
FLAVERS: A finite state
verification technique
for software systems

by J. M. Cobleigh
L. A. Clarke
L. J. Osterweil

Software systems are increasing in size and
complexity and, subsequently, are becoming ever
more difficult to validate. Finite state verification
(FSV) has been gaining credibility and attention
as an alternative to testing and to formal
verification approaches based on theorem
proving. There has recently been a great deal
of excitement about the potential for FSV
approaches to prove properties about hardware
descriptions but, for the most part, these
approaches do not scale adequately to handle
the complexity usually found in software. In this
paper, we describe an FSV approach that creates
a compact and conservative, but imprecise,
model of the system being analyzed, and then
assists the analyst in adding additional details as
guided by previous analysis results. This paper
describes this approach and a prototype
implementation called FLAVERS, presents a
detailed example, and then provides some
experimental results demonstrating scalability.

Software systems are increasing in size and com-
plexity and, subsequently, are becoming ever

more difficult to validate. Testing is the most com-
monly used technique for validating software, en-
compassing such diverse approaches as unit testing,
regression testing, requirements-based testing, and
stress testing. Although all these activities serve a
valuable purpose, in general, none can ensure that
a software system will not violate important behav-
ioral properties, such as robustness or safety require-
ments.

Distributed systems are even more difficult to val-
idate than sequential systems, primarily because of
nondeterminacy. When there is nondeterminacy, the
same test case may produce different results on dif-

ferent executions. Thus, testers of distributed sys-
tems cannot be sure that a software system will con-
tinue to produce correct results for previously
successful test cases. Moreover, it may be difficult to
reproduce erroneous results with test cases that ex-
posed failures on previous executions.

The limitations of testing have long been recog-
nized.1 Formal verification techniques, based on the-
orem proving, were originally proposed to counter
some of these limitations.2 Formal verification tech-
niques attempt to prove that a software system is con-
sistent with a specification of its intended functional
behavior. The basic idea is elegant, but demands a
considerable amount of mathematical sophistication
on the part of the analyst. Although significant pro-
gress has been made in providing automated sup-
port to assist with formal verification,3,4 it still re-
quires considerable effort and expertise. As a result,
if used, it is usually applied only to small, critical por-
tions of a system.

Finite state verification (FSV) has been gaining cred-
ibility and attention as an alternative to formal ver-
ification approaches based on theorem proving. Like
theorem proving-based approaches, FSV can be used
to verify that all possible executions of a system are
consistent with a behavioral specification. FSV uses
a finite model of the system and then tries to deter-
mine whether that model is consistent with a prop-

!Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

COBLEIGH, CLARKE, AND OSTERWEIL 0018-8670/02/$5.00 © 2002 IBM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002140

erty specification. If an inconsistency is found, a coun-
terexample, representing a trace through the model,
can be provided to show how the inconsistency oc-
curs. There are a few key differences between FSV
approaches and formal verification based upon the-
orem proving. One difference is that formal verifi-
cation can reason about system properties expressed
as functions, whereas FSV property specifications are
restricted to notations such as temporal logic pred-
icates or finite state automata. Consequently, there
are important differences between the reasoning en-
gines employed by the two approaches: FSV reason-
ing engines typically are guaranteed to terminate,
whereas formal verification theorem provers offer
no such guarantees. In addition, FSV seems to re-
quire considerably less mathematical expertise from
the analyst.

There has recently been a great deal of excitement
about the potential for FSV approaches to prove
properties about hardware descriptions. FSV systems,
such as SMV (Symbolic Model Verifier)5,6 and SPIN,7

have been able to handle reasonably complex de-
scriptions and find erroneous conditions, thereby sav-
ing hardware developers considerable expense. To
date these approaches require that the system de-
scription be represented by a relatively abstract
model, which is typically derived with some manual
assistance, usually after several attempts and with
considerable human ingenuity. There have been some
case studies in which analysts have successfully repre-
sented and verified software systems using these ap-
proaches8,9 but, for the most part, these approaches
do not scale adequately to handle the complexity that
is usually found in software systems. Addressing this
problem is currently an area of considerable inter-
est and research.

In this paper, we describe our FSV approach for ver-
ifying software systems.10 This approach is based on
using efficient data flow analysis techniques to de-
termine if all possible executions of a software sys-
tem adhere to properties specified as sequences of
events. A key difference between our approach and
other FSV approaches is that we base our analyses
upon a system model that is much smaller, and seems
to scale more successfully, than the large state mod-
els used by most other FSV techniques. For most FSV
techniques, the size of the system model tends to
grow exponentially with the size of the system. For
our approach this does not appear to be the case.
This paper describes our approach and indicates why
we believe it will scale more successfully. The paper
describes FLAVERS, a prototype system implement-

ing our approach. FLAVERS, FLow Analysis for
VERification of Systems, has been developed for ap-
plication to the analysis of systems written in the Ada
or Java** languages. The initial experiences we have
had with FLAVERS, described in this paper, suggest
that there are several reasons why this approach to
FSV is well suited for analyzing software. Specifical-
ly:

● The system model does not require an enumer-
ation of the entire state space of the system.

● Automated tools can build the model, with little
or no intervention from an analyst.

● The model is based on syntactically recognizable,
user-specified events in the source code, such as
method calls, and not on the values of variables.

● The approach is incremental, starting with a small,
but imprecise model that the analyst can incremen-
tally sharpen, guided by previous analysis results.

The next section provides a high-level overview of
the FLAVERS approach. The following section pre-
sents an example, first for a single task and then for
a multithreaded system. Following sections present
some experimental results showing how FLAVERS
scales to handle larger systems and a short descrip-
tion of related work. Finally, the conclusion summa-
rizes the contributions of this approach and discusses
future research directions.

