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Abstract

In [9], Feigenbaum, Papadimitriou and Shenker initiate the study of pricing algorithms for
multicast transmission. In this paper, we build on this work by studying the effect on the
complexity of pricing when two practical considerations are incorporated into the network model.
In particular, we study a model where the session is offered at a number of different rates of
transmission, and where there is a cost for enabling multicasting at each node of the network.
As a test case for the different types of pricing that can occur, we consider a pricing mechanism,
called Marginal Cost, that has seen considerable attention in simpler network models. We
demonstrate that the details of how multiple rates are provided has a significant impact on
the complexity of pricing. For multiple rates provided via the layered paradigm, we provide a
distributed algorithm for computing Marginal Cost efficiently in terms of local computation and
message complexity. The bit complexity (per edge) of this algorithm depends linearly on the
product of the tree height and the number of possible rates. However, we provide two lower
bounds on bit complexity, demonstrating that computing Marginal Cost (a) with multiple rates
requires a bit complexity that is linear in the number of rates, and (b) with a cost for enabling
multicasting requires a bit complexity that is linear in the height of the tree.

A modification of our algorithm for the layered paradigm also applies to the split session
paradigm of providing multiple rates, but in this case, both the local computation and the bit
complexity become exponential in the number of possible rates. However, we also demonstrate
that for the split session paradigm, the problem becomes NP-Hard even to approximate if the
number of possible rates is part of the input. This indicates that we cannot expect to do
much better than the algorithm we provide. Finally, we examine the effect of delivering the
information for the different rates from different locations within the network. We show that
in this case, the Marginal Cost problem becomes NP-Hard in the split session paradigm even
for a constant number of possible rates, but that in the layered paradigm it can be solved in
polynomial time by formulating the problem as a linear program that is guaranteed to have an
integral optimal solution.
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1 Introduction

Multicast transmission offers tremendous savings in network bandwidth over unicast transmission
for applications that deliver the same content to multiple customers by allowing these customers
to “share” the transmission on common access links [7]. However, this sharing of link bandwidth
significantly complicates the issue of pricing [8]. Merely splitting the cost of delivery among the
receivers is not an adequate solution, since some receivers might be charged more than they would
be willing to pay. By dropping out of the multicast session, the charge levied upon the remaining
receivers would be more than if a lower, acceptable price had been offered to the exiting receiver.
An alternative pricing strategy that has received attention recently [9, 14, 20, 21] is to have each
receiver place a bid for the content. After considering all bids, the network determines the set
of receivers that receive the content, as well as the price these accepted receivers pay. The price
charged to an accepted receiver can be no more than its bid, but for reasons discussed below, it is
often advantageous to charge receivers a smaller price. The policy that the network uses to make
these decisions is referred to as a pricing mechanism.

In order for a pricing mechanism to be used in a network, there must be an algorithm for realizing
the mechanism. For such an algorithm to be used in a distributed environment such as the Internet,
it should be efficient in terms of both the computation performed at the distributed nodes of the
network, as well as the communication between these nodes. Identifying these types of algorithms
was first addressed by Feigenbaum, Papadimitriou and Shenker [9]. They consider two pricing
mechanisms: Marginal Cost and Shapley Value, and provide efficient algorithms for the Marginal
Cost mechanism, as well as algorithms and lower bounds on the efficiency of algorithms for the
Shapley Value mechanism.

In this paper, we study the effect on the complexity of realizing pricing mechanisms of incorporating
two practical considerations into the network model. In particular, the model of [9], similar to that
used in other related work [14, 20], makes two simplifying assumptions: (1) they assume that
every recipient either receives a ”full bandwidth” version of the multicast session or nothing, and
(2) they assume that multicasting is possible at every node of the network at no cost. We here
consider a network model that removes these assumptions. When multiple possible transmission
rates and a cost for enabling a node are included in the model, the problem of realizing pricing
mechanisms becomes more complicated, and leads to a number of new and interesting combinatorial
optimization problems. Furthermore, we see that the details of how these features are incorporated
into the model has a significant effect on the complexity of realizing pricing mechanisms.

To remove assumption (1), we consider a network model that permits transmission of session data
at a set of £ pre-determined rates p; < pa < --- < pp. Such an approach is crucial if the multicast
session is going to be received by users with significantly different bandwidth connections. The two
main techniques for providing multiple rates in practice are having a separate multicast group for
each possible rate [5], and having a layer for each rate, where layer 1 has rate pq, layer i, 1 < i < ¢,
has rate p; — p;—1, and to receive at rate p;, a receiver is sent layers 1...j [19, 25, 3, 2]. We refer to
the first technique as the split session paradigm, and the second as the layered paradigm. This paper
is the first to consider algorithms for realizing pricing mechanisms for multicasting when there are
multiple possible rates of transmission. In fact, to the best of our knowledge, this is the first work
to even define pricing mechanisms for multicast sessions with multiple rates. Auction mechanisms
for multiple goods where there is no cost for each additional copy of a good delivered have been
studied in [12]. We assume that each receiver places a bid per rate indicating its willingness to pay
for delivery at that rate. In addition to determining the set of accepted receivers for the multicast



session, the network must now also determine what rate is obtained by each receiver.

To remove assumption (2), we consider a network model where there is a cost for making a node of
the network capable of multicasting. If a node is enabled, it can forward any number of copies of a
session it is sent to other enabled nodes or receivers, possibly using nodes that are not enabled as
intermediaries. On the other hand, if a node is not enabled, it can only forward the same number of
copies of a sessions as it is sent, and thus the cost of enabling a node may be offset by the reduced
cost of only delivering one copy of the session to that node. The cost for enabling multicasting
may vary from node to node. This model incorporates recent approaches to multicasting such as
network overlays [15] and application layer multicasting [16, 24, 4, 6]. This paper is the first to
consider pricing when there is a cost for enabling multicasting. In this model, the network must
still determine the set of participants in the multicast session, as defined by the pricing mechanism,
but which set the network determines is now influenced by the cost of enabling multicasting at each
node. In addition, the network must choose which nodes of the network to enable.

As in [9], many of our results assume that there is a single directed multicast tree that defines the
routes used by all transmissions; this tree is not affected by which receivers are accepted, or which
nodes are multicast enabled. [9] demonstrates that without this assumption, even when there is
no cost for enabling a node, and when there is only a single possible rate, it becomes NP-Hard to
find constant factor approximations to pricing mechanisms (the problem becomes a version of the
Prize Collecting Steiner Tree problem - see also [17, 11]). While this hardness result indicates that
removing the single tree assumption entirely leads to intractable problems, it does not rule out the
possibility of efficient algorithms for a more modest generalization which we consider.

1.1 Summary of results

In this paper, we focus on the Marginal Cost mechanism. While this is only one of several important
mechanisms, it serves as a good test case: we believe that our results for the Marginal Cost
mechanism provide important insights on the effect of the practical network considerations we study
for pricing mechanisms in general. Furthermore, some of our techniques also apply to the Shapley
mechanism, but this is not addressed in this paper, since a lower bound from [9] demonstrates
that realizing this mechanism is computationally expensive even in the simpler network model
considered there. We start by introducing a straightforward generalization of the Marginal Cost
mechanism to scenarios where there are multiple possible rates, and prove that this generalization
has the same properties as the mechanism for single rate scenarios. We define this mechanism
in Section 2, but we here note that any algorithm for this mechanism also applies to the simple
mechanism that chooses the network configuration that maximizes the network profit, and every
accepted receiver pays exactly what it bid for the service it receives. The profit obtained by such
a mechanism is referred to as the network welfare.

We then consider algorithms for realizing Marginal Cost in the layered paradigm. We provide a
distributed algorithm that realizes the Marginal Cost mechanism in such a network, even when
each node has a cost for enabling multicast. This algorithm is efficient in terms of the amount
of local computation performed at each node, and only requires three messages per edge of the
multicast tree. For every edge, the total number of bits in these 3 messages is O(h{K), where h
is the height of the multicast tree, £ is the number of possible layers, and K is the number of bits
required to represent the bids and costs of the network.

The algorithm in [9] for the same problem (in the simpler model) achieves the same result using



only O(K) bits of communication per edge. However, we also provide two lower bounds on the
communication required to maximize network welfare: We demonstrate that the linear dependence
on h is in fact necessary when considering networks with a cost for enabling multicast, and that the
linear dependence on ¢ is necessary when considering multiple layers. In particular, we show that
there exist networks such that for any protocol, there is an input such that the average, over all
edges of the network, of the number of bits communicated is Q(hK) (for reasonable assumptions
on the value of K). This lower bound is information theoretic, and holds even when there is only
a single possible rate of transmission. For the case of layered transmissions, we demonstrate that
for every network without receivers directly adjacent to the source, there is an input such that the
average number of bits communicated per edge is Q(¢K) (again, for reasonable assumptions on the
value of K'). This lower bound is also information theoretic, and still holds when there is no cost
for enabling multicasting at any node.

