol expands to A10 and A16, and when these
symbols are themselves expanded, recursively, to
states, the resulting subsequence is 172010 103.
As noted earlier, each of these numbers denotes a
state, and each state denotes a boolean combina-
tion of state variables. When fully expanded to
state variables, 17201 0103 corresponds to:

17: ((ROTATING-LEFT R) (MOVING-BACKWARD R))
2: ((ROTATING-LEFT R))

((STOP R))

((ROTATING-RIGHT R))

((STOP R))

((ROTATING-RIGHT R) (MOVING-FORWARD R))
((MOVING-FORWARD R))

-
W o oo

Does this subsequence correspond to an episode
in the life of the robot? In fact, it does. Although
there are only two occurrences of 172010103 in
the dataset, the first occurs at the beginning of the
21st trial (of the 48 trials, described in Sec. 7?) and

the second at the beginning of the 34th. !

Despite this successful example, the algorithm
has some failings. First, it produces rewrite rules
which expand to sequences that occur rarely in
the data. Often, shorter rewrite rules, such as
A0 + 12,13, expand to extremely common se-
quences, but the algorithm will construct rewrite
rules for longer sequences that occur infrequently.
This is partly because the algorithm is not induc-
tive in any sense: It finds patterns that are iden-
tical to subsequences in the dataset, it does not
find patterns that match nonidentical but similar
subsequences.

Second, the algorithm has no information about
the semantics of the data. Tt does not know
whether some of the 35 states are similar to others,
it treats every state as different, and it generates
many, many rules that have similar meanings in
the sense that the real world states they denote
are not very different. For example, states 7 and
6 correspond to states 0 and 3 except that in the
former cases an object is in sonar range and in the
latter it isn’t. In fact, for every state in the dataset
in which an object isn’t in range, there is an identi-
cal state in which one is. Perhaps is it appropriate
to treat these sets of states differently, to construct
different rules for them, and perhaps not, but the
algorithm cannot make the determination for itself.

Third, when rules are expanded recursively to
subsequences, as shown in the right-hand col-
umn of Table 1, one sees that many expan-
sions do not correspond to episodes, nor even to
subepisodes. The algorithm does not know where
episode boundaries lie, so it cannot help merging
subsequences that belong on either side of these
boundaries. For example, the symbol A40 expands
to the following five states of the world:

6: ((NEAR-OBSTACLE R) (STOP R))
7: ((WNEAR-OBSTACLE R) (MOVING-FORWARD R))
6: ((NEAR-OBSTACLE R) (STOP R))
12: ((NEAR-OBSTACLE R) (PUSHING R)
(MOVING-FORWARD R) (TOUCHING R))
13: ((NEAR-OBSTACLE R) (STOP R) (TOUCHING R))

One might be surprised that a trial begins with the robot mov-
ing backward, instead of rotating to locate an object visually. The
reason is that when one action ends and another begins, the Pioneer
1 controllers tend to “carry over” a residual amount of the previous
action into the next one. So when a trial ends with the robot backing
up, the following trial may begin with a short back up.

Symbol Pair Expansion
Ad3 (AIO Al6) (172010103)
A39 (A32 A0) (6763612 13)
A4T (A21 A1) (10102 0)
A40 (A8 AO) (67612 13)
A32 (A8 A22) (67636)
A28 (10 A15) (10034 3)
A42 (A10 3) (172 0 3)
A38 (A2 A9) (0304)
A35 (A8 13) (67 613)
A24 (A2 A6) (03103)
Al6 (A3 A6) (10103)
Al5 (A2 A5) (0343)
A49 (A9 2) (042)
A48 (23 A11) (2315 0)
Add (0 A18) (0 16 0)
A37T (14 A11) (1415 0)
A36 (0 A5) (0 4 3)
A34 (9 A4) (97 6)
A33 (1 A2) (103)
A31 (A1 3) (203)
A29 (A2 4) (03 4)
A25 (12 A7) (12 26 27)
A21 (10 A3) (10 1 0)
A13 (4 A1) (4 2 0)
A10 (17 A1) (17 2 0)
A8 (6 Ad) (67 6)
A46 (1 24) (1 24)
Ad5 (8 6) (8 6)

A4l (7 5) (7 5)

A30 (97) (97)

A27 (8 9) (8 9)

A26 (11 2) (11 2)
A23 (11 7) (11 7)
A22 (3 6) (3 6)

A20 (07) (07)

A19 (17 2) (17 2)
A18 (16 0) (16 0)
A1T (12 26) (12 26)
Al4 (4 2) (4 2)