FLAVERS overview

FLAVERS is a static analysis approach. Given source
code and some behavioral properties of the system,
FLAVERS attempts to verify that all possible execu-
tions of the system will satisfy these properties. Thus,
this verification is done independently of any test
data. Testers usually have a goal or requirement in
mind when they select a particular test case, and they
contrive to select test data for which execution will
cause a violation of that requirement. When no vi-
olation occurs, the tester is still unsure whether the
system will always satisfy the requirement. With FSV,
when a requirement is verified, then it is known to
be valid for all possible test cases.

In this section we describe how FLAVERS expects
properties to be represented, the model that it uses
to represent the system being analyzed, and the al-
gorithm that FLAVERS uses to determine whether all
system executions must satisfy the property. The ex-
ample in the next section illustrates the process of
using FLAVERS to verify properties and some of the
artifacts that are created in doing so.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 141

Representing properties. The properties that
FLAVERS uses for verification must be defined as se-
quences of events, where an event corresponds to
a recognizable executable syntactic entity in the sys-
tem, such as a method call, a task interaction, or an
assignment statement. Although this may appear to
be overly restrictive, in practice there are many ex-
amples of important properties that are expressible
in this way. For example, it appears that a Mars
lander mission recently failed in part because the
software system designed to assure a soft landing did
not deal correctly with sequences of events pertain-
ing to a particular Boolean variable representing the
result of a test for a “bump.” The software system
assumed that when the lander approached the planet,
the bump detection variable would be set to false,
then the landing gear was to be deployed, and then,
when contact with the planet was detected, the bump
detection variable would toggle from false to true.
Setting the variable to true would be the signal for
the descent engine to turn off. When the satellite first
entered the Martian atmosphere, however, the fir-
ing of the lander’s retro rockets caused sufficient de-
celeration to cause a bump to be detected, and the
bump variable was then set to true. The value of the
variable was never checked or reset to false prior to
deployment of the landing gear, however. Once the
landing gear was deployed, checking for the bump
variable occurred. Because this variable had previ-
ously been set to true due to the firing of the retro
rocket, and had never been reset to false, the con-
dition for shutting down the descent engine was im-
mediately satisfied, and the engine shut down high
above the Martian surface, causing the loss of the
lander.

Detecting a bump, testing the value of the bump vari-
able, deploying the landing gear, and shutting down
the engines are all examples of events that can usu-
ally be recognized in well-designed, object-oriented
code. In terms of such events, a correct event se-
quence might be: fire retro rockets, reset bump vari-
able to false, deploy landing gear, detect bump, shut
down retro rockets. Thus, it seems possible to rep-
resent this event sequence as a property and to use
an FSV system to determine if faulty landing se-
quences such as this one could ever occur, thereby
jeopardizing the landing on Mars.

FLAVERS requires that a property be represented as
a finite state automaton (FSA). Formally, an FSA is a
five-tuple, F ! (S, ", !, s 0, A) where S is a finite
set of states, " is a finite alphabet, ! ! S # " 3 S

is a total transition function, s 0 ! S is a unique start
state, and A " S is a set of accepting states. In the
current implementation of FLAVERS, properties
can be represented directly as FSAs or by using an
extended regular expression notation, called Quan-
tified Regular Expressions. 11 Other specification
languages could be used as well, provided that ex-
pressions in these languages can be translated into
FSA representations. FLAVERS is generally used in
one of two ways: to verify that none of the pos-
sible executions of a system could possibly satisfy
a (presumably undesirable) property or to verify
that all executions must always necessarily satisfy
a (presumably desirable) property. Specification
of the mode of use is an integral part of the prop-
erty specification. For simplicity, we assume that
every property that we describe in this paper is an
“all” property.

Modeling the system. FLAVERS analysis requires the
creation of an abstract graph model of the system
being analyzed. The model is a generic, language-
independent representation that depicts all possible
sequences of the events of interest for any execu-
tion of the system. As part of the FLAVERS project
we have developed tools that automatically produce
this model directly from programs written in Ada12,13

or Java14 code. We have also used manual transla-
tions to demonstrate the feasibility of building such
models for a high-level architectural description lan-
guage15 and a process definition language.16

The FLAVERS system graph models can be directly
derived from annotated control flow graph (CFG) rep-
resentations of the system, where annotations are
placed on nodes of the CFGs to represent the events
that occur during execution of the statements asso-
ciated with a node. CFGs are used widely in computer
science, and there is a large body of literature on
how to define and generate them (e.g., Aho,17 etc.).
Thus, here we assume that the reader is familiar with
such a representation and focus our attention instead
on the trace flow graph (TFG), which is the represen-
tation that FLAVERS uses as the basis for its analysis.

A TFG is derived from a collection of annotated CFGs.
The TFG is a reduced “inlined” representation of the
CFGs.18 In the TFG, all method invocations have been
replaced by expansions of the methods that they call,
and the resulting graph is then reduced by the re-
moval of all nodes that neither bear event annota-
tions nor affect control flow. In cases where a CFG
node is annotated with more than one event, we as-
sume that these events are ordered and replace the

COBLEIGH, CLARKE, AND OSTERWEIL IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002142

node by a sequence of nodes, each annotated with
exactly one event. Nodes not otherwise annotated
are annotated with a " event, thereby assuring that
each node in the TFG is annotated with exactly one
event. Because events tend to occur relatively
sparsely in most systems being analyzed, the result-
ing TFG is usually considerably smaller than the orig-
inal CFG, despite the size expansion factor inherent
in inlining.

Note that a CFG overapproximates the set of pos-
sible executions of a system, in the sense that, while
any execution of the system can be represented by
a path in the CFG, there nevertheless may be paths
in the CFG that do not correspond to any actual ex-
ecution. Correspondingly, although any sequence of
events that can occur during an actual execution will
be represented by a path in the TFG, some event se-
quences traceable along paths in the TFG may not
correspond to executions that could actually occur.
Thus, we say that the TFG is an overapproximation,
or conservative representation, of the executable
event sequences of a system. This is important be-
cause it assures that no path on which a property
violation occurs will be overlooked. On the other
hand, it does leave open the possibility of “false neg-
atives,” namely identification of property violations
on paths that are not actually executable. Technol-
ogy to address this problem is incorporated into
FLAVERS and is described shortly.