We then turn to the question of realizing the Marginal Cost mechanism for the split session
paradigm. We demonstrate that our algorithm for the layered case can easily be adapted to provide
a solution for this case, even when there is a cost for enabling multicasting. However, both the
communication and the computation required of the adapted algorithm become proportional to 2¢,
and thus, this algorithm is only applicable for the case where ¢ is small. We also demonstrate that
we should not expect to find an efficient algorithm for large £. In particular, we demonstrate that
it is NP-Hard to determine even any reasonable approximation to the network welfare when the
number of possible rates grows with the input size. This result holds even in networks without
a cost for enabling multicasting costs, and even if the allowed rates are (for example) powers of
2, and the cost for a group to use an edge is proportional to the bandwidth of the group. This
hardness result is significant in that it demonstrates that in terms of realizing pricing mechanisms,
the layered paradigm enjoys a considerable advantage over the split session paradigm.

Finally, we turn to the question of removing the assumption that there is a single fixed multicast
tree. In particular, we consider the effect of having a single fixed multicast tree for every layer
or group comprising the session, but the trees for the different transmissions need not be the
same. We demonstrate that in this case, maximizing network welfare for the split session paradigm
becomes NP-Hard even for the case of a constant number of possible rates, and no cost for enabling
multicasting. Somewhat surprisingly, we find that in this multiple tree case, the Marginal Cost
mechanism for the layered paradigm can be realized in polynomial time if there is no cost for
enabling multicasting. To demonstrate this, we show that this problem can be expressed as an
integer program with a linear programming relaxation that is guaranteed to have an integral optimal
solution.

The remainder of the paper is organized as follows. In Section 2, we provide more details on the
network model, and describe the Marginal Cost pricing mechanisms we consider. In Section 3, we
describe our Marginal Cost algorithm for the layered paradigm with node cost, and show how to
adapt this algorithm to the split session paradigm. In Section 4, we provide our lower bounds on
communication requirements for Marginal Cost computation, as well as the hardness results for the
split session paradigm where the number of rates grows with the input. In Section 5, we describe
our hardness results for the case where the multicast trees vary for different groups, as well as our
Linear Programming algorithm for the case of layered multicasting.



2 Network Model and Optimization Problems

We consider the problem of offering delivery of a single multicast session, in isolation, to a set
R C N of receivers, over a network modeled as a directed graph G = (N, E). The session emanates
from a source s € N, and is delivered to the receivers via the edges and vertices of G. We say that a
node n € N is enabled when it is configured to multicast for the session: i.e., any flow of information
entering that node can be forwarded on multiple outgoing edges. If a node is not enabled, then
each incoming flow can only be forwarded on a single outgoing edge. There is a cost ¢, for enabling
node n. We can also model nodes that cannot be enabled for multicasting by setting their cost to
00. We here assume that the source s can be enabled for free (and thus is always enabled), although
all of our results can be modified to apply when this is not the case. There is also a cost for using
a directed edge e € E, denoted by c., an {-dimensional vector. In the split session paradigm, [c.];
(the jth entry of c.) is the cost at e of providing the jth rate. In the layered paradigm, [c.]; is the
cost of providing the jth layer.

For most of this paper, we make the assumption that the multicast session uses a single source, and
a unique path from that source to each receiver, regardless of the set of receivers or enabled nodes.
With this assumption, we can restrict our attention to the nodes and edges of the tree formed by
the union of paths from the source to each of the receivers. We refer to this tree as the multicast
tree. When considering networks where every node is enabled for multicasting, this assumption is
justified by the multicast routing strategy, commonly used in practice [7], consisting of a tree of
shortest paths from the receivers to the source. In the case of either the layered or the split session
paradigm, this kind of routing may be used with different source nodes for the different groups or
layers, since this is an effective way to balance the session load throughout the network. Thus, in
Section 5, we consider a model where every layer or group uses a fixed multicast tree, but the trees
do not have to be the same.

The fixed multicast tree assumption does limit the practical applicability of our model to multicast
networks constructed using overlays or application layer multicasting. However, the hardness result
from [9] applies to a network where the routing depends on which nodes are enabled, even if the cost
of enabling those nodes is zero. Thus, we cannot expect to find efficient algorithms for networks with
costs for enabling nodes without some restriction on the choice of routes. We consider the model
of this paper an important step towards understanding algorithms for pricing in such networks.

We assume that receiver r expresses its willingness to pay via a bid, denoted by b,., an -component
vector such that [b,]; indicates the price that » is willing to pay to receive the jth group or layer.
For the optimization problems we consider, the input is distributed as follows: each node n is
informed of ¢, c. for each e incident to n, and b, for any r located at n. The simplest problem we
consider is maximizing network welfare. In that problem, the network must determine a set R’ C R
of receivers that are sent the multicast session, for each r € R’, a rate of transmission, as well as
the set of multicast enabled nodes. Each receiver in R' pays exactly what it bid for the group or
subset of layers that it receives, and the other receivers pay nothing. The network welfare is the
total payments minus the total costs.

2.1 The Marginal Cost Mechanism

A natural definition of a receiver’s satisfaction is the utility obtained from the service provided by
the network minus the amount it must pay to receive this service. For example, as long as the



network charges the receiver less than its utility, the receiver’s satisfaction is positive, and it is in
the receiver’s interest to join the session. The simple pricing mechanism described above produces
a profit for the network equal to the network welfare, but it also gives a receiver an incentive to
bid less than its true utility. By bidding a smaller value, a receiver reduces the cost of receiving
the session, thereby increasing its satisfaction at the cost of network profits. What is needed is a
strategy-proof mechanism in which a receiver maximizes its satisfaction by bidding its true utility.!
There are a number of other properties that are desirable in a pricing mechanism, including:

e Efficiency: a configuration that maximizes (total utility minus total cost) is chosen.
e No Positive Transfers (NPT): the price that the receiver pays is not negative.
e Voluntary Participation (VP): receivers that are not admitted are not charged anything.

e Consumer Sovereignty (CS): A receiver is always able to guarantee acceptance of a bid if the
bid is increased to a sufficiently large value.

It is shown in [21] that the Marginal Cost pricing mechanism is strategy-proof, efficient, NPT, VP,
and CS. A drawback to Marginal Cost is that it does not provide another desirable property, called
Budget-balance: the amount payed by receivers exactly equals the cost of transmission. Marginal
Cost never runs a budget surplus, but may run a deficit. This is one reason to also consider other
mechanisms, such as Shapley Value [23], although that mechanism does not satisfy Efficiency.

All of the previous work on Marginal Cost assumes that the service being priced is binary: each
receiver either receives the service at a given rate or does not. However, the definition can be
easily extended to multiple rates. In particular, consider any network G and set of receivers, R
that wish to join a session under any generic paradigm, pdgm, in which each receiver ¢ submits a
set of bids, b; = (b}, b?, -+, b™), of which at most one is accepted. In the multiple good Marginal
Cost mechanism, the network chooses the configuration of the network that maximizes welfare.
The price charged to a receiver i that has an accepted bid of b} is defined to be Mpdgm (i) =
bF—( dgm () — Poggm (R\{i})), where Py, (X) is the maximum network welfare when restricting
admission to receivers within the set X. If no bid from ¢ is accepted, then 7 is charged 0. In other
words, the price that receiver ¢ must pay is the amount of the bid that was accepted, minus the
marginal contribution to the network welfare of receiver ¢ participating in the multicast session.
The fact that Marginal Cost for a binary service is strategy-proof does not imply that Marginal

Cost for multiple goods is also strategy-proof. Thus, we next prove the following theorem.

Theorem 1 The Marginal Cost mechanism for multiple goods is strategy-proof, efficient, NPT,
VP, and CS.

Proof: The proofs that these properties are satisfied under this definition of marginal cost are trivial
for all cases except for strategy-proofness. For strategy-proofness, we must show that a receiver
maximizes its satisfaction by bidding its true utility for the service associated with each vector
component. Our proof considers two sets of bids that a receiver can place. B; = <b%, b2, - ,b7) is
a bid in which a receiver bids the utility that it would receive if the transmission associated with
the bid were accepted. By = (b} b3 ---,b%) is a bid in which the receiver need not bid its utility.
We will show that the receiver’s satisfaction is no less for By than for any possible Bs.

A configuration of the network, C, fixes the set of admitted receivers and the service received by
each receiver. For instance, within the layered paradigm, a configuration would fix the set of layers

1We assume that receivers do not conspire with one another.



or the group from which each receiver receives data, as well as the set of nodes that would be
enabled for multicasting. Note that under a fixed configuration, C, a receiver’s accepted bid is the
one that corresponds to the service it is offered within C'. No bid is accepted if the receiver does
not receive service.

Let C;,i = 1,2 be the configuration that the network would use to optimize profits (aggregating
accepted bids minus link and node costs) when r places bid B;. Let Cr be the configuration that
the network uses to achieve maximum network welfare over all configurations in which none of 7’s
bids are accepted. Let Po(B;) be the network welfare that results from bid B; under configuration
C. Let A(C) = j if r’s jth component of the bid is used under configuration C (i.e., for bid B;, b} is
accepted.) We let A(C) = 0 when r is rejected. Let Vi(B) be the value of the A(C)th component

of B, ie., Vo(B;) = b,

We point out several facts. Let us fix a configuration C.