A12 (0 10) (0 10)
All (15 0) (15 0)

A9 (0 4) (0 4)

A7 (26 27) (26 27)
A6 (10 3) (10 3)

A5 (4 3) (4 3)

A4 (7 6) (7 6)

A3 (10) (10)

A2 (0°3) (0°3)

Al (2 0) (2 0)

A0 (12 13) (12 13)

Table 1: The first fifty substitutions for the im-
proved compression algorithm

In the first three states, the robot is approaching an
object that is within sonar range; in the latter two
steps it makes contact with and begins pushing the
object. We might argue that a boundary should be
drawn between the third and fourth state, corre-
sponding to a semantic difference in the robot’s
activities, but of course the algorithm lacks this
semantic information and it simply merges all the
steps into one subsequence.

We designed a second algorithm to address these
problems.

3.2 Tree building

The central idea of this algorithm is to build pat-
terns that need not match exactly to subsequences
of data. For example, the data abcc matches the
pattern abbc to the degree that the tokens ¢ and b
are similar.

Recall that each state in the robot dataset is a
binary vector of nine state variables. The similarity
of two states may then be defined as the hamming
distance between the states.

The algorithm builds a tree, the root of which
corresponds to the beginning of a pattern, and in
which each path to a leaf node contains the tokens
in the pattern. For example, the tree contains the
pattern abbe iff a child of the root node is labelled
a, a child of this node is labelled b, and it has a
child labelled b; and a leaf-node child of this node
is labelled c. Accepting a subsequence 75 ... of data
means matching it to a pattern in the tree, but the
match need not be perfect. For instance, suppose
the mismatch between symbols b and ¢ is 3.0. Then
the sequence abce matches the path abbec with a
total cost of 3.0 and an average cost of 3/4. The
average mismatch cost (AMC) is just the sum of
the token-by-token mismatch costs divided by the
length of the sequence. The algorithm requires a
threshold value k for AMC.

Suppose the tree contains only the paths ab, abb,
abbc; and the time series is abee. ... If & > 3/4,
then the pattern abbc will accept the first four to-
kens in the time series, but what if & < 3/47 The
pattern ab will accept the first two tokens of the
series, ab, with AMC = 0; the pattern abb will not
accept the first three tokens of the series, abc be-
cause AMC' = 3/3; and the pattern abbe will not
accept the first four tokens of the series because
AMC = 3/4. So the longest pattern that will ac-
cept any of the series is ab.

To build a tree of patterns, one repeatedly finds
the longest pattern that will accept any of a series,
and extends the pattern by a single token, namely,
the next token in the series. To continue with the
previous example, the pattern ab accepts the to-
kens ab in the series abce and is extended by the
next token in the series, yielding the pattern abe.

This is how the tree is built:

1. Build a tree T of depth 1 containing one leaf
node for each unique state in the dataset. Set
a pointer ¢ to the first state in the time series

S.

2. Find the longest pattern(s) in the tree that
will accept a subsequence s of tokens in S5,
starting at ¢, i.e., the longest such pattern with
AMC < k. If two or more patterns have the
same length, select the one that has the most
tokens position-by-position identical with the
tokens in s. If this doesn’t narrow the field
to one, choose a pattern at random. Let n,
denote the length of the subsequence s (and
pattern that accepts it).

3. Extend the pattern by appending to it the to-
ken at ¢ 4+ n, in the time series. Set ¢ to be
1+ ns;+ 1, and go to the previous step.

3.3 Selecting patterns that correspond to
episodes

Both of the algorithms construct lots of patterns,
so we might want to filter them. Ideally, patterns
should elucidate the unknown structure of episodes
in data. We assume a time series comprises a se-
quence of episodes and we want to select a set of
patterns that corresponds to the episodes. Two
precise measures of correspondence are given in
Section 4.2; here we rely on the intuition that a
set of patterns corresponds to a set of episodes if
the patterns are systematically associated with the
episodes in time. Suppose two episodes in the life
of a bacterium are “hungry” and “sated,” and two
observable patterns of behavior are “exploration”
and “drifting.” The patterns correspond to the
episodes if the bacterium explores when it is hun-
gry and drifts when it is sated, and rarely explores
when sated or drifts when hungry. Clearly, given
the episode structure of a time series, one can se-
lect a set of patterns that corresponds well to the
episodes, but this is not the problem we want to
solve. We want to select a set of patterns that cor-
responds well to an unknown episode structure, a
set that elucidates the unknown episode structure.