When the system to be analyzed incorporates the use
of concurrency, intertask edges and nodes are added
to the TFG to represent this concurrency. To ana-
lyze concurrent Ada programs, for example,
FLAVERS introduces communication nodes and their
corresponding edges to represent the rendezvous be-
tween two tasks. For all concurrent languages,
FLAVERS must represent the potential interleavings
of events that may happen during the parallel ex-
ecution of different threads. Accurately determin-
ing all interleavings (up to symbolic execution) is
equivalent to creating a reachability graph that enu-
merates all possible ways in which statements in dif-
ferent threads may execute concurrently. The worst-
case bound on the size of a system’s reachability
graph is an exponential function of the number of
threads in the system.19 Because this representation
is usually too large to be used in practice, we use a
far smaller representation that is computationally
more tractable, but is less precise, causing it to
overapproximate possible task interleavings. The
FLAVERS TFG incorporates a may immediately pre-
cede (MIP) edge between two nodes to represent that

execution of the node at the tail of the edge may hap-
pen immediately before the execution of the node
at the head of the edge. MIP edges can be computed
relatively efficiently using a may happen in parallel
(MHP) analysis,20,21 but, as previously noted, may
overapproximate the actual executable interleavings,
thereby providing a conservative representation of
the sequences of events that could occur during ex-
ecution of the system.

Formally, a TFG is a labeled directed graph G ! (N,
E, n initial, nfinal, "G, L) where N is a finite set of
nodes, E " N # N is a set of directed edges, n initial,
nfinal ! N are initial and final nodes of the TFG re-
spectively, "G is an alphabet of event labels as-
sociated with the TFG, and L ! N3 "G is a func-
tion mapping nodes to their labels.

Verifying properties. FLAVERS uses an efficient state
propagation algorithm to determine whether all po-
tential executions of the system are consistent with
the property. FLAVERS will either return conclusive,
meaning the property being checked holds for all
possible paths through the TFG, or inconclusive,
meaning FLAVERS found some path through the TFG
that causes the property to be violated.

As noted above, the TFG is a conservative represen-
tation of the sequences of events in a system. The
results returned by FLAVERS analyses are conserv-
ative as well, meaning FLAVERS will return conclu-
sive results only when the property holds for all TFG
paths. FLAVERS returns inconclusive results either
because there is an execution that actually violates
the property or because the property is only violated
on paths through the TFG that do not correspond to
actual system executions. These so-called infeasible
paths result from the imprecision of the model, and
their effects can be eliminated by introducing con-
straints. Like properties, constraints are represented
as FSAs. A constraint FSA, however, is used to express
a particular semantic feature of the system, and is
then employed to identify TFG paths that cannot be
executed because they violate the semantic feature
embodied in the constraint FSA. Constraint FSAs have
an added state, known as the constraint violation
state, v, that is entered whenever the semantic fea-
ture they embody is violated. Thus, for example,
a constraint FSA may be created and used to iden-
tify paths for which execution would require that
a particular variable have the values true and false
simultaneously, or a path requiring that the state-
ments of a task be executed in reverse order.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 143

FLAVERS analysts often use constraint FSAs to model
the value of program variables that affect the flow
of events in the system. Generally this is a small sub-
set of the set of all program variables. The current
FLAVERS implementation provides automated sup-
port for several different kinds of constraint FSAs.
An analyst might need to iteratively add constraints
and observe the analysis results several times before
determining whether an inconclusive property is truly
indicating a fault in the system. Constraints give an-
alysts important control over the analysis process by
letting them determine what parts of a system need
to be modeled more precisely.

State propagation algorithm. FLAVERS uses a fixed
point algorithm that propagates sets of tuples
through the nodes of the TFG. Each tuple represents
a state of affairs that has been found to be true for
at least one path leading to the node through the
TFG. The state of affairs summarized by the tuple is
a composite of the state that the property FSA will
be in and the states that all of the constraint FSAs
will be in, when execution of such a path reaches this
node.22 Suppose we wish to verify a property P !
(SP, "P, !P, sP

0, AP) over a TFG G ! (N, E, n initial,
nfinal, "G, L) using a set of constraints C1, . . . , Ck
where Ci ! (SCi

, "Ci
, !Ci

, sCi
0 , ACi

, vCi
). The set of

all tuples is T ! SP # SC1
. . . # SCk

. A tuple is
any t ! T. Define the initial tuple as the tuple T 0 !
(sP

0, sC1
0 , . . . , sCk

0). Define a transition function $!
T # N 3 T as follows

$%%sP, sC1
, . . . , sCk

&, n& # %s'P, s'C1
, . . . , s'Ck

&

where

s'P # !P%sP, L%n&&

and
$ 1 % i % k ! s'Ci

!Ci
%sCi

, L%n&&

This transition function takes a tuple and a TFG node
and produces a new tuple by determining the effect
that the event annotating this node has on each FSA
in the tuple. In verifying a property, we associate a
set of tuples with each node. The initial node starts
with T 0 associated with it. From here, tuples are
propagated forward through the TFG using the tran-
sition function $ to compute the tuples associated
with the nodes of the TFG. To verify a property, we need
to consider every path in the TFG, making state prop-
agation a forward-flow, any-path data flow problem.23

State propagation eventually reaches a fixed point
where no new tuples can be associated with any
nodes. At this point, the results of the verification
can be determined. Because we are generally con-
cerned only with terminating program executions,
only the tuples on nfinal are examined. The tuples on
the final node are all of the combinations of the states
of the property and the states of the constraints that
occur on terminating program executions. We look
for violating tuples on the final node. A violating tuple
is one for which the property automaton is in a non-
accepting state, representing a property violation,
and for which every constraint FSA is in an accepting
state, ensuring that all constraints are satisfied. More
formally, a violating tuple is t ! (sP , sC1

, . . . , sCk
)

where @1 % i % k ! sCi
! ACi

and sP !! AP . If there
are violating tuples on the final node, then the prop-
erty does not hold and the result is inconclusive. Oth-
erwise, there are no ways that the property can be
violated, so the property holds and the result is con-
clusive.