Fact 1 Let A(C) = k and let B, = (bL,---,b2) and B, = <b11/,~‘,b2> be any two bids placed
by r, with bg/ = bl + pj where pj; is an arbitrary real-valued value for all 1 < j < n. Then
Po(B,) = Po(Ba) + k.

Fact 2 IfC = CR then PC’R(Bl) = PCR(BQ).

Fact 1 states that within a fixed configuration, C', modifying the accepted bid by a constant value
u alters the network welfare by u, and modifying an unaccepted bid does not alter the network
welfare. We stress that this fact requires that the configuration, C, remain fixed. Fact 2 states that
if a configuration does not accept any of 7’s bids, then the network welfare is not altered under the
configuration if r changes its bid.

Lemma 1 If r is admaitted to the session under bids By and Bs, in which r bids its utility for By,
then Pcl (Bl) > P02 (Bz) + V02 (Bl) — ch (BQ)

Proof: We consider two cases separately. First, we consider the case where A(Cy) = A(C2) = i.
Next, we consider the case where A(C;) = i and A(C3) = j with i # j. W.l.o.g., we can assume
that ¢ =1 and j = 2.

For the first case, let b3 = bl + p, where y is any real valued number. Because C; is the optimal
profit configuration for By, we have that P, (B1) > Pc,(B1). By Fact 1, P, (B1) = Po,(B2) —p =
Pc,(Bs) 4+ Ve, (B1) — Vo (B2). Hence, P, (By) > Pe,(B2) + Vo,(B1) — Ve, (Bz2) for this first case.

For the second case, let b3 = b? + 7. Because Cj is the optimal profit configuration for By, we again
have Pc,(B1) > Pc,(B1). By Fact 1, we have that Pe,(B1) = Pc,(B2) —n = Pey(B2) + Ve, (B1) —
Ve, (B2). Hence, Pe, (B1) > Peo,(B2) + Voo, (B1) — Vip (B2) for the second case as well. ]

We are now ready to prove Theorem 1. We again consider two bids, By and By, where the receiver
bids its utilities in B; and bids arbitrarily in By. There are four cases to consider. A receiver’s bid
is accepted in both bids By and Bs, only By has an accepted bid and all of Bs’s bids are rejected,
all of By’s bids are rejected and one of Bs’s bids is accepted, and all bids are rejected in both B;
and Bs. We consider each case one at a time.



First, let us consider the case where both bids are rejected. In this case, the receiver’s satisfaction
is 0 for both bids is 0: it receives no utility, and no price is charged. Hence, the theorem holds for
this case.

Next, let us consider the case where () is a configuration that admits r» and Cs is a configuration
that rejects 7. W.l.o.g., assume A(C;) = 1. Since By is a “truthful” bid, r’s utility equals b1 as well.
Hence, its satisfaction is b — Mpggm(r) = bi — (b1 — Pc, (B1) + Pcy, (B1)). Since Pe, (B;) maximizes
profits for bid B; over all possible configurations, it must be the case that P, (B1) > Poy(Bi).
Hence, the satisfaction is no less than 0, which is its satisfaction in configuration Cy (brought on
by bid Bs). Thus, the theorem holds for this case.

Next, consider the case where one of By’s bids is accepted. W.l.o.g., assume A(Cs) = 1, b} = bl +p,
and that A(Cy) = 0 (By’s bids yield a configuration in which r is not admitted). r’s satisfaction
achieved by bidding Bj is 0. Since Bj is the “truthful” bid, it holds the actual receiver utilities. By
bidding Bs, r’s satisfaction is bl — (b} — Pc,(Ba) + Poy (B2)) = bt — (bl + p) + P, (Ba) — Poy, (B2).
Application of Fact 1 to Pg,(Bz2), algebraic simplification, and application of Fact 2 (Pgj,(B2) =
Pcy, (B1)) simplifies this expression to Pc,(B1) — Pcy(B1). Since none of r’s bids were accepted
when r bid B; and Cpg is defined as the maximum network welfare over such configurations, we
have that Pc,(B1) < Pcy(B1). Thus, we have that Pc,(B;) — Pcy(B2) < 0 and the theorem holds
for this case.

Last, assume that both bids are accepted. As before, since B; is the “truthful” bid, it holds
the actual receiver utilities. This means that the utility gained from the acceptance of bid Bj is
Ve, (B1), and the utility from the acceptance of bid By is Vi, (By). It follows that the respective
satisfactions from bids By and By are sat(By) = Vi, (B1) — (Veo,(B1) — P, (B1) + Pe,(B1)) and
Sat(Bz) = Ve, (Bl) — (VC2 (Bz) — P, (Bz) + PC’R (Bz)) Noting that PC’R (Bl) = PC’R (Bg), we have
sat(By) — sat(B2) = Pe, (B1) — Py, (B2) + Ve, (B2) — Ve, (B1). By applying Lemma 1, we see that
sat(By) — sat(Bg) > 0, proving the Theorem for this final case. ]

3 Efficient Distributed Algorithms for Marginal Cost

In this section, we present an efficient distributed algorithm for realizing the Marginal Cost mech-
anism in the layered paradigm. We first provide an algorithm that maximizes network welfare.
We then demonstrate that it can be modified to maximize network welfare in the split session
paradigm, albeit at the cost of an exponential dependence on the number of groups. We then show
that our algorithms for both the layered paradigm and the split session paradigm can be converted
into algorithms that compute Marginal Cost.

For any node n of the multicast tree, let 7 ,, be the parent node of n in the tree. Let 71, be the
parent of node 7, ,,. We define h,, to be the value of k such that 7y, is the source node of the tree.
For any node n, let D(n) be the set of children of n in the tree. An important value computed
during the course of our algorithm is S; (n), which is computed for 0 < j < ¢, 1 <k < hy,. Sji(n)
is the maximum network welfare of the subtree rooted at node n, minus the cost of transmitting
all necessary layers from node , , to node n, under the following two assumptions:

® 7., is not enabled for all 1 < r < k. Nodes n and 7, ; may or may not be enabled, but only
the cost of enabling n counts against S; (n).

e At most j layers are transmitted from y,, to n (and thus to any node that is a descendent



of n.)

In other words, Sj;(n) is the maximum value of the sum of a set of accepted bids that are in the
subtree rooted at n, minus the sum of the costs in the subtree rooted at n to deliver those bids,
minus the cost of transmitting the necessary layers from node =, , to node n, subject to the two
conditions above. Another set of intermediate values used by our algorithm are represented by
C(m, 4,n)» & vector such that [C(Trn,k,n)]j is the cost of transmitting one copy of layer j from m, j to n.

We now describe our algorithm, which we call Max-Layered-Welfare. For ease of exposition, we
here describe the slightly simpler case where the set of possible receivers is exactly the same as the
set of leaves of the multicast tree, but it is not hard to modify this to account for the general case.

Algorithm Max-Layered-Welfare:

e The source initiates a phase of the algorithm where every node n of the multicast tree sends
each of its children n; € D(n) the vector c( ), for each k, 1 < k < hy,,. Each child n;
uses these values to compute each ¢, + Cp,n;, Where the addition is a
componentwise vector addition.

T,k

ngkrimi) — C(mnkoni)

e Each leaf node n of the multicast tree computes, for each k and j, 1 < k < h,, 0 < j < ¥,
Sjk(n). Each Syg(n) = 0, and then the remainder are computed in order of increasing j,

using the formula S; x(n) = max(>7_;[by], — Zizl[c(ﬂn,k,n)]r, Si 1)

e The next phase of the algorithm proceeds from the leaves to the source, and each node n;
sends to its parent n, the value S;(n;), for each k and j, 1 <k < hy;, 1 <j <{. The node
n sets each Spr(n) = 0, and then computes all other values of S;;(n), proceeding from j = 1
to j = £, using the formula

i
Sik(n) =max{ > Sigpa(n), Y Sji(m) —cn = D (e, e Sj—ip(n) . (1)

n;€D(n) ni€D(n) r=1

e The source node s returns the value 3, .c p(s) Sj,1(ni)-

Theorem 2 The value returned by Algorithm Max-Layered-Welfare is the mazimum possible
network welfare under the layered paradigm. Furthermore, the computation performed by any node
n requires time O(Lhy,|D(n)|), exactly two messages are communicated between node n and its child
n; € D(n), and the total number of bits required by these messages is O(Lhp,K), where K is the

mazimum number of bits required to represent any value S;(n;) or Clrmnron)-

number of bits communicated between any node n and its child

Proof: 1t is not difficult to implement this algorithm with the stated computation and communica-
tion complexity, and thus we here only describe the proof that the value returned by the algorithm
is correct. To do so, we prove that for every n, j, and k, the value of S;(n) computed by the
algorithm is correct. Assuming this, the correctness of the algorithm follows from the fact that
the source determines the welfare obtained by sending the optimal number of layers to each of its
children. Also note that it is easy to show that the values of C(my 1e,m) computed are correct. Thus,
we only need to show the correctness of the S (n). The proof is by a double induction on j and
the maximum (simple path) distance from n to a leaf. For the base of the induction, we show that



Sjk(n) is correct if either j = 0, or n is a leaf. When j = 0, S;;(n) = 0, since no receiver in the
subtree rooted at n can receive any layers. When n is a leaf, but j > 0, we see that S;;(n) is
correct by induction on j, since when up to j layers can be sent to node n, either we send all j
layers to n, or we use the best solution using less than j layers.