One option is to introduce more or less strong
domain knowledge about episodes into the selec-
tion phase; for example, in the experiment de-
scribed earlier, MOVING-BACKWARD happens at
the ends of trials, so we could select patterns in
which MOVING-BACKWARD occurs near the end.
Lacking this sort of knowledge, though, is there
a domain-independent way to select patterns that
are likely to correspond to episodes or substruc-
tures within episodes? Said differently, how much
must we specify about episodes to design a method
for selecting corresponding patterns? One assump-
tion goes a long way: Episodes persist. If a datum

in a time series is from episode e; then the prob-
ability is relatively high that the next datum will
also be from episode ¢;; more formally,

Pr(zip < ei|ay < €;) >> Pr(ziyq < €]z, €)
1
An immediate implication is that common digrafmg
— consecutive pairs of data that occur frequently
in the dataset — are probably from the same
episode. (The opposite is not true: Uncommon di-
grams are not necessarily from different episodes;
episodes can contain uncommon state transitions.)
Because episodes persist, successive data in a time
series are apt to be sampled from the same proba-
bility distribution, that is, 2,41 is apt to be gener-
ated by the same process that generated z;. This
assumption underlies many methods for finding
episode boundaries.
This persistence assumption is the basis for se-
lecting patterns generated by the simple compres-
sion and tree-building algorithms. Specifically:

e For simple compression, select any rewrite rule
that occurs with a frequency greater than some

threshold.

e Method 1 for tree building: Select any path
through the tree that occurs with a frequency
greater than some threshold.

e Method 2 for tree building: Define the condi-
tional entropy of a node in the tree as follows:
Each nonleaf node N has k children, C};, and
the digram N, C; is observed in the data with
frequency f;. Then,

fi
Pr(CilN) = (2)
=1 fZ
and the conditional entropy is
k
H(Ci|N) = = > Pr(Ci|N)logPr(Ci{N). (3)
=1

Select any path from the root to node N
for which the conditional entropy exceeds a

threshold.

4 Evaluation

In this section we assess how well the compression
and tree-building algorithms, and the selection cri-
teria discussed in the preceding section, find pat-
terns that correspond to episodes and subepisodes
in our robot data set. Each of 48 episodes con-
tained some or all of the following sub-episodes:

A: start a new episode with
orientation and finding the target
B1: forward movement
B2: forward movement with turning or
intruding periods of turning
C1: B1 + an object is detected by sonars
C2: B2 + an object is detected by sonars
D: robot is in contact with object (touching, pushing)
E: robot stalls, moves backwards or otherwise ends D

By hand, we associated one of these seven sub-
episode type labels with each of the 22535 data
items in the robot time series, producing an
episode-labelled series of the same length?

4.1 Method

The compression and tree-building algorithms were
run on the first 20000 time steps of the hashed
robot dataset — a univariate time series in which
each binary vector of nine propositions is replaced
by a number unique to the vector. Subsets of pat-
terns were selected as follows: First, the condi-
tional entropy threshold was set in such a way as
to produce approximately 15, 30, 60 or 90 pat-
terns, then the frequency threshold (method 1 for
the tree-building algorithm) was set in such a way
as to produce comparable numbers of patterns. It
is unclear how best to select rules from the com-
pression algorithm. The algorithm was allowed to
make 500 iterations, producing 500 rules of lengths
between 2 and 136. Lacking a better method, we
simply selected 15, 30, 60 or 90 rules at random
from this set for the purpose of comparing com-
pression rules with tree-building rules.

Next, the hashed dataset was tiled by each set of
patterns. The tiling algorithm is greedy and by no
means optimal, but it serves our purposes here. It
starts with a set of patterns ordered by length, so
longer patterns are laid down as tiles before shorter
ones. It greedily places instances of each pattern
wherever they will go in the robot dataset, mark-
ing the covered intervals of data as occupied. Re-
call that patterns from the tree-building algorithm
are partial matches to the original data, so par-
tial matching is allowed during the tiling phase,
too: The tiling algorithm greedily places instances
of patterns wherever they match a subsequence of
data well enough.

Let each pattern have a unique label. Each data
item in a tiled series can be replaced by the label
of the pattern that covers it or by NIL if no pat-
tern covers it. Call the resulting series the tile-
labelled series, analogous to the episode-labelled
series described in the previous section. Let N be
the length of these series, and N7, the number of

2This cannot be done algorithmically, as some contextual inter-
pretation of subsequences of the series is required. For example, if
the sonars temporarily lose touch with an object, only to reaquire it
a few seconds later, we label the intervening data C1 or C2, not Bl
or B2, even though the data satisfy the criteria for B1 or B2.

NILs in the tile-labelled series. Five statistics may
now be defined:

Coverage The proportion of the dataset that is
tiled by the patterns, i.e., %

Lambda This statistic is a measure of associa-
tion between the tile-labelled series and the
episode-labelled series. It is the reduction in
errors in predicting the episode label of a da-
tum as a consequence of knowing the pattern
label of the datum. Space precludes a formal
description. Suffice it to say that the A statistic
is zero when pattern labels are not associated
with sub-episode labels, and one when pattern
labels predict sub-episode labels perfectly.

Purity Align the tile-labelled and episode-
labelled series. Each instance of a tile
corresponds to several consecutive locations
in these series. Suppose an instance of a
particular pattern (tile) corresponds to the
following locations in the episode-labelled
series: (A A A A A A Bl B2). The pattern
seems to correspond well to sub-episodes of
type A. However, later, the same pattern
corresponds to these locations in the episode-
labelled series: (B1 B1 B1 B1 B1 B2 C C).
Summing up these instances of the pattern,
it covers six A’s, five Bl’s, two B2’s, and
two C’s, so it’s unclear which sub-episode the
pattern corresponds to. A rough measure of
this uncertainty is to find the most frequent
episode label for all instances of a pattern and
divide it by the total number of episode labels
associated with a pattern. 1In the current
example, this is 6/15 = 4. The higher this
purity measure, the better.

Rule length Each pattern in a selected set of pat-
terns has a length, we report the mean and
median of the lengths.

Used rule length Some patterns are used more
frequently than others to tile a series. We re-
port the mean and median length of the pat-
terns that are actually used.

4.2 Comparison of the algorithms

Comparisons of the compression and tree building
algorithms under different conditions are shown in
Table 4.2. The first block of results in the table is
for trials in which the parameters of the entropy-
based selection method (Sec 3.3) were fixed to pro-
duce roughly 90, 60, 30 or 15 patterns; the pa-
rameters of the frequency-based method were fixed
to produce comparable numbers of patterns; and
comparable numbers of patterns were selected at
random from the rules produced by the compres-
sion algorithm. This method tended to produce

relatively short rules for the frequency-based con-
dition, so a second block of trials was run in which
the frequency-based and entropy-based methods
returned the most frequent patterns with a min-
imum length of 10.

The general result is that the entropy-based se-
lection method performs slightly better than either
the frequency-based method or the compression
method. When each method selects 90 rules, a
tiling with these rules cover roughly the same pro-
portion of the original time series (79% to 84% in
the first block of trials, 70% and 71% in the sec-
ond). As the number of rules decreases, the cover-
age of compression-based rules declines. This is be-
cause the tiling algorithm requires a perfect match
to use a compression-based rule (unlike rules from
the tree-building algorithm, which allow partial
matches) and as the number of available rules de-
creases, less of the series can be perfectly matched.
The coverage of entropy-based rules is better than
that of frequency-based rules and this disparity
increases as the number of rules decreases. This
suggests that the former rules are more represen-
tative of the data than the latter, an impression
borne out by qualitative comparisons of the rules
(see below). In all conditions, irrespective of the
number of rules, compression and entropy-based
selection produce rules with higher predictive accu-
racy (A) than the frequency-based method. In the
case of compression-based rules, this is because the
rule instances used in tiling must match the series
perfectly, and so are apt to have higher predictive
power. In the case of entropy-based rules, the rea-
son is probably that entropy-based selection pro-
duces rules that better match the boundaries of
episodes. Certainly, the purity statistic suggests
this, although the disparity between frequency-
based and entropy-based rules is relatively small
in the second block of trials, where all rules had
to be at least 10 tokens long. In general, entropy-
based rules are longer than frequency-based ones,
which means they span more of an episode. It is
unclear whether any of thee differences is statisti-
cally significant; the results of randomization tests
will be provided in the final paper.

A qualitative comparison of the rules returned
by each method also favors entropy-based selec-
tion. In all conditions, the entropy-based rules
were more representative of the episodic structure
of the robot data; more to the point, the rules
that were actually wsed by the tiling algorithm
were more representative. For example, in the
60-rules conditions (in both batches of trials), the
20 most-frequently-used entropy-based rules rep-
resented all seven sub-episode types, whereas the
comparable set for the frequency-based rules con-
tained nothing to represent sub-episodes of type
E, where the robot stalls and backs away from
an object. In contrast, the entropy-based method

Method Rules Cvrg. A Prty. Length Used
Compression 90 .79 78 .8 19.5,25.5 26.8,56
Tree Freq. 91 .82 70 .79 7.6,7 7.8,4
Tree Entr. 93 .84 .76 .83 18.9,22 14.1,9
Compression 60 .64 72 .81 17.1,7 17.0,9
Tree Freq. 64 .80 70 .79 8,7 7.8,6
Tree Entr. 67 .80 .76 .83 18.5,22 14.7,12
Compression 30 .50 .80 .86 16.6,20 13.6,7
Tree Freq. 31 57 63 .74 8.4,8 6,3
Tree Entr. 30 .76 74 .82 17.5,20.5 12.1,6
Compression 15 .34 .82 .88 15.5,12 16.3,18
Tree Freq. 15 .56 63 .74 4.5,3 4.8,3
Tree Entr. 15 57 79 .84 19.9,22 17.2,20
Tree Freq. 90 71 71 .80 13.9,13.5 17,18
Tree Entr. 90 .70 .76 .83 22.8,24.5 23.8,26
Tree Freq. 57 61 75 81 13.,13 16.6,16
Tree Entr. 58 .68 78 .84 22.9,25 23.9,26
Tree Freq. 31 59 74 80 135,13 152,15
Tree Entr. 31 .65 .76 .83 23.1,24 23.4,24
Tree Freq. 6 34 58 75 13.6,135 16,16
Tree Entr. 15 57 77 .84 23.5,26 22.7,24

Table 2: The coverage and purity of rules gener-
ated by simple compression, tree building, and tree
building with entropy-based rule selection.

came up with two such rules, one summarized
as “pushing,pushing,. .. stall” and the other as,
“stall,stall,. .. ,stop, stop,...,move-backward-and-
rotate-left”.

5 Discussion

We have presented two algorithms for finding pat-
terns in time series, and shown that the patterns
they find correspond with episodes. The algo-
rithms we describe are what statisticians call dis-
covery procedures; unsupervised methods such as
cluster analysis, HMM induction [7], or causal in-
duction [4] that “carve nature at its joints” ([3]).
The principal empirical criterion for such algo-
rithms is whether or not they produce structures
that analysts can use to elucidate the processes
underlying data. We have evaluated our algo-
rithms differently, by testing whether the patterns
they produce correspond with known episodes in
a hand-marked data set. Not surprisingly, perfor-
mance is not perfect. It is difficult to simultane-
ously build models of episodes (i.e., patterns) and
find episode boundaries, given no knowledge of the
domain. When episode boundaries are provided,
the data between them can be clustered to pro-
duce prototypes of different episode classes [5, 2, 1].
Our algorithms are not provided this information.
The reason they work seems to be a very gen-
eral principal we call persistence: Adjacent data
points are more likely to be generated by one pro-
cess than by different processes. Said differently,
boundaries between episodes are much rarer than
non-boundaries. This being the case, a method
like entropy-based rule selection, which searches

for rules that terminate at points of high entropy,
perform slightly better that frequency-based rule
selection. Of course, this result holds only for the
robot data we tested. While persistence is a the-
oretical property, not an empirical one, it remains
to be seen whether algorithms which capitalize on
persistence are generally, empirically superior to
those which do not.

References

[1] Tim Oates, Zachary Eyler-Walker and Paul
Cohen, Toward Natural Langauge Interfaces
for Robotic Agents: Grounding Linguistic
Meaning in Sensors, Proceedings Fourth In-
ternational Conference, 227-228, 2000.

[2] Matthew Schmill, Tim Oates and Paul Cohen,
Learning Planning Operators in Real-World,
Partially Observable Environments, Proceed-

ings Fifth International Conference on Artifi-
cial Planning and Scheduling, 246-253, 2000.

[3] David J. Hand. Data mining - reaching beyond
statistics. Research in Official Statistics, 2:5—
17, 1998.

[4] J. Pearl. Causality: Models, Reasoning and In-
ference. Cambridge University Press, 2000.

[5] Marco Ramoni, Paola Sebastiani and Paul Co-
hen, Multivariate Clustering by Dynamics,
Proceedings of the Seventeenth National Con-
ference on Al 633-638, 2000.

[6] David Saloman. Data Compression. Springer,
1998.

[7] L. Rabiner. A tutorial on Hidden Markov
Models and selected applications in speech
recognition. Proceedings of the IFEFE,
77(2):257-285, 1989.