To improve efficiency, when propagating tuples, if
a tuple t returned by $ has any constraint Ci in its
constraint violation state, then t need not be prop-
agated forward. The state v has only self-loop tran-
sitions, so any tuple t' that reaches the final node as
a result of repeated applications of $ to t will have
Ci in its constraint violation state. Thus, when we
examine the tuples on nfinal, we will discard t' since
it corresponds to an infeasible path. Consequently,
a tuple with a constraint in its constraint violation
state is discarded as soon as it is created, thereby as-
suring that property FSA states resulting from con-
straint violations are not propagated forward. Let
TV be the set of all such tuples with constraint vio-
lations

TV ! (%sP, sC1
, . . . , sCk

&"?1 % i % k ! sCi
! vCi

)

Using the formal definitions, we can provide a state
propagation algorithm to verify a property P over
a TFG G with constraints C1 , . . . , Ck . Following is
the state propagation meta-algorithm (MA).

Initially:

Wlist :! ninitial

Tuples*n+ :! #! if n & ninitial

(T 0) if n # ninitial

COBLEIGH, CLARKE, AND OSTERWEIL IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002144

Main loop:

(1) while Wlist , ! do
(2) n is a node removed from Wlist
(3) for each m a successor of n do
(4) temp :! Tuples[m]
%5& Tuples*m+ :!

$Tuples *m+ #
t!Tuples*n+

$%t, m&%'TV

(6) if Tuples[m] & temp then
(7) insert m into Wlist

end if
done

done

The state propagation algorithm uses a worklist Wlist
to keep track of the nodes to be processed. With each
node n in the TFG it associates a set of tuples, held
in Tuples[n]. The initial tuple is associated with the
initial node, which is placed on the worklist. The
algorithm iterates until the worklist is empty. Dur-
ingeach iteration,anoden is removed from the work-
list (line 2). For each successor m of n, first the orig-
inal set of tuples on m is saved (line 4), so the
algorithm can tell if new tuples are later added to m.
Then every tuple on n is propagated via the tran-
sition function$ to m, removing any tuples that have
a constraint in a constraint violation state (line 5).24

Finally, the set of tuples on m is compared to the
saved set (line 6). If they are not the same, then at
least one tuple was added to m, and m is put on the
worklist (line 7). After processing all successors of
n, control returns to the outer loop to see if the
worklist is empty (line 1). When MA terminates,
Tuples[nfinal], the set of tuples associated with the
final node, is examined. If there are violating tuples,
the property does not hold, otherwise it does.

If a violation is found, FLAVERS can create traces
through the model that cause a violation of the prop-
erty. To create such a counterexample trace, we need
to find a path through the TFG that starts at the ini-
tial node, ends at the final node, and results in a prop-
erty violation. More formally, we want a finite path
n1, n2, . . . , nl, such that n1 ! n initial, nl ! nfinal, and
there exist tuples t1, t2, . . . , tl such that t1 ! T 0,
tl is a violating tuple, and @1 - i % l ! ti ! $(ti.1,

ni). A thorough treatment of the problem of gen-
erating such paths can be found in Cobleigh et al. 25

The FLAVERS state propagation algorithm has worst-
case complexity that is O(N 2 # "S"), where N is the
number of nodes in the TFG, and "S" is the product
of the number of states in the property automa-
ton and the number of states in each of the con-
straint FSAs. Later in this paper we present some
preliminary results that seem to suggest that
FLAVERS can verify a large class of important prop-
erties using only a small set of constraints. Indeed,
these experimental results seem to indicate that
the cost of solving most problems is low-order poly-
nomial, often subcubic, in the size of the system.
Thus, we believe that the FLAVERS analysis tech-
nology has the potential to scale to handle real-
world-sized software systems.

Examples

This section presents two examples that demonstrate
the types of analysis that can be done using FLAVERS
and shows the artifacts that are created during the
analysis. Both examples prove properties about a
software system for solving the dining philosophers
problem, an example that has been frequently used
in software analysis literature. The first example does
not have concurrency and checks the property that
a philosopher must have both forks to eat. The sec-
ond example, a concurrent example, checks the prop-
erty that adjacent philosophers cannot eat at the
same time.

Example without concurrency. We now present an
example that shows how FLAVERS can be used to ver-
ify properties of a software system and to identify
paths on which the property can be violated. The din-
ing philosophers problem details a scenario in which
an equal number of philosophers and forks are in-
terleaved alternately around a circular table. Thus
each philosopher has exactly one fork on the phi-
losopher’s left and one on the philosopher’s right.
It is further hypothesized that a philosopher can eat
only after having picked up both the fork on the left
and the fork on the right. Thus, clearly, when one
philosopher is eating, both the philosopher to the
left and the philosopher to the right will be unable
to eat until the dining philosopher finishes eating and
relinquishes the forks. Our program models the sit-
uation for the specific case of two philosophers and
two forks26 (generalization to any number of forks
and philosophers is straightforward):

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 145

class Fork {
boolean isUp ! false;

synchronized void up() {
boolean success ! false;
while (! success) {
if(isUp) {
this.wait();

} else {
isUp ! true;
success ! true;

}
}

}

synchronized void down() {
isUp ! false;
this.notifyAll();

}
}

class Philosopher extends Thread {
Fork left, right;

Philosopher(Fork l, Fork r) {
left ! l; right ! r;

}

void run() {
while(! done) {
left.up();
right.up();
startEating();
stopEating();
left.down();
right.down();

}
}

}

class Main {
public static void main() {
Fork fork1 ! new Fork();
Fork fork2 ! new Fork();
Philosopher philosopher1

! new Philosopher(fork1, fork2);
Philosopher philosopher2

! new Philosopher(fork1, fork2);
philosopher1.start();
philosopher2.start();

}
}

Note that the class Philosopher is defined to be a
thread for which execution consists of executing a
sequence of two methods (up and down), on two dif-
ferent instances (referred to as left and right) of the
class Fork. Specifically, the philosopher invokes the
up method first on the left instance of Fork, then on
the right instance of Fork. Having done so, the phi-
losopher can then eat (represented by the startEat-
ing statement). The philosopher finishes eating, and
then invokes the down method, first on the left in-
stance of Fork and then on the right instance of Fork.
Presumably, after the first two method invocations,
the philosopher is able to eat, and having done so
then invokes the next two methods, relinquishing
both forks to enable others to eat. This sequence of
invocations is nested inside a loop enabling the phi-
losopher to attempt to eat again at a future time.27

The class Fork implements the two methods, up and
down, which maintain the status of Fork instances,
as represented by the Boolean variable, isUp. The
method Fork.up first checks isUp to see if this in-
stance of Fork is already raised. If not, the method
sets isUp to true. If the instance of Fork is already
raised (isUp is true), then the method waits for a
notification that the instance of Fork has been put
down, indicated by the resetting of isUp to false. In-
deed, the method Fork.down consists of resetting
isUp to false and sending a notification that this has
taken place (using the notifyAll method).

Finally, note that the Main class sets the dining phi-
losophers problem in motion by invoking the start
method first on philosopher1, one instance of class
Philosopher, and then on philosopher2, a second in-
stance of Philosopher.

We are interested in demonstrating that this program
is indeed a valid model of the behaviors that define
the dining philosophers problem. To do so we need
to verify that the program must always adhere to key
characterizing behavioral properties. Earlier authors
have tended to focus on the fact that careless pro-
gram simulations of the dining philosophers prob-
lem can easily lead to run-time deadlocks and have
demonstrated the use of their analyzers in detecting
the possibility of such deadlocks. But clearly absence
of deadlock is but one of many properties that char-
acterize the dining philosophers problem. We now
identify another of these properties and, as an ex-
ample, demonstrate how FLAVERS can be used to
verify that property.

COBLEIGH, CLARKE, AND OSTERWEIL IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002146

We define the has-two-forks-to-eat property to be
that a philosopher is not able to eat until both ad-
jacent forks have been acquired and raised to the
up position. While our cursory description of our sim-
ulation program may strongly suggest that our im-
plementation must always satisfy this property, closer
inspection reveals that the simulation depends upon
the correct use of some flags, variables, and param-
eter bindings. Thus a careful analysis is indicated.

The goal of our analysis is to show that for all pos-
sible executions of this program, at the time each
instance of the startEating statement is executed, the
corresponding Philosopher instance will have both
Fork instances that were bound as parameters placed
into the isUp state. We thus need a property FSA rep-
resenting the desired up or down status of the two
forks. To support the reasoning needed to assure this,
we model the acquisition, or raised status, of a phi-
losopher’s adjacent forks by a property FSA shown
in Figure 1.28

The has-two-forks-to-eat property FSA has four
states, representing the four possible combinations
of the states in which the two forks adjacent to the
philosopher can be at any time. These states are no
forks raised, either of the two forks raised, or both
of the forks raised. Note, in addition, that transitions
between these states are driven by the events of pick-
ing up and putting down forks. Thus, specifically,
note that the f1Up event drives the FSA from the “has
none” state to the “has f1” state, from which the sub-
sequent f2Up event will drive the FSA to the “has
both” state. Once in the “has both” state, subsequent
events representing the putting down of forks will
drive the FSA toward the “has none” state.

To relate an execution of the program to transitions
of the FSA between its various states, it is necessary
to annotate the program by indicating which program
statements affect the various events that drive the
FSA. There is some challenge in doing this because
the various program statements represent the spe-
cific fork instances upon which they operate symbol-
ically, rather than explicitly. We need to know which
specific fork instance is being raised or lowered by
each of the various statements in the program. Thus
it is necessary to create a representation of the pro-
gram that separately represents different class in-
stances, and dereferences the uses of all symbolic
names relating to Philosopher and Fork class in-
stances. This enables us to represent exactly which
methods are being applied to which fork instances
at which locations in each instance of the Philoso-

pher class. Thus, during inlining, when we replace
each method invocation with the text of the method
invoked, we substitute the actual argument for each
instance of each of the method’s formal parameters
and create explicit references to different instances
for all variables that are local to the invoked instance.

Figure 2 is an example of a control flow graph (CFG)
model after this inlining process has been applied.
This particular graph represents the inlining of the
method invocation philosopher1.start() from method
Main. The ovals correspond roughly to the statements
that are executed as a consequence of this method call.
Each oval is annotated with two lines. The top line
is a unique node identifier followed by the name of
the thread. The second line represents the type of
action effected by the execution of the statement rep-
resented by this node. For brevity, we shorten names,
so philosopher1 is replaced by p1, fork1 by f1, and
success by s. Thus, note that node 4 represents ex-
ecution of a while statement. Accordingly note that
there are two out edges from this node, one repre-
senting looping and the other loop termination.
Nodes 2, 6, 7, and 8 represent the execution of dif-
ferent synchronization functions. They model phi-
losopher1 acquiring the lock on fork1, executing a

has none

Figure 1 Property “has-two-forks-to-eat”

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 147

Figure 2 Control flow graph for philosopher1.run ()

33: p1
(f2,notifyAll,p1)

34: p1
f2Down

2: p1
(f1,entry,p1)

9: p1
isUp1=true

10: p1
s1_1=true

11: p1
f1Up

6: p1
(f1,wait,p1)

7: p1
(f1,waiting,p1)

8: p1
(f1,notified-entry,p1)