For the inductive step of the double induction, consider any k, any layer j > 0, and any non-leaf
node n. By induction, we can assume that for every child n; € D(n), both S; ;41(n;) and Sj1(n;)
are computed correctly, and also that S;_; x(n) is computed correctly. There are now four cases:
either node =, ; transmits layer j to node n or it does not, and either node n is enabled, or it is
not. If, in the optimal solution, node m, ; does not transmit layer j to node n, then regardless
of whether n is enabled or not, S;(n) = Sj_1 x(n). If the optimal solution transmits all j layers
to node n, and n is enabled, then S;(n) = 32, cp(n) Sj,1(n:) — €n — 35—1[C(n, 1 ,m)lr- This holds
because we maximize the welfare at the subtree rooted at n when n is enabled by maximizing the
welfare of the subtrees rooted at each of its children subject to the condition that each of them
receives the multicast session directly from n. From this maximization, we must also subtract the
cost of enabling n and of transmitting one copy of layers 1 through j from m, ; to n. Finally, if the
optimal solution transmits all j layers to node n, but n is not enabled, then all layers are unicast
through n, and we see that S; x(n) = 32,,cp(n) Sjk+1(n:). Since the algorithm takes the maximum
of these possibilities, it does in fact compute the correct value of S; j(n). [ |

We next point out that algorithm Max-Layered-Welfare can be modified to compute the maxi-
mum welfare for the split session paradigm. We provide a brief sketch of how to do so. We define
S;k(n), where [ is any subset of the £ groups, analogously to Sjj(n), except that the second
condition becomes

e If a group s is transmitted from my ,, to n, then s € [.

The algorithm follows along the same lines as Max-Layered-Welfare, with small modifications.
To compute Sy (n) for all [ and k at a node n, the algorithm starts with [ being the empty set,
then considers all subsets of size 1, followed by all subsets of size two, until [ contains all groups.
The main formula of the algorithm (analogous to (1)) is as follows:

Spk(n) maX{ Yo Speerlm), Do Spa(ni) —cn = Y le(m, pm)ls: MAXf’em(f)Sf’,k(”)}’

n;€D(n) n;€D(n) sef

where m([) is the set of all subsets of [ containing exactly one less element. We call the resulting
algorithm Max-Split-Welfare. The proof of the following theorem follows along the lines of the
proof of Theorem 2.

Theorem 3 The value returned by Algorithm Max-Split-Welfare is the mazimum possible net-
work welfare under the split session paradigm. Furthermore, the computation performed by any
node n requires time O(£2%h,|D(n)|), exactly two messages are communicated between node n and
its child n; € D(n), and the total number of bits required by these messages is O(2°h,, K), where

K is the mazimum number of bits required to represent any value Sy x(n;) or Clrp )

3.1 Computing the Marginal Cost

We now show how to use algorithms Max-Layered-Welfare and Max-Split-Welfare to compute
Marginal Cost. The following information is sufficient for a receiver r to know what it pays and



what it receives: the network welfare, r’s accepted bid (if any), as well as the maximum network
profit obtainable when r is not admitted. We provide this information to each receiver r using a
single downward phase of the algorithm from the root to the leaves of the tree.

The network welfare computed during the upward phase is simply be passed back down the tree
during the downward phase. To inform every receiver of which bid is accepted, every node stores,
during the upward phase, which term of the maximization in (1) provides the largest value. The root
informs its children of what configuration they are in, which, combined with the stored information,
is sufficient for them to determine the configuration of their children, and so on, until every node
knows what configuration it must be in to achieve the maximum network welfare. This informs
every node of its closest enabled parent in the multicast tree, whether or not it is enabled, which
layers or groups it receives from this enabled parent, and what to forward to its children, if it has
any.

More difficult is computing, for each receiver r, the maximum network profit when r is not admitted.
This could of course be computed easily using one phase per receiver, but our objective is to provide
the receivers with this information using a single downward phase. We here describe how to achieve
this in the layered paradigm, although it is easy to modify what we describe here to work in the
split session paradigm. We assume that every node n stores the values S x(n;), for all n; € D(n),
j and k that it learned during the upward phase. In addition, in the downward phase, each node
will compute the quantity B;(n), for 0 < j < /fand 1 < k < hy,. Bj(n) is the maximum network
welfare possible, subject to the following conditions:

e The closest ancestor of n that is enabled is m, ;.

e Node 7, transmits the first j layers to n, but no other layers.

e If node n is an internal node of the tree, no layers are transmitted to any child of node n.

e If node n is a receiver, the profit from that receiver is not included in the network welfare.
Note that the network configurations prescribed by B; j(n) for j > 0 are wasteful in the sense that

the layers transmitted to node n are not used by any receiver. Each node learns every value of
Bj (n) from its parent during the downward phase. Our algorithm is as follows:

Algorithm Layered-Marginal-Cost

e The source node s sends every n; € D(s) the value of Bj;(n;), for 0 < j < ¢, computed using

J
Bji(ni) = ( > 54,1(”2)) = > le(smlr-
nieD =

(s)inj#ni
¢ Every node n, on receiving Bj1(n), for 0 < j < £ and 1 <k < hy,, from its parent, computes

B (n;), for each n; € D(n), 0 < j < {and 1 <k < hy,, and sends these values to n;. For
the case where 2 < k < hy,;, node n uses

J
l
Bjk(ni) = max Big—1(n) + > Sek(ni) | = Dl n)lr-
- nieD(n);n}#n; r=1
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For the case where k = 1, node n uses

J
l hp
Bja(n;) = max | max By (n) + > S | = Dolemmlr — cn
u= n,eD(n);n.#n; r=1

e Each receiver r returns maxZ;l By k(7).

Theorem 4 The value returned by each receiver r in Algorithm Layered-Marginal-Cost is the
mazrimum possible network welfare obtainable under the layered paradigm, without admitting r.
Furthermore, the computation required of any node can be done in polynomial time, each node n
sends only one message to each child n; € D(n), and the number of bits required of this message
is O(Lhy,K), where K is the mazimum number of bits required to represent any value Bj(n;), or
the mazimum network welfare.

Proof: Proving the bounds on the amount of computation and communication straightforward, and
thus we here focus on proving correctness. Note first that if receiver r obtains the correct values of
By g, for 1 < k < h;, then it returns the correct value, since in the optimal configuration without
r, there is some k such that 7, is enabled (recall that the source is always enabled), and so for
some value of k, By ;(r) contains the maximum welfare.

We prove that the values of Bj(n) are correct by induction on h,. For the base case, consider
some n that is a child of the source. The maximum network welfare obtain without any profit
provided by the subtree rooted at n is the maximum profit obtainable in the subtrees rooted at the
other children of the source. From this, we subtract the cost of sending the required layers from s
to n.

For the inductive step, we assume that node n receives the correct values of B; ;(n) from its parent,
and show that this implies that for any n; € D(n), n sends the correct values of Bji(n;) to n;.
The case where k£ > 1 computes B; ;(n;) when node n is not enabled. When this is the case, there
is some ¢t > j, such that ¢ layers reach n from m,;_;. Now, consider all configurations where ¢
layers reach n and m, ;_; is the first enabled ancestor of n. Within this set of configurations, the
configuration of the subtree rooted at any n, € D(n) has no effect on the optimal configuration
of the remainder of the tree. Thus, to convert Bjj;_1(n) to the optimal configuration where ¢
layers reach n, my, 1 is the first enabled ancestor of n, and no receiver in the subtree rooted at n;
contributes to the network welfare, we simply add to Bj;_; the maximum welfare possible in the
subtree rooted at each n; € D(n), n; # n;, when the cost of sending any required layers (up to t)
from 7y, ;1 is included. This is exactly the value S;x(n}), computed during the up-phase of the
algorithm Max-Layered-Welfare. Thus, to find the value of B; j(n;), we simply have to take the
optimal allowed value of ¢, and then subtract the cost of sending the first j layers from n to n;.

The case where k = 1 computes B; ;(n;) when node n is enabled. Again, there is some ¢ such that ¢
layers reach node n. Within the set of configurations where n is enabled and exactly ¢ layers reach
n, the configuration of any subtree rooted at a child of n has no effect on the optimal configuration
of the remainder of the tree. Thus, to find the optimal network welfare where n is enabled and
receives t layers, and no receiver in the subtree rooted at n; contributes to the welfare, we first find
the optimal configuration where n is enabled and receives ¢ layers, but none of the receivers in the
subtree rooted at n contribute to the welfare. In the optimal such configuration, there is some first
ancestor of n, m, ., that is enabled (again, the source is always enabled), and thus it is sufficient

11



to maximize By, (n) for all possible u, and for each subtract the cost of enabling n. To this value,
we add the optimal welfare for the subtrees rooted at each n} € D(n), n, # n;, including the cost
of sending any required layers from n. The value added for each n} is exactly S;1(n}). Again, once
we have found the optimal value of ¢, we subtract the cost of sending the first j layers from n to
n;. |

4 Lower Bounds and Hardness Results

In this section, we examine the question of whether it is possible to design algorithms that performs
better than those of the previous section. We first examine the communication requirements of
Max-Layered-Welfare. For all of our communication lower bounds, we assume that all costs
and bids are integers that are allowed to be anywhere in the range 0 to 2¥ — 1. We also assume
that communication is restricted to the edges of the multicast tree. We first demonstrate a lower
bound of Q(kh), (provided that k is not too small), on the number of bits per edge that must be
communicated when there is a cost for enabling multicast in a tree of height h, even with only
a single layer. We then demonstrate a lower bound of Q(¢k), (again, provided that k is not too
small), on the number of bits per edge that must be communicated when there there are ¢ layers,
even when there is no cost for enabling a node. Of course, the combination of these two results only
imply a Q(k(¢+h)) lower bound; an interesting open problem is determining whether or not O(kZh)
is in fact optimal. Finally, we provide evidence that the exponential dependence on the number of
groups that arises in our algorithm for the split session paradigm is inherent to the problem.

4.1 Communication lower bound for enable-cost networks

We consider a class of networks N, where for each positive integer i, there is one network N; € N.
The network N; has a path consisting of 2¢ + 1 edges connected to the source node s. The last node
of this path is connected to i other nodes besides the path. Each of these in turn is connected to two
leaves of the multicast tree. There are a total of 2i receivers: one per leaf node. The network N3
(with costs defined below) is depicted in Figure 1. For any network N, let A(/N) be the maximum
length of any path from the source to a receiver (the height). Note that h(N;) = 2i + 3. An input
to the problem, I, consists of costs for transmission on the links of the network, costs for enabling
the nodes of the network, as well as the bids of the receivers. We here assume that all inputs have
only a single layer. For protocol P, input I, and network N, let B(N, I, P) be the average over the
edges of N, of the number of bits that cross an edge using protocol P on N with input I.

Theorem 5 For any N; € N, there is a distribution D of inputs such that for any deterministic
P, the expectation of B(N,I,P), taken over I distributed according to D, is Q((k — 2log h(N;) —
2)h(N;)). For any randomized protocol P that always return the correct answer, there is some input
I such that B(N;, I, P) = Q((k — 2log h(N;) — 2)h(N;)).

Proof: We define the distribution D in terms of a function f;(a1,...,a;, b1,...,b;) that maps two
i-tuples of integerskto an input for the network N;. Each of the 2¢ integers is allowed to be in the
range from 0 to f? — 1. An important class of inputs is what we call symmetric inputs. Input

I = fi(a1,...,a4,b1,...,b;) is a symmetric input if Vj,1 < j <4, aj = b;. We also say that input
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I is A-dominating (B-dominating), if there is any j such that a; > b; (a; < bj, resp.), and a, = b,
for j < r <. Note that an input is either symmetric, A-dominating, or B-dominating.

Below, we define the function f;, but we first present a number of properties that hold for this
function. Let p; be the j® node of the path, starting with the node adjacent to s. Let e; be the
(j + 1)%t edge of the path (starting from the source s). The following claims all hold for f;:

Claim 1 Ifb;...b; are fized, but ay ...a; are not fized, the only edge and node costs that are not
fized for inputs fi(a,...,ai,b1,...,b;) lie between edge e; 1 and the source. If ay ...a; are fized but
by ...b; are not fized, the only edge and node costs that are not fixed for inputs fi(a1,...,a;,b1,...,b;)
lie between edge eq; and the leaves of the tree.

Claim 2 If input I is a symmetric input, then the mazimum network welfare solution on input I
has multicasting enabled at node p;;1.

Claim 3 If input I is an A-dominating input, then the maximum network welfare solution on input
I does not have multicasting enabled at node p; 1.

Before we define the function f; and prove these claims for this function, we describe the distribu-
tion D, and show how the theorem holds for this choice of D. With probability % — ﬁ, D forces

o\
a symmetric input, where v = (42%2) . In this case, a1, . .. a; are each chosen independently and uni-

formly at random from the integers in [0. . . % —1], and D returns the input f;(a1,...,a;, a1,...,a;).
With probability % + ﬁ, ai,...ai, by ...b; are each chosen independently and uniformly at ran-
dom, and D returns the input f;(ai,...,a;,b1,...,b;). Choosing the input in this manner ensures
that every pair of inputs is possible, and that the probability of the input being symmetric is exactly
%. Claims 1, 2, and 3 imply the following:

Lemma 2 Let e be any edge e;, for i +1 < j < 2i. For any deterministic protocol P, when

t?e input z)s chosen using the distribution D, the expected number of bits that cross e during P is
i(k—2logi—2

5 .
Proof: Consider a pair of distinct inputs I = f;(a1,...,ai,a1,...,a;)and I' = fi(a},...,a},d},... a})
where I and I’ are both symmetric. By Claim 2, on each of these inputs, the optimal solution has
node p; 41 multicast enabled. W.l.o.g., assume that I"” = f;(as,...,a;,a},...,a}) is A-dominating.

Thus, by Claim 3, on input I”, the optimal solution does not have node p;;; multicast enabled.
Therefore, using Claim 1 and the standard but classical communication complexity argument of
Yao [26], we can show that the communication transcript across e on I must be different from the

transcript on I’. Otherwise, node p;11 would be incorrectly multicast enabled on input I"”. The
lemma then follows from the fact that there are (%)z possible equally likely symmetric inputs, and

the input is symmetric with probability % Thus the entropy of the communication transcript over
e is at least W. [
The theorem now follows for deterministic protocols, since from the linearity of expectation, the

expected sum of the number of bits that must cross all of the edges e;, where i +1 < j < 24, is at

i%(k—2logi—2)
2

least . Since the total number of edges in N; is O(i), we get that the expectation of
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B(N;, I,P), when [ is distributed according to D, is Q(i(k—2logi—2)) = Q(h(N;)(k—2log h(N;)—
2)). For randomized algorithms, we use Yao’s Lemma [27], which tells us that any lower bound for
deterministic algorithms running on a known distribution of inputs also provides a lower bound for
randomized algorithms running on a worst case input.

Thus, to prove the theorem, we only need to describe f;, and demonstrate that Claims 1, 2, and 3
hold. We next define the function f;(aq,...,a;,b1,...,b;). The main difficulty in doing so comes
in ensuring that if there is any j such that a; > b; and a, = b, for j < r < ¢, then regardless of
the values of ai,...,a; 1 and by,...,b; 1, the node p;;; is not multicast enabled in the optimal
allocation of f;(a1,...,a;,b1,...,b;). For example, it is not difficult to define a function such that
if 23:1 a; > Z§:1 b;, then p; 1 is not multicast enabled, but this is not sufficient for our purposes.

Call the ¢ nodes that are adjacent to the last node of the path ny...n;. The cost of enabling
multicast at node n, is Z;;(l) 2b; ;. Let M = 2% — 1. The cost of enabling multicast at any node
pj, for i +2 < j < 2i + 1 is always M, and the cost of using any edge between node p;;; and the
leaves of the tree is always 0. The cost of using the edge incident to the source s is always M. The
cost of using e;, for 1 < j <4, is 2a;. Let ¢1(j) = 3,2 2ra;—, for 1 < j <i—1, and ¢;(j) = 0
for all other j. Let c2(j) = 21;1(42 —2)a, for 2 < j < i+ 1, and c2(j) = 0 for all other j. The
cost of enabling multicast at node pj, for 1 < j <1, is ¢1(j) 4 c2(j). The cost of enabling multicast
at node p;i1 is c2(¢ + 1) — 1. Note that because of the assumptions that a; < % and b; < %,
the costs of all edges and nodes in each input defined by f; is less than M. We also specify that
on every input, each receiver makes a bid of M. The network N3 is depicted with costs in Figure
1. The proof of Claim 1 holds trivially from the description of the function f;. We next prove the
other two Claims.

Proof (of Claim 2): We first point out that the network welfare is always maximized by sending the
multicast session to every receiver. Thus, maximizing network welfare is equivalent to minimizing
the cost to do so. In the case of a symmetric input, the optimal solution is when node p;1 is
multicast enabled, and no other node is multicast enabled. This yields a cost of OPT = M +

fn:1 4ia, — 1. Now consider any solution where node p;;1 is not enabled. If no other node p; is
enabled, then the edge incident to the source is used i times, leading to a cost of :M > OPT. If
node p; is enabled, for j > ¢ + 1, there is a cost of M for enabling that node, plus the cost of the
edge incident to the source, and thus the cost is at least 2M > OPT.

Otherwise, p; is enabled, for some j < . If there is more than one such node enabled, let p; be the
node with the highest value of j. The cost of enabling p; is ¢1(j) + c2(j). In addition, the cost of
using the edges of the path is M +>%_; 2a, +(2i —t —1) Zf;:j 2a,, where t is the number of indices
r such that node n, is multicast enabled. The cost of enabling those nodes is minimized by enabling
nodes n; through ny, for a cost of Zfazl(t — 7+ 1)2a; 1. Thus, the cost is minimized by setting
t =i —j -+ 1. Summing all the terms we see that the total cost is at least M + 3%_, 4ia, > OPT.
|

Proof (of Claim 8): Assume the input is A-Dominating, and let j be such that a; > b; and a, = b,
for j < r <. The cost of any solution where p;; is enabled is at least M + 3", _; 4ia, —1. However,

the cost of the solution where the nodes p; and nq,...,n;—;41 are multicast enabled, but no other
nodes are enabled, has cost M + Y._; 4ia, — 2a; + 2bj, which must be strictly smaller. [ |
|
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Figure 1: The network N3. Node (edge) names are depicted to the left of the node (edge, resp.).
The cost of enabling multicast at a node is depicted to the right of the node, and the cost of using
an edge is depicted to the right of the edge. When the cost of enabling multicast at a node is not
depicted, it is M. An edge without a cost has cost 0.
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4.2 Communication lower bound for the layered paradigm

We next provide our lower bound for the case where there is no cost for enabling any node of the
network, but there are ¢ layers in the multicast session. We call a network topology 2-tall if there
is no leaf of the multicast tree that is directly connected to the source.

Theorem 6 For any 2-tall network topology N, there is a distribution D of inputs such that for any
deterministic protocol P, the expectation of B(N,I,P), taken over I distributed according to D, is
Q(L(k—1log A)), where A is the mazimum degree of any node in N. For any randomized protocol P
that always returns the correct answer, there is some input I such that B(N,1,P) = Q(L(k—log A)).

Proof: In order to prove this bound, we first partition the edges of the network N into smaller
subsets. In particular, let a rake be a subset of N consisting of a designated node called a root
node, a path of at least one edge from the root to a node called the center of the rake, and a set
of leaves of the rake, each of which is adjacent to the center of the rake. A rake must have at least
one leaf. The leaves of the rake are required to also be leaves of the original multicast tree, and
the root of the rake must be the node in the rake that is closest to the source of the multicast tree.
Let a rake partition be a partition of the edges of N such that the set of edges in each cell of the
partition and their incident nodes form a rake. A node is allowed to appear in more than one rake.
However, since the root of the rake must be the closest node to the source, a node of the multicast
tree can only serve as the center of a single rake, since otherwise the two rakes would also share
(at least) the first edge towards the root from the center. This implies that for any pair of rakes rq
and ro, the set of nodes serving as leaves for r; is disjoint from the set of nodes serving as leaves
for ro.

Claim 4 For any 2-tall multicast tree network N, there is a rake partition.

Proof: We give an algorithm that constructs such a partition. We define a rake forest to be a forest
where every node corresponds to a node of N, and if there is an edge in the rake forest between
nodes u and v, then there must be an edge between the nodes corresponding to v and v in N.
Only one edge of the forest can correspond to an edge of IV, but multiple nodes can correspond
to a nodes of N. Every tree of the rake forest has a root node that corresponds to the node in N
closest to the source. Also, no vertex adjacent to such a root is allowed to be a leaf. The network
N defines a rake forest with a root at the source node (since it is 2-tall), and we also allow for a
forest with no edges (the empty forest).

We show that given a non-empty rake forest, we can remove from the forest a set of edges defining
a rake in such a way that the resulting forest is still a rake forest. By repeating this process until
the rake forest is empty, we construct a rake partition. To construct a rake r, from a rake forest,
we start by picking the root of any tree in the forest. Choose some edge e incident to the root,
and include e in r., and remove e from the rake forest. Let v be the node incident to e that is not
the root. If v has any children that are leaves, all edges that are incident to both v and a leaf are
added to r., and removed from the rake forest. In that case, the construction of r. is complete. We
also remove any nodes that no longer have any incident edges, and for each v’ adjacent to v such
that v’ is not a leaf, a new node that corresponds to the same node of N as v is placed adjacent to
v', and this new node serves as the root of a new tree. Note that the resulting forest is still a rake
forest, since any new roots that are formed cannot be incident to leaves.
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If v has no children that are leaves, then let ¢’ be any edge remaining in the rake forest incident
to v (one such edge must exist, since v is not a leaf). Add €' to the rake, and remove it from the
rake forest. Any other edges incident to v are detached from v, and v is replaced by a new node
that corresponds to the same node of N as v. The new node becomes the root of the resulting
tree. Note that again, no node adjacent to the new root can be a leaf node. This process is then
repeated from the node v’ that is incident to €/, until we reach a node that is adjacent to at least
one leaf, where the first case applies. At the end of this process, we have added a rake to the rake
partition, while at the same time maintaining the properties of the rake forest. [ |

We now provide a probability distribution over inputs that leads to the lower bound. To do so,
assume that we have some rake partition of N. We distinguish between long rakes, where the
number of edges on the path from the root to the center of the rake is at least as large as the
number of leaves of the rake, and wide rakes, where the number of edges from the root to the center
of the rake is less than the number of leaves. In the input distribution, the only edges that may
have non-zero cost are the edges incident to the root of each rake. The only receivers that may
have non-zero bids are the leaves. Also, for each long rake, there is a designated leaf that may have
non-zero bids; all other leaves of a long rake always make zero bids.

With probability 1/2, the input is a symmetric input. In this case, for each long rake, the designated
leaf makes a bid such that the additional amount bid for each layer is chosen independently and
uniformly at random from the range [0,2* — 1]. The additional cost for each layer on the edge
incident to the root in that rake is exactly equal to the corresponding bid made by the designated
leaf. For a wide rake with ¢ leaves, each leaf makes a bid such that the additional amount for each
layer is chosen independently and uniformly at random from the range [0, (2¥ — 1)/t]. The cost for
each layer of the edge incident to the root is equal to the sum of the bids for that layer made by
the leaves of that rake. For each rake, the costs and bids are chosen independently.

With probability 1/2 the input is not a symmetric input. In that case, we first construct a symmetric
input. Then, some rake is chosen uniformly at random. If this rake is a long rake, the bids of the
designated leaf are changed so that the additional amount bid for each layer is a new random
number in the range [0,2* —1]. In the case of a wide rake, some leaf is chosen uniformly at random.
The additional amount bid for each layer by that leaf is changed to be a new random number in
the range [0, (2* — 1)/t]. The theorem now follows from the following lemma:

Lemma 3 Let R be a set of edges that form a rake of the rake partition. For any deterministic
algorithm running on this probability distribution, the expected number of bits that need to traverse

the edges of R is Q(¢|R|(k — log A)).
Proof: We use the following two claims:

Claim 5 Let e be any edge incident to a leaf of a wide rake. For the described distribution of inputs,
the expected number of bits that cross e in any deterministic algorithm is at least Q(£(k — log A)).

Claim 6 Let e be any edge on the path from the root to the designated leaf of a long rake. For
the described distribution of inputs, the expected number of bits that cross e in any deterministic

algorithm is at least Q(L(k — log A)).

For wide rakes, the lemma follows from Claim 5, the linearity of expectation, and the fact that in
a wide rake, at least half the edges are incident to leaves. For long rakes, the lemma follows from
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Claim 6, the linearity of expectation, and the fact that in a long rake, at least half the edges are
on the path between the node adjacent to the root and the designated leaf.

The details of the proofs of the two claims depend on the exact rules for how ties are broken. We
here describe the case where if there are multiple ways to achieve the maximum network welfare,
the network transmits the highest set of layers that does so. This implies that if the maximum
profit is zero, but it is possible to achieve this by transmitting at some layer, the network transmits
at that layer. Other tie breaking rules are similar. The proofs of Claim 5 and Claim 6 follow from
the classical, two party communication complexity lower bound technique of [26] (see also [18])
using fooling sets. However, since the details are slightly complicated by the fact that we may have
many more than two parties present, and the fact that we have multiple layers, we provide a brief
sketch of the argument.

For Claim 5, one of the two communication complexity parties is the leaf L incident to edge e.
The communication medium is the edge e, and the other communication complexity party is the
remainder of the network. We demonstrate that the transcript of the bits that cross e must be
different on all input bids to L that are possible as part of a symmetric input. To see this, consider
two symmetric inputs /1 and I5 such that L receives a different set of bids on I1 than on I. Let bg
be the total amount bid by L on input I; for layers up to i. Let r be the value of 7 that maximizes
b} — b?|. If r = £ (i.e., r is the highest layer overall), then we assume w.l.o.g. that bl > b2
Otherwise, assume w.l.o.g. that bl < b2.

Let I? be the input which is identical to I;, with the exception that the leaf L receives the bids it
would receive on input I,. Note that I? is a possible (not symmetric) input to the network. Using
the argument from [26], we see that if the communication over the edge e on the inputs I; and I is
identical, then at the end of the algorithm, the only node in the network that is able to distinguish
input I? from input I; is the node L. This means that the network would send the highest layer
stream to all leaves in the network, resulting in a profit of 0. However, in the case where r < £, if
the network sends at layer r to all nodes below the edge incident to the root of the rake containing
e, then all layers outside the rake containing e break even, and that rake achieves a profit of b2 — b}.
In the case where r = ¢, the network would still send at the highest layer to all leaves, even though
this results in a loss. The network would do better by not sending at all.

Thus, the communication over the edge e must be different for any pair of symmetric inputs where
the bids received by L are different. The probability of an symmetric input is 1/2, and on an
symmetric input there are at least 2¢* /A’ input bids to L that are all equally likely, the entropy
of the communication over e is at least ML;gA), and thus the expected number of bits that cross
that edge is in fact Q(4(k — log A)). For the proof of Claim 6, the argument is similar, except that
the two parties for the communication complexity argument are the entire network above the edge
€', and the entire network below the edge €’. Thus, for the inputs analogous to I; and I, we can
create the input analogous to I? by providing inputs from I; to the network above the edge ¢’ and
from I5 to the nodes below the edge. [ |

To complete the proof of the theorem for deterministic algorithms, we see that from the linearity of
expectation, the expected number of bits that traverse the edges of the network is Q(¢m(k—log A)).
For randomized algorithms, we use Yao’s Lemma [27], which tells us that any lower bound for
deterministic algorithms running on a known distribution of inputs also provides a lower bound for
randomized algorithms running on a worst case input. [
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4.3 Hardness of the split session paradigm

We next examine the exponential dependence of the communication and computation on ¢ in the
algorithm Max-Split-Welfare. While the communication requirements could of course be made
polynomial by simply sending all information to the source, we here provide evidence that we
cannot expect to achieve a more efficient running time for any algorithm that maximizes network
welfare in the split session paradigm.

Theorem 7 If/ is specified as part of the input, then there is no polynomial time ('~ ¢-approzimation
algorithm, for any € > 0, for the problem of mazimizing network welfare in the split session
paradigm, unless NP = ZPP. This holds even if there is no cost for enabling multicast at the
nodes of the network.

Proof: We show that such an approximation algorithm could be converted into a polynomial time
|V|!~¢-approximation algorithm for the largest independent set in a graph. Since [13] showed that
such an algorithm only exists if NP = ZPP, the theorem follows. Given an arbitrary input graph
G = (V, E), we construct an input for the network welfare maximization problem. Our reduction
is possible for any network topology where there is a subset R of |E| 4 |V| receivers that share the
first edge from the source, but each has a distinct last edge from the source. We also specify costs
in such a manner that for any edge e, there is a constant c(e), such that the cost for any group g
to use e is B(g)c(e), where B(g) is the rate of g. Also, the reduction works for a broad range of
possible sets of session rates, including (for example) powers of two, although our reduction requires
|V'| groups, and thus this example would lead to exponential rates.

For each vertex v € V, we have one group g(v). All that we require of the group rates is that
B(g(v)) > 2-deg(v) — 1, where B(g(v)) is the rate of g(v) (we assume that there are no degree 0
vertices: such vertices can easily be dealt with separately). For each edge e = (u,v) € E, we have
one receiver r(e) € R, and for each vertex v € V, we have one receiver r(v) € R. The cost of a
group using an edge is either equal to the rate of the group, or 0. In particular, the cost for sending
g(v) over the shared first edge from the source is B(g(v)), the cost of g(v) traversing the last edge
from the source to any receiver in R is also B(g(v)), and the cost of all other edges in the network
is 0. Each receiver r(u) bids B(g(v)) for group g(v), for u # v, and 2B(g(u)) — 2 - deg(u) + 1 for
group g(u). Each receiver r(e), where e = (u1, us), bids B(g(v)) for group g(v), for uy,us # v, and
B(g(v)) + 2, for v € {uy, uz}.

We next demonstrate that maximizing the network welfare in this network and input is equivalent
to finding the largest independent set in the graph G. Assume first that G has an independent
set I of size |I|. To convert this into a solution to the network welfare maximization problem, the
network sends group g(v), for each v € I, to each r(e) such that e = (u,v) for any u. This is a
valid solution, since I is an independent set. Also, the network sends such g(v) to each r(v). The
revenue from group g(v) for v € I is 2B(g(v)) — 2 - deg(v) + 1 from r(v), plus deg(v)(B(g(v)) + 2),
from all r(e). The total cost for group g(v) is B(g(v))(deg(v) + 2), for a total welfare of 1 for each
such group. Thus, the total welfare is exactly I.

Also, any solution to the network welfare maximization problem with profit P can be converted
to an independent set of size P. To do so, we consider only those groups that result in a profit.
For any such group g(v), the only way to achieve a profit is if every receiver that bids more than
B(g(v)) actually receives group g(v). If this is done, then the total profit for group g(v) is exactly
1. No two groups that have a profit of 1 can correspond to vertices that share an edge, and thus
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the set of groups that achieve a profit must correspond to an independent set of size at least P.
The theorem follows. [

5 The multiple tree case

In this section, we examine the effect of removing the assumption that there is a single multicast
tree that defines the routing for all groups or layers. In particular, we consider the case where for
every layer or group, there is a single fixed tree that must be used, but the trees for the different
layers or groups do not have to originate from the same source, and as a result can have different
trees. We refer to this as the multiple tree case. This is actually a property that is desirable in
practice, since it helps balance the network load. Unfortunately, most problems become NP-Hard
with this relaxation, even if there is no cost for enabling multicasting. Throughout this section we
assume a model where there is no such cost.

5.1 Hardness of the multiple tree case.

We first demonstrate that maximizing network welfare becomes more difficult for the split session
paradigm in the multiple tree case. Recall that in the single tree case, we have an algorithm for
computing Marginal Cost in the split session paradigm that has computation and communication
complexity that is exponential in the number of session, but is efficient for the case of a constant
number of session.

Theorem 8 In the multiple tree case, the problem of maximizing network welfare using the split
session paradigm is NP-Hard for any fized constant number of groups larger than 12. This holds
even if there is no cost for enabling multicast at any node of the network.

Proof: We reduce from BOUNDED-3-SAT, the version of 3-SAT where every variable appears at
most 5 times, and every clause has exactly 3 literals. This restriction of 3-SAT is still NP-Complete
[10]. Given a bounded 3-SAT formula ®, we first assign a color to every literal, such that if two
literals are assigned the same color, then they never appear in the same clause, and they are not
negated versions of the same variable. This can be done using 12 colors in a greedy fashion. In
particular, for each variable in turn, we assign the colors for both literals of that variable at the
same time. Since those literals can appear in a total of at most 5 clauses, at most 10 colors are
ruled out by previous assignments to the other two literals in those 5 clauses. Since there are 12
colors to choose from, there is always at least two colors available to color both literals.

We then construct the welfare maximization problem. We here provide the proof for the case
where there is a single source, and each group has an arbitrary multicast tree rooted at that source.
However, it is not difficult to modify this reduction so that it holds when the input is required to
be a weighted directed graph, the source for each group is placed at some vertex of the graph, and
the tree for a group is defined by shortest paths from the source to all the receivers. Furthermore,
we here assume that the cost to use an edge is the same for all groups, although this is also easy to
modify so that costs are proportional to rate. In the network, there are two nodes for each variable
z;, labeled 2} and z?. There are also five nodes for each clause cj, labeled c} through c?. The edges

of the network are as follows. There is an edge from the source node to z}, for each variable z;.
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Source

Variables

Clauses

Figure 2: The network used for the reduction.

These edges have cost 6. There is an edge from x; to z? for each variable x;. These edges have no
cost. For any variable x; and clause c;, there is an edge from z} to c} if x; appears in c¢j. These
edges have cost 2. For each clause c;, there is an edge of no cost from c} to c;?, for k € {2,3,4,5}.
Finally, for each clause cj, there is an edge from the source to c;?, for k € {2,3,4,5}. These edges
have cost co. For each variable z;, there is an edge from the source to x? with cost occ.

There are four receivers for each clause c;, one at each c;?, k € {2,3,4,5}. There is also one receiver
for each variable x; at x? There are no other receivers. The receivers at any c;?, for k € {3,4,5}
each make a bid of one unit for any group that is successfully delivered to that receiver. The
receivers at any c? each bid for any group. The receivers at any z? each bid six for any group.
There are a total of 12 groups, one for each of the colors. We next describe the trees for each group.
For group t, the tree is rooted at the source, and routed from there to every z} such that either of
the literals x; or &; is assigned to color t. Note that since z; and #; are assigned different colors,
there are exactly two groups that are routed from the source to each node z}.

From each x} that group t is routed to, the group continues to 2. From z}, that group is also

routed to every c} where ¢; is a clause that contains the literal of x; that is assigned to color ¢.

Note that since every pair of literals appearing in the same clause are assigned to a different group,

the routing for the group j is in fact a tree (even though the underlying network is not a tree).

Also note that exactly 3 groups are routed to each ¢;. All three of these groups are routed on the
4

edge from c} to c?. Also from c}, the three groups diverge: one group each goes to c}of, ¢;, and c?.

The trees described thus far allow exactly one group to be routed to each node c;?, for any c; and
k € {3,4,5} (specifically, the group that is associated with the color of one of the literals within the
clause ¢;). The remainder of the groups are routed to c;? by using the edge directly from the source
to c;?. Similarly, the remainder of the groups are routed to c? and 7 using the edge directly from
the source. This completes the construction of the multicast problem. The network is depicted in

Figure 2. The theorem now follows from the following two claims.

Claim 7 If the formula ® is satisfiable, then the resulting multicast problem can achieve network
welfare at least C', where C is the number of clauses in .
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Proof: Let X be a satisfying assignment to the variables of ®. For each true literal z; € X or
#; € X that is assigned to color ¢, route group t from the source to ;vzl, and then to ;vzz Since there
is only one true literal per variable, exactly one group is routed to each x?. Since X is a satisfying
assignment, for each clause c;, there is at least one z} that receives a group that can continue from

z} to c}. Choose any one such group, route it from x} to c}. That group is then routed from c}

to c?, and also to one of c?, c? or c?, whichever is possible. The cost of using the edge from the
source to each z} is offset by the payment of the receiver at 22, and the cost of using an edge from
any x} to any c} is offset by the payment of the receiver at c?. Thus, the total network welfare is

exactly 1 per clause, for a total of C. [ |

Claim 8 If, in the multicast problem resulting from the formula ®, it is possible to achieve network
welfare at least C', where C is the number of clauses in ®, then the formula ® is satisfiable.

Proof: Consider first any node ;. If there is any such node that receives 2 groups from the source,
then only one of those groups is routed to z7. Call the other group g. Since each variable appears
in at most 5 clauses, the total network welfare provided by g in its multicast tree below z} is at
most 5, but the cost of using the edge from the source to x} is 6, and so not routing g to =} and
any descendants of le in its multicast tree would increase the network welfare of the solution by
at least 1. Thus, we can assume that we have a solution with welfare at least C, where each z;

receives at most one group.

Using a similar argument, we see that we can assume that each node c} receives at most one group.
Since the network welfare provided by a group in its multicast tree below c} is at most 1, if we
have a solution with network welfare C', we can assume that we have such a solution where each
node r} receives at most 1 group, and each node c} receives exactly 1 group. Thus, if we set each
variable z; to make the literal true that is assigned to the group that is routed from the source to
z}, and arbitrarily set any variable x; where there is no group routed z}, then we are guaranteed
that we have at least one true literal per clause. Thus, ® is satisfiable. [ |

5.2 An algorithm for the layered paradigm

The increased difficulty in finding good solutions for the split session paradigm might suggest that
maximizing welfare in the layered paradigm in the multiple tree case is also NP-Hard, but this turns
out to not be the case.? We next provide a polynomial time algorithm for this problem. The tech-
nique we use consists of providing an integer program for the welfare maximization problem such
that the optimal solution to the linear programming relaxation of this problem can be converted
to an integral solution of equal value. This leads to a centralized polynomial time algorithm that
finds the optimal solution. This would require significant communication overhead in a distributed
setting, and thus an interesting open problem is finding a communication efficient distributed algo-
rithm for this problem. Some approaches to solving linear programming problems in a distributed
fashion have been studied in [1], but in our scenario, the objective function is distributed across
the users, and thus the techniques from [1] do not apply here. We also point out that the result
we demonstrate below can also be obtained by showing that the same class of integer programs we
describe are always totally unimodular (see for example [22]). However, the more direct proof we

2Unless of course P = NP.
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provide below provides additional insight into why the result holds. Finally, we note that this algo-
rithm can also be used to compute the Marginal Cost allocation in polynomial time by computing
the cost for every receiver individually.

Definition 1 A comparison integer program is a restricted integer program where every constraint
must be of the form o < B, where o and B can each be any variable of the integer program, or any
integer. We allow an arbitrary linear objective function.

For any variable z; in a comparison integer program, we say that the implied upper bound on x;
is ¢ if ¢ is the minimum value such that for every feasible solution, x; < c¢. Similarly, we say that
the tmplied lower bound on x; is c if ¢ is the maximum value such that for every feasible solution,
x; > c. Note that we can compute the implied upper bound on any variable by defining a graph,
where the vertices of the graph are the variables and constraint integers of the integer program, and
the constraint o < 8 is represented by an edge from 8 to a. The implied upper bound is simply
the smallest constraint integer ¢ such that x; is reachable from ¢. The implied lower bound can be
found in a similar fashion.

Theorem 9 For any feasible and bounded comparison integer program, an optimal solution can
be found by taking any optimal solution to the linear programming relaxation of the problem, and
setting every vartable that is not equal to either its implied upper bound, or its implied lower bound,
equal to its implied upper bound.

We could also set every variable that is not equal to either its implied upper bound or its implied
lower bound equal to its implied lower bound; the proof of this is similar to the one below for the
case where the implied upper bound is used.

Proof: Let s be any optimal solution to the linear programming relaxation of the problem. Let
V(s) be the set of variables in s that are not set to either their implied upper bound or their
implied lower bound. The proof is by induction on |V (s)|. The base case is the trivial one where
|[V(s)] = 0: since every implied upper and lower bound must be an integer, if |V (s)| = 0, then s
must also be an optimal solution to the integer program. For the inductive step, assume that the
theorem is true for any s such that |V (s)| < k. We show that the theorem is also true for any s
such that |V (s)| =k + 1.

Let z(s) be the value of the variable = in the solution s. For any real number ¢, let s & ¢ be the
solution such that z(s @ t) = z(s) +t for x € V(s), and z(s ® t) = z(s) for x ¢ V(s). Denote the
implied upper bound (implied lower bound) on the variable z by b*(z) (b~ (z), respectively). Let

b*(s) = i, bt () — x(s),

and

b (s) = mrenvlg) z(s) — b (z).

Claim 9 Let s be any optimal feasible solution to the linear programming relaxation. For any t
such that —b=(s) <t < b'(s), s®t is also an optimal feasible solution.
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Proof: We first show that for any such ¢, s @t is a feasible solution. We here provide the proof for
the case where ¢t > 0; the case where ¢ < 0 is similar. Assume for the sake of contradiction that a
constraint of the form z; < x; is violated in s @ t. Since that constraint was not violated in the
solution s, x;(s ®t) > x;(s), and thus x; € V(s). It must also be the case that z; & V(s), since
otherwise z;(s ®t) — z;(s) = (s ® t) — z;(s), and the constraint would not be violated in s & t.
However, if z; < z; is a constraint, then b* (z;) < b™(z;). Thus, if z;(s ® t) > zj(s ® t) = b (z;),
then z;(s ®t) — x;(s) > b*(x;) — z;(s). This contradicts the assumption that ¢ < b*(s). The only
other type of constraint that could be violated in s @ t is a constraint of the form z; < ¢, for an
integer c. However, this would also contradict the assumption that ¢ < b™(s).

To see that s®t is also an optimal solution, note that we can assume that |V (s)| > 0, since otherwise
the claim is trivial. This implies that b (s) > 0, and b*(s) > 0. Thus, there are real numbers
—b7(s) <t; <0and 0 < t2 < b"(s) such that both s @ ¢; and s @ to are feasible solutions. Let
J(s) be the value of the objective function for the solution s. Since the objective function is linear,
it must be the case that J(s®t) = J(s) + at, for some constant . If @ > 0, then J(s®t1) > J(s).
If @ <0, then J(s®ty) > J(s). Since J(s) is by definition optimal, we must have that a = 0, and
that J(s @ t1) and J(s @ t2) are also optimal. [ ]

To complete the inductive proof of the theorem, assume that s is an optimal solution to the linear
programming relaxation such that |V (s)] = k + 1. By Claim 9, the solution s & b*(s) is also
an optimal feasible solution to the linear programming relaxation. It must also be the case that
|V (s @ b"(s))| < k. Thus, by the inductive hypothesis, s ® b™(s) can be converted into an optimal
solution to the integer program by setting every variable z € V(s & b*(s)) to b"(z). However,
the resulting solution is the same solution that is obtained by starting with s, and setting every
variable z € V(s) to b*(z). This completes the induction. ]

Corollary 1 There is a polynomial time algorithm that mazimizes network welfare in the layered
paradigm of the multiple tree case.

Proof: We show that this problem can be expressed as a comparison integer program. For each
edge e and each layer ¢ that can travel on edge e, we have a variable z.;, such that 0 < z,; < 1. If
Zei = 1, this represents that layer ¢ traverses edge e; otherwise x¢; = 0. To ensure that we have a
valid multicast tree, for any edges e and €’ such that in the tree for layer ¢, edge e connects a node
n to its parent, and e’ connects n to a child, we include the constraint z.; < ;. To ensure that
we have a valid layered flow, for any pair of edges e and €’ such that e is the last edge that brings
a layer 7 to a receiver in the multicast tree, and €' is the last edge that brings a layer ¢ + 1 to that
same receiver, we have the constraint .(;;1) < Te;. Any feasible solution to this integer program
defines a valid set of layered multicast trees. Our objective function is to maximize

§ Tei * Peyi — E Tei * Ceyi
e,

i,ecleaf ()

where c(e, 7) is the cost of sending layer ¢ on edge e, leaf(i) is the set of edges that bring layer 7 to
its receivers, and p.; is the profit provided by bringing layer ¢ to the receiver served by e. [ |
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