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Figure 1: An interactive model of the development of
activity.

1 Introduction

The interactionist philosophy of Lakoff, Johnson, and
others [2] places activity at the center of conceptual de-
velopment. Not only activity, but also structures such as
classes, concepts, and language are all rooted deeply in
the physical interaction between an agent and its envi-
ronment. Explaining the development of activity, then,
is central to any interactionist account of conceptual de-
velopment.

A simple model of the development of activity is pic-
tured in figure 1. This model implies that development
is an cycle of incremental learning in which an agent en-
gages in four kinds of processes: one in which an agent
decides what to do (high-level control), one in which the
agent decides how to do it (low-level control), one in
which the agent attempts to engage in the desired be-
havior (execution), and one in which the agent learns
from its interactions (modeling). Two kinds of knowl-
edge can be generated in this model. From the low-level
controller comes procedural knowledge of how to achieve
the goals of the high-level control system (activities), and
from the modeling component comes domain knowledge
(classes, concepts, etc).

It should be clear that the initial decision of what to do
has tremendous impact on the development of activity,
and knowledge in general. An agent that fixates on one
particular type of activity will likely learn about that
activity in great depth, but little else. An agent that acts
randomly will likely learn a great breadth of superficial
activities, but not learn about anything in particularly
great depth. A high-level control component that ignores

the basic needs of the agent will almost certainly likely
lead to the demise of the agent.

Numerous approaches to the modeling and low-level
control processes exist in literature. We take the execu-
tion component to be the native ability of a developing
agent to execute some set of primitive actions out of
which it will build activities. In this paper, we defer de-
tailed discussion of how we have implemented these three
components, and instead focus on our implementation of
a high-level control component that can be responsible
for driving a developmental process in which an agent
learns from interactions with the environment.

In the next section, we characterize the requirements
of a working high-level control system are, and describe
our approach to high-level control. In the section that
follows, we describe two sets of experiments that demon-
strate the effectiveness of our high-level control scheme.
Finally, we conclude with a discussion of why our sys-
tem works, and our plans to integrate this control scheme
with the other components of 1 we have already imple-
mented for the Pioneer-2 mobile robot.

2 High-Level Control

The task of a high-level control component is to produce
a task specification that the low-level control system can
use to produce an activity. In related work, it has been
argued that means-ends analysis planning, such as that
employed by GPS [4] and STRIPS [1], is a good can-
didate for a low-level control system [3]. If we adopt a
planner as a low-level control system, then, the task of a
high-level control component is to generate goals for the
low-level control component to satisfy and the execution
component to achieve.

Furthermore, a high-level control system should meet
the following criteria:

e Plausibility: the system should produce goals that
are possible for the agent to achieve.

e Sustainability: the system should attend to the
basic needs of the agent. This includes vegetative
needs like hunger, thirst, and fatigue, if they apply,
as well as related needs like aversion to pain. The
high-level control system must keep an agent out of
trouble.

e Learning: the system should provide and agent
with opportunities to learn about its environment.

e Purposefulness: the system should behave with
purpose. Let us define an agent that acts purpose-



fully as one in which the decision to do something
is always based on some criteria, and not simply
random.

We have developed a simple high-level control system
based on modeling motivation in intelligent agents that
possesses these four desirable qualities. We address the
first quality by adopting a philosophy of goal selection
in development which we call planning to act, which we
describe in the next section, and then describe how the
motivational system fits within this framework and sat-
isfies the other three criteria.

2.1 Goals in Development

The problem of how to generate goals for a planner to
achieve is one that is traditionally not automated. Plan-
ning goals are, in general, specified as desirable sensory
or perceptual states by some external source, usually the
experimenter. This method of goal selection typically en-
sures that the planner will be working on a tractable, if
not useful problem, but leaves a lot to be desired in an
account of development.

Generating goals automatically is, on the surface, a
daunting task. If we take a reasonably complicated
agent, such as the Pioneer-2, with some 65 real-valued
sensors, the space of goals is multidimensional and un-
bounded. On top of that, most of the 65-dimensional,
continuous space represents situations that are not pos-
sible or highly improbable, such as positive translational
velocity while the stall sensors are reporting the robot
is stalled. What makes a sensory state with sonar-3 re-
porting a value of 715.3 a better goal that one in which
sonar-3 is reporting 802.17 On the surface, automatic
goal generation by a developing agent is horribly under-
constrained.

On the other hand, vast regions of this 65-dimensional,
continuous goal space are roughly equivalent at various
times in an agent’s decision-making process. If the robot
is considering turning in place, it can base its plans on
whether or not its sonar reports something is in the way.
In this case, if the sonar reports anything beyond 250
millimeters, the turn will succeed. It doesn’t matter if
it reports 250, 500, or 5000 meters. This part of the 65-
dimensional, continuous space really only has two values
that matter, “under 250” and “over 250”.

There is a simple way to leverage this observation into
a tractable solution to the goal-selection problem. The
key to the observation that a highly dimensional space
can be carved up into a few regions that matter is that
intention is based on activity. The Pioneer’s sonar space
can be collapsed to a binary decision because the agent’s
goal is to turn, not to achieve an arbitrary state. Said
differently, the goals of an agent, and those things that
are rewarding to the agent, are activities, not sensory
configurations or states of being. We call this paradigm
planning to act, and this simple distinction is crucial to
high-level control for the following reasons:

e It constrains goal selection to a space of goals that
is bounded, and small. An agent looks at its list of

things it has done, and picks the one it likes best to
do again.

e It constrains goal selection to a space of goals that
are physically possible. It’s not choosing arbitrary
states, it’s selecting from things it has already done
before.

All that remains is to define a framework for prefer-
ring one activity over another that meets the criteria of
sustainability, learning, and purposefulness.

2.2 A Model of Motivation

The planning to act framework reduces the high-level
control process to a matter of evaluating the activities
available to an agent and choosing one according to that
evaluation. The details of how one does this determine
how well the criteria of sustainability, learning, and pur-
posefulness are attended to. Perhaps the simplest way
to perform this evaluation is to define a preference rela-
tion, and simply choose the activity that is preferable to
all others.

Let A denote the set of all the activities that an
agent knows about. The preference relation for agent
z, Y¥z(a1, Az, s;), holds iff in sensory state s; agent x
prefers to attempt a; over as. The goal of the system at
time ¢, then, is a, such that Va,z4(¥z(ag, an, s¢)).

If we were interested only in the learning criterion, we
could base 1 on information gain. Thus, every decision
that agent x would make would be based on the amount
of information to be gained about a particular action.
Agent = would be constantly exploring. Likewise, if the
agent had some single, all-encompassing vegetative con-
cern, such as keeping its battery from running out, we
could base 1 on the expected loss or gain of battery
power. This agent would constantly be attempting to
maintain its battery level. While both of these formu-
lations of v satisfy the purposefulness criterion, neither
satisfies all three.

Rather, an agent whose goal is to truly explore the
affordances of its environment, all the while ensuring to
stay alive, must attend to a variety of factors that moti-
vate its behavior. The relation v should reflect the va-
riety of these factors. For a mobile robot exploring the
surface of Mars, for example, 1) may reflect three distinct
factors: fatigue, or the need of the robot to recharge its
battery when the voltage gets low, crash avoidance, or
the need of the robot to keep from colliding with other
objects at high speeds, and curiosity, or the need of an
agent to improve its models of activity and the envi-
ronment when they are not acceptably predictive. We
call each of these components to behavior a motivational
factor. Individually, each expresses a basic need of the
agent, and collectively, they comprise behavior.

In our model of motivation, we represent each mo-
tivational factor F' numerically with a drive coefficient
wr(sy). The drive coefficient expresses the relative im-
portant of F' in state s;; the importance of the fatigue
factor, for instance, may increase as the battery volt-
age decreases. Likewise, each activity a, will have an



Ip-——--- 0 1
\
\
\
u fatigue \ s pain u curiosity
\
\ =~
\ \
\ -~
\\ \ , ’ N .
\ \ / N\
\ / N
N
) N T - - = s~ = = =
0 -1 0
14V 0 ) 100 0 )
battery-level current-pain accomodation(a)

Figure 2: Coefficient functions for each of the Pioneer-2’s primary motivational factors.

expected motivational payoff Ea (a,, s;) associated with
it, and the product of the coefficient and payoff yields
the factor value of F' for a,,. The sum of these products
over F' € F is the desirability of activity a, in state s;.

d(an, st) = Y per br(St)En(an, st)
(1)

and

Y(an, Gm, s¢) <= (d(an,s:) > d(am, st)) )

It is worth noting that each factor value comprises an
internal (perhaps genetic) part, ur(s¢), and a part con-
tributed by the environment which must be learned, the
quantity Ea(ay,st). Figure 2 shows some possible co-
efficient functions for three sample motivational factors
designed for the Pioneer-2 mobile robot. The coefficient
function for fatigue depends on the robot’s battery level,
and is near zero when the battery is fully charged at 14V,
indicating that fatigue plays no part in goal selection
in the fully charged state. As the battery level drops,
though, the coefficient rises, most dramatically in the
range 10V-12V. Fatigue becomes an issue in this range,
as the robot becomes unreliable when its voltage drops
below around 11V.

The coefficient function for painl®, in contrast, starts
in the negative range, indicating that the possibility of
pain reduces the desirability of an activity regardless of
whether the robot has recently experienced pain, and
when the robot has recently experienced pain, the in-
hibiting effect of pain avoidance only increases.

The curiosity coefficient depends on the activity un-
der consideration, and a measure called accommodation.
Accommodation measures the agent’s familiarity with a
particular activity. If the activity is new, then accommo-
dation is low, and curiosity makes a positive contribution
to that activity’s desirability. As the agent exercises the
activity, and builds better models of how the activity
works, accommodation increases, and the contribution
to desirability tapers off. The curiosity coefficient reacts

"We use a simulated pain sensor for the Pioneer-2 mo-
bile robot. Sudden contact with immovable objects produces
surges of activity in the pain sensor.

to the novelty of an activity according to a bell shaped
curve, in a manner consistent with infant accommoda-
tion studies [5]. Essentially, the curiosity factor asserts
that all other things equal, an agent prefers to engage in
activities it can learn most about.

2.3 How Curiosity Drives Learning

The two jobs of the motivational system are to keep the
agent out of trouble and to provide learning opportu-
nities for the domain modeling component. The self-
preservation motivational factors like pain avoidance and
fatigue handle the first job by influencing the preference
relation when it is important, and allowing other factors
to control ¢y when attending to basic needs is unimpor-
tant. This is the aspect of activity that is sometimes
referred to as exploitation, or using what you do know
to your benefit.

Exploration, on the other hand, is activity performed
to stimulate learning. Researchers in reinforcement
learning realized early on that managing the exploration
versus exploitation tradeoff was critically important. A
popular approach to this tradeoff was to mix random
activity with greedy activity, and slowly wean the agent
off of exploration altogether under the assumption that
learning would converge on optimal behavior, and explo-
ration would no longer be necessary.

This approach to exploration is unfortunate for the
following reasons: First, acting randomly does not guar-
antee that an agent will be led towards opportunities to
learn, and second, exploration and learning are treated
in isolation. There is no correlation between needing to
learn and generating examples. There is simply a proba-
bility with which the agent will do something other than
what its policy is telling it to do.

We posit that exploration can be, and should be, the
result of exploitation done with models that need work,
and that our motivational system, coupled with a means-
ends analysis planner and a mechanism for learning op-
erators, is an example of this principle in action.

A Simple Learning Domain

This is all best illustrated with an example. Consider a
robot working in a parts preparation factory. The robot
has a gripper and a paint gun, and a conveyor belt run-
ning in front of it, on which blocks pass by. The robot



may attempt to pick up what is in front of it, open its
gripper to drop what it is holding, fire its paint gun at its
gripper, rest, or activate a refill switch to refill its paint
gun.

The robot may sense whether it is holding something,
whether that thing has been painted, its current fatigue,
and its current paint level. The outcome of each of its
five actions is based on the four observable sensors; if the
robot sprays its paint gun, it may paint a block, it may
repaint a block, it may paint its own gripper, or it may
be out of paint and shoot nothing at all, for example.
The robot gets feedback as to which outcome actually
unfolds.

This particular robot acts under the influence of 3 mo-
tivational factors, curiosity, fatigue, and reward, an ex-
ogenous signal which signals the robot when it has done
something good (like paint and release a block) or bad
(like attempt a refill when its paint gun is already full).
Excessive fatigue may cause some actions to fail unex-
pectedly.

The high-level control system selects outcomes as goals
based on their desirability, which is a composite rating
based on novelty and expected reward. The low-level
control system generates a plan which will end in the
desired outcome. The execution module executes the ac-
tion, and the modeling component records the feedback
and updates its models of each outcome’s preconditions
and postconditions.

So, exactly how does exploitation equal exploration?
An example occurs almost immediately for our factory
robot. Suppose the agent, right after being turned on,
executes the GRASP command. It picks up a block, and
receives feedback that it has experienced a new outcome,
which for this discussion, we will call pick-up. Imme-
diately, this outcome will be the most highly rated be-
cause of its novelty, and the high-level control system
will suggest that the robot try and reproduce it. Due to
its poor (nonexistent) model of how pick-up works, the
low-level control planner will suggest that activating the
GRASP controller will work again. But, since the robot is
already holding something, the GRASP controller experi-
ences a different outcome, namely the pu-fail outcome,
which comes about when the robot tries to grasp some-
thing when its gripper is full.

In the next section, we will see that examples of this
type abound in this simple simulator, and that by about
60 invocations of the high-level control system, the robot
has experienced all 19 of the outcomes of the 5 primi-
tive actions. The governing principle is that planning to
reproduce outcomes with flawed models produces flawed
plans, which in turn produce unexpected results, which
are opportunities to revise the flawed models.

3 Experiments

We have run two sets of experiments to show the behav-
ior of an agent guided by our motivational system. The
first is the factory robot described in section 2.3, and the
second, on a general set of randomly generated Markov

decision processes.

In both sets of experiments, we implemented a simple
planner and learning schedule. The planner is a sim-
ple generate-and-test planner that uses the simulator to
evaluate whether or not it thinks a plan will succeed.
It is purposely allowed to generate illegal plans if it has
not experienced outcomes that would allow it to verify
that the plans were indeed illegal. An example of this
allowable illegal plan would be the GRASP plan described
in section 2.3. The agent does know about the pick-up
outcome, and thus it can use it in plans, but since it has
not experienced pu-fail, it cannot verify that the plan
would fail.

Plots of desirability and outcome counts for the var-
ious activities of the factory robot domain are shown
in figure 4. The results plotted are for a single run of
the experiment, but results are similar across trials and
different starting configurations. By 60 steps into the
simulation, all 19 outcomes have been experienced by
the simulated agent. By about 100 steps into the sim-
ulation, the effects of novelty for 16 of the 19 outcomes
have dropped to levels sufficient to make them unde-
sirable except as steps in a plan to achieve some other
outcome. Shortly after, the novelty of two of the remain-
ing three, repaint and drop-incomplete-block wears
off, and drop-complete-block is clearly the most desir-
able outcome. The factory robot settles into an optimal
strategy of executing plans that include alternately fin-
ishing blocks, resting, and refilling its paint gun. This is
evidenced in the plot of outcome counts, in which only
these three outcomes, and the required plan steps for
achieving them continue to be executed.

Rather than hand-build increasingly sophisticated do-
mains such as the block painting domain to show gen-
erality and scalability, we decided to apply our motiva-
tional system to randomly generated Markov decision
processes. The algorithm we used to generate MDPs is
as follows:

1. Generate a state variable with a user-specified num-
ber of states.

Generate a user-specified number of generic actions.
Break the states up into subcycles of random size.
Generate transitions within the subcycles.

Ol W

Generate transitions between the subcycles such
that there are no dead-ends or unreachable states
in the process.

6. Generate an outcome for each transition and assign
it randomly to an action.

7. Generate default outcomes that do not change state
for each action which does not have an outcome for
each state so that every action has an outcome in
every state.

8. Assign “reward” values for each outcome. In our
experiments, there is a 10% chance of an outcome
having a negative reward in the range [—0.5...0],
and a 10% chance of an outcome having a positive
reward in the range [0...0.5].
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Figure 3: A sample, randomly generated MDP.

A small, randomly-generated MDP is shown in fig-
ure 3. Default outcomes are omitted for clarity, and a
sample outcome label assigned to one of the transitions
is shown, along with its reward value. In the final MDP,
each transition is assigned such an outcome label. The
only essential characteristic of these randomly generated
MDPs is that each state must be reachable from any
other state by a legal sequence of actions.

Figure 5 shows plots of desirability versus time and
outcome counts versus time for a 5 action, 10 state, 22
outcome MDP. Outcome labels, which are randomly gen-
erated tokens like A-SAC346-0C373, have been omitted
from the graph for clarity. As in the block painting do-
main, the 22 outcomes have all been discovered by step
100, and the most desirable outcome has distinguished
itself by 200 steps into the simulation. Beyond that
point, only six outcomes continue to be executed as plan
components to exercising the outcome with the highest
Egeward'

Figure 6 shows desirability and outcome counts versus
time for a larger MDP with 10 actions, 20 states, and
44 outcomes. In this problem, our simple planner was
bogged down with a very large search space of 44 opera-
tors, and due to time constraints, we cut the trials short
after 210 steps. Still, the system managed to find 39 of
the 44 possible outcomes after only 140 steps, and had
become focused on a sequence of two rewarding outcomes
shortly thereafter. Interestingly, as the graph of outcome
counts shows, one of the highly rewarding outcomes had
been discovered almost instantly. Over the course of ex-
ploring novel outcomes for the next 140 steps, the agent
came across a new rewarding outcome. Soon after, the
agent entered into a policy of alternatively planning for
the original outcome and the new outcome, the two of
which form a cycle, one leading into the other.

In the final version of this paper, we plan to run more
replications to verify the generality of the algorithm, and
expand to even larger problems with more states and
outcomes. The current performance limitations of the
system are due to the simplicity of our planner, which
resorts in large part to brute force search in the planning
space.

4 Conclusions

We have presented a system that makes decisions of
what to do within a system that develops activities.

Based around means-ends analysis planning, this high-
level control component is simply an algorithm for goal
selection. The goals it generates meet the following four
criteria: the goals are achievable in the world, the goals
serve to promote the self-preservation of the agent, the
goals provide opportunities for the agent to learn about
the possibilities of its world, and the goals produce pur-
poseful behavior, where purposeful is taken to mean done
for a reason. The first criterion is satisfied by adopting
the philosophy of planning to act, or the idea that the
goals of a system are to engage in activity, not achieve
states.

The remaining three criteria are satisfied by our mo-
tivational system. This system is models the various
drives that comprise motivation, including vegetative
drives like hunger and fatigue, a curiosity drive that pro-
motes exploration, and exogenous reward drives supplied
by the environment. Each drive asserts influence on the
agent’s preference relation ¢ such that it is attended to
when it becomes important.

We demonstrated in two domains, a simulated block
painting robot, and a class of randomly generated MDPs,
that this motivational system, coupled with a planner
and a modeling component that builds planning opera-
tors around observed outcomes, can manage the explo-
ration versus exploitation tradeoff. This is done using
a single, composite preference relation that takes into
account the novelty of the activities the agent is consid-
ering engaging in.

In future work, we intend to transition this moti-
vational system to our primary research platform, the
Pioneer-2 mobile robot. Already implemented for this
platform are a simple planner and a sytem for learning
planning operators. The large array of real-valued sen-
sors and continuous action space of the Pioneer-2 under-
lines the necessity of simple principles, such as planning
to act, and our simple motivational system, that can re-
duce the dimensionality of the developmental task.
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Figure 4: On the left, a plot of desirability levels versus time for the block paining robot domain. On the right, a
plot of outcome counts versus time.
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Figure 5: On the left, a plot of desirability levels versus time for a randomly generated Markov process domain with
5 actions, 22 outcomes, and 10 states. On the right, a plot of outcome counts versus time.
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Figure 6: On the left, a plot of desirability levels versus time for a randomly generated Markov process domain with

10 actions, 44 outcomes, and 20 states. On the right, a plot of outcome counts versus time.