1: p1
while

35: p1
(f2,exit,p1)

31: p1
(f2,entry,p1)

32: p1
isUp2=false

30: p1
(f1,exit,p1)

29: p1
f1Down

28: p1
(f1,notifyAll,p1)

23: p1
(f2,exit,p1)

24: p1
startEating1

25: p1
stopEating1

26: p1
(f1,entry,p1)

27: p1
isUp1=false

16: p1
if

17: p1
(f2,wait,p1)

18: p1
(f2,waiting,p1)

19: p1
(f2,notified-entry,p1)

21: p1
s1_2=true

20: p1
isUp2=true

12: p1
(f1,exit,p1)

13: p1
(f2,entry,p1)

14: p1
s1_2=false

15: p1
while

3: p1
s1_1=false

4: p1
while

5: p1
if

22: p1
f2Up

COBLEIGH, CLARKE, AND OSTERWEIL IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002148

wait statement on fork1, idling while waiting to be
notified, and reacquiring the lock after being noti-
fied, respectively. These nodes are not particularly
important to the analysis currently being described.
Their importance will be addressed in the context
of a subsequent example. Finally, note that node 11
represents the action of having fork1 raised.

This last node is of particular interest, because it rep-
resents the f1Up event that drives the has-two-forks-
to-eat property FSA from one state to another. The
other four events used by this FSA take place in state-
ments represented by node 22 (the f2Up event), 24
(the startEating1 event), 29 (the f1Down event), and
34 (the f2Down event). It is particularly noteworthy
that relatively few nodes in this CFG carry annota-
tions found in the FSA. Thus, Figure 3 represents the
TFG that results from reducing the CFG in Figure 2
to reflect only events used in the has-two-forks-to-
eat property FSA. This TFG has two additional nodes,
the initial and final nodes, nodes 0 and 36, respec-
tively, that represent the program start and end
points.

Having specified the property has-two-forks-to-eat
and developed the TFG, it is possible to initiate the
verification. An initial expectation might be that
FLAVERS would verify that it is impossible to reach
the startEating statement with the FSA in any state
other than the desired “has both” state. But instead,
FLAVERS reports inconclusive results, returning the
path 03 13 243 293 343 13 36 as a violating
path, namely a path for which execution would leave
the FSA in a nonaccepting state. Looking back at the
original CFG in Figure 2, we can see that the only
way to get from node 1 to node 24 while avoid-
ing node 11 involves exiting the loop headed by
statement 4 (the representation of the statement
while(! success1_1)) without setting success1_1 to true.29

Again looking at the original program text we see
that this cannot happen because success1_1 is always
set to false in a statement represented by node 3,
and it is not reset to true anywhere except in a state-
ment represented by node 10. But it is easy to see
how FLAVERS will not recognize this, because the TFG
in Figure 3 does not represent those specific program
details. As noted, such details are suppressed in the
interests of reducing graph size and potentially re-
ducing execution time. But, as noted previously, these
efficiencies can lead to loss of analytic accuracy.

As we have stated, constraints provide a way to in-
crementally improve accuracy by supporting the re-
moval of infeasible paths from consideration. This

is done by introducing constraint FSAs, consideration
of which increases graph size and can increase ex-
ecution time, but also increases analytic precision.
In this case, we want to model the value of the vari-
able success1_1 by the constraint FSA shown in Fig-
ure 4.

The event alphabet of this automaton has four
events, the two representing the two possible assign-
ments of a value (true or false) to the variable, suc-
cess1_1 ! true and success1_1 ! false, and two rep-
resenting tests of the value of the variable that return
the two possible different values, success1_1is! true
and success1_1is ! false. This automaton has four
states; one of them represents the state of being cer-
tain that the variable’s value is definitely true. One
of them represents the state of being certain that the
variable’s value is definitely false. One of them rep-
resents the situation where the analysis cannot be
certain of the variable’s value. And one represents

29: p1
f1Down

0: p1
(.,begin,p1)

36: p1
(.,end,p1)

24: p1
startEating1

22: p1
f2Up

1: p1
while

11: p1
f1Up

34: p1
f2Down

Figure 3 Trace flow graph for example

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 149

the constraint violation state, which is entered when
an event sequence is infeasible with respect to this
variable. Thus, execution of a statement assigning a
literal value to the variable causes this constraint au-
tomaton to enter one of the two states where the
variable’s value is known. But, for example, when
the constraint FSA is in the state true and the event
success1_1is ! false is seen, then this means a ref-
erence is being made where the referenced value is
assumed to be false. This inconsistent behavior is im-
possible in any actual program execution, and this
is represented by the transition of the constraint au-
tomaton to the constraint violation state.

As noted previously, when the FLAVERS state prop-
agation algorithm determines that a constraint au-
tomaton has entered a violation state it uses this in-
formation to decline to consider event sequences
along further extensions of this path. For FLAVERS
to use this approach to sharpen the accuracy of its
analysis of the program shown earlier, it is neces-
sary to build a TFG containing nodes that represent
all statements at which all events in the alphabet of
the constraint FSA depicted in Figure 4 occur.

Figure 5 shows a fragment of the CFG from Figure
2 and the same fragment after it has been augmented

with nodes included specifically to represent state-
ments at which events from this additional alphabet
occur. When the property is checked using this con-
straint FSA and the augmented TFG that would re-
sult from using the augmented CGF, FLAVERS again
returns an inconclusive result. As before, this is due
to infeasible paths, this time because the variable suc-
cess1_2 was not modeled. Once a constraint FSA rep-
resenting this second variable has been created, and
once a TFG incorporating the additional events in
the alphabet of this automaton has been created,
FLAVERS can finally return a conclusive result for the
property has-two-forks-to-eat.

It is important to note that FLAVERS is able to au-
tomatically generate some constraint FSAs for mod-
eling the values of variables and some augmentation
to the TFGs to include representations of the events
in the alphabets of such automata. Although these
more complex and precise analyses may increase the
cost in terms of graph size and execution time, some-
times they reduce the search space so as to reduce
the overall analysis cost.

Example requiring analysis of concurrency.Our first
example property could be studied by analyzing
the code for only one thread. There will be some

Figure 4 Variable automaton for “success1_1”

unknown

COBLEIGH, CLARKE, AND OSTERWEIL IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002150

properties of this sort in a concurrent program,
but quite often it will be the case that some im-
portant properties can be studied only by taking
into account the combined effects of different
threads of control.

As an example we now consider the property no-fork-
raised-twice, namely that no fork could ever possi-
bly be raised twice in succession. While we could
prove this property over all forks in the system simul-
taneously, it is sufficient and easier to prove this prop-
erty for an arbitrary fork. Since all the forks are
treated identically, an argument can be made that

proving this property for any one fork is sufficient.
The FSA for the property is shown in Figure 6 and
has been made specific to fork1. This FSA represents
the property by showing that if the event f1Up oc-
curs twice in succession, without an intervening
f1Down event, then the automaton moves into an
error state.

The violation of interest, raising a fork more than
once, might occur if a given fork is raised from each
of two different threads of control. Thus consider-
ing only one thread of control, as was done in the
previous example, will not represent the full range

1: p1
while

3: p1
s1_1=false

Figure 5 Adding variable events to control flow graph

9: p1
isUp1=true

12: p1
(f1,exit,p1)

6: p1
(f1,wait,p1)

7: p1
(f1,waiting,p1)

5: p1
if

4: p1
while

10: p1
s1_1=true

8: p1
(f1,notified-entry,p1) 11: p1

f1Up

2: p1
(f1,entry,p1)

1: p1
while

3: p1
s1_1=false

9: p1
isUp1=true

13: p1
s1_1is=false

14: p1
s1_1is=true

12: p1
(f1,exit,p1)

7: p1
(f1,waiting,p1)

6: p1
(f1,wait,p1)

4: p1
while

10: p1
s1_1=true

8: p1
(f1,notified-entry,p1) 11: p1

f1Up

2: p1
(f1,entry,p1)

5: p1
if

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 151

of behaviors that might potentially cause the viola-
tion of the property. Indeed, properties such as this
require the representation of all possible interleav-
ings of events taking place on all threads that might
execute in parallel. We represent all possible inter-
leavings by constructing a TFG in which all parallel
threads and tasks are represented as separate graphs
that are then interconnected by MIP edges. We il-
lustrate this by developing the TFG needed to verify
this property. Figure 7 shows the start of this TFG.
It has one subgraph for each thread that can exe-
cute in parallel in our program, namely a Main ob-
ject thread and one thread for each of the two phi-
losophers. To get these subgraphs, we removed
nodes from the CFG that did not contain events re-
lated to the property no-fork-raised-twice or did not
affect the flow of control over these nodes. Nodes
representing concurrency control affect the flow of
control and are now of critical importance as they
are used as the basis for determining the different
ways in which interleavings of events across concur-
rent threads can occur.

In particular, we use such nodes to identify sets of
nodes from one CFG that might execute in parallel
with sets of nodes from another CFG. Thus, for ex-
ample, note that nodes 1 and 23 can execute in par-
allel, but nodes 6 and 28 cannot. Indeed, assuming
that node 6 has executed, but that node 7 has not

yet executed, it is necessary that the execution of
node 24 will be followed by executing nodes 25 and
26. Indeed the execution sequence 24, 25, 26 may
happen in parallel with the execution sequences that
begin with 6 and end with 7. Conversely, if statement
28 executes before statement 6, then statement se-
quence 3, 4 will immediately follow 2, and may hap-
pen in parallel with sequences beginning with 28 and
ending with 29. There are numerous other such pairs
of execution sequences that may happen in parallel
among these three threads. In general the compu-
tation of precisely which statement sequences may
happen in parallel with which others is quite com-
plex. FLAVERS incorporates an algorithm20,21 that
computes these pairs automatically based upon
graphs annotated very much as shown in Figure 7.
Once the sequences of statements that may happen
in parallel have been computed, it is rather straight-
forward to add MIP edges to form the required TFG.
Every node in one statement sequence must be con-
nected to every node in every other statement se-
quence with which the initial statement sequence can
happen in parallel.30 For all but the most trivial con-
current programs, the number of MIP edges can be
expected to be very large. As an example, in Figure
8 we have used dashed lines to show only the set of
MIP edges that are incident with node 47.

Having developed the TFG containing MIP edges, and
with the property automaton representing the prop-
erty no-fork-raised-twice, it is now possible for
FLAVERS to determine whether a given fork can be
raised twice. Execution of FLAVERS using this TFG
fails to verify the property, and instead returns a
counterexample path 44 3 45 f 0 3 1 3 2 3 6
3 23 6f 47. In this path, nodes connected by3
represent the consecutive execution of two state-
ments that are in the same thread of control. Nodes
connected byf represent the consecutive execution
of two statements that are in different threads of con-
trol, but are connected by a MIP edge, indicating that
this interleaving is possible. Examination of this
counterexample path reveals that it is infeasible be-
cause it goes from node 6 to node 2, but then im-
mediately back to node 6 again. This statement se-
quence is unexecutable because, as noted in the
previous example, the variables success1_1 and isUp1
are used to explicitly prevent this behavior. Thus, as
in the previous example, we use a variable autom-
aton, in this case one that models the variable isUp1,
to eliminate paths that are rendered unexecutable
by the infeasible usage of this variable.

error

down

Figure 6 Property “no-fork-raised-twice”

COBLEIGH, CLARKE, AND OSTERWEIL IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002152

Figure 7 Start of TGF for “no-fork-raised-twice”

45: Main
(p1,start,Main)

46: Main
(p2,start,Main)

44: Main
(.,begin,Main)

47: Main
(.,end,Main)

2: p1
(.,while,p1)

3: p1
(f1,wait,p1)

6: p1
(f1Up)

7: p1
(f1,exit,p1)

4: p1
(f1,waiting,p1)

5: p1
(f1,notified-entry,p1)

13: p1
(f2,exit,p1)

14: p1
(f1,entry,p1)

15: p1
(f1,notifyAll,p1)

8: p1
(f2,entry,p1)

10: p1
(f2,wait,p1)

11: p1
(f2,waiting,p1)

16: p1
(f1Down)

17: p1
(f1,exit,p1)

18: p1
(f2,entry,p1)

19: p1
(f2,notifyAll,p1)

21: p1
(.,end,p1)

12: p1
(f2,notified-entry,p1)

9: p1
(.,while,p1)

20: p1
(f2,exit,p1)

1: p1
(f1,entry,p1)

24: p2
(.,while,p2)

25: p2
(f1,wait,p2)

28: p2
(f1Up)

29: p2
(f1,exit,p2)

26: p2
(f1,waiting,p2)

27: p2
(f1,notified-entry,p2)

35: p2
(f2,exit,p2)

36: p2
(f1,entry,p2)

37: p2
(f1,notifyAll,p2)

30: p2
(f2,entry,p2)

32: p2
(f2,wait,p2)

33: p2
(f2,waiting,p2)

38: p2
(f1Down)

39: p2
(f1,exit,p2)

40: p2
(f2,entry,p2)

41: p2
(f2,notifyAll,p2)

43: p2
(.,end,p2)

34: p2
(f2,notified-entry,p2)

31: p2
(.,while,p2)

42: p2
(f2,exit,p2)

23: p2
(f1,entry,p2)

0: p1
(.,begin,p1)

22: p2
(.,begin,p2)

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 153

Figure 8 TGF for “no-fork-raised-twice” with MIP edges for node 47

4: p1
(f1,waiting,p1)

8: p1
(f2,entry,p1)

15: p1
(f1,notifyAll,p1)

17: p1
(f1,exit,p1)

12: p1
(f2,notified-entry,p1)

24: p2
(.,while,p2)

25: p2
(f1,wait,p2)

43: p2
(.,end,p2)

40: p2
(f2,entry,p2)

41: p2
(f2,notifyAll,p2)

35: p2
(f2,exit,p2)

36: p2
(f1,entry,p2)

29: p2
(f1,exit,p2)

30: p2
(f2,entry,p2)

23: p2
(f1,entry,p2)

45: Main
(p1,start,Main)

46: Main
(p2,start,Main)

44: Main
(.,begin,Main)

7: p1
(f1,exit,p1)

32: p2
(f2,wait,p2)

33: p2
(f2,waiting,p2)

18: p1
(f2,entry,p1)

9: p1
(.,while,p1)

10: p1
(f2,wait,p1)

31: p2
(.,while,p2)

34: p2
(f2,notified-entry,p2)

13: p1
(f2,exit,p1)

28: p2
(f1Up)

26: p2
(f1,waiting,p2)

42: p2
(f2,exit,p2) 22: p2

(.,begin,p2)

5: p1
(f1,notified-entry,p1)

37: p2
(f1,notifyAll,p2)

38: p2
(f1Down)

47: Main
(.,end,Main)

11: p1
(f2,waiting,p1)

0: p1
(.,begin,p1)

3: p1
(f1,wait,p1)

2: p1
(.,while,p1)

1: p1
(f1,entry,p1)

16: p1
(f1Down)

19: p1
(f2,notifyAll,p1)

39: p2
(f1,exit,p2)

6: p1
(f1Up)

27: p2
(f1,notified-entry,p2)

20: p1
(f2,exit,p1)

21: p1
(.,end,p1)

COBLEIGH, CLARKE, AND OSTERWEIL IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002154

Having incorporated this variable automaton into
the analysis, FLAVERS still returns an inconclusive
result, in this case, producing a counterexample that
includes a subpath that goes from node 6, the node
in philosopher1 with event f1Up, to a node in an-
other thread via a MIP edge, and then immediately
back again, forcing the property to the error state.
This counterexample highlights a serious problem
in the unrestricted use of MIP edges in our analyses.
The problem is that an arbitrary path in a TFG in-
cluding MIP edges may not be executable, just as an
arbitrary path in a CFG may not be executable. For
example, after node 6 has executed in the philoso-
pher1 thread, the next node in philosopher1 to ex-
ecute must be node 2. It is certainly impossible for
node 6 to execute again. Unfortunately, jumping
from node 6 to a node in a parallel thread takes us
to a node that is connected back to node 6 by a MIP
edge. To suppress the consideration of these kinds
of illegal path sequences, FLAVERS employs the use
of yet another type of constraint, referred to as a task
automaton. The purpose of a task automaton for a
particular path is to ensure that every path consid-
ered in the analysis, through the various threads, is
a reasonable path within that single thread. As an
example, consider the TFG shown in Figure 9 and
assume that nodes 2, 3, 6, and 7 all access the same
lock. The task automation for task T1 is shown on
the right-hand side of Figure 9. The alphabet of the
task automaton is the set of identifying numbers for
the nodes in the TFG. Without this task automaton,
FLAVERS would consider the path 03 1f 83 9,
which is infeasible because in task T1 node 2 must
follow node 1. The subset of this path that occurs in
task T1, namely 03 13 9, would be rejected by the
task automaton since node 2 must follow node 1.

When we perform the analysis with the task autom-
aton for the philosopher1 thread, we get inconclu-
sive results. The counterexample FLAVERS returns
is similar to the previous one, except the tasks are
reversed. To correct this, we add a task automaton
for the thread philosopher2. Executing the analysis
with these task automata still yields inconclusive re-
sults, but the counterexample clearly indicates the
need for one final constraint automaton to model
the synchronized regions on fork1. When we intro-
duce a constraint to ensure the lock is respected (the
template for this constraint is shown in Figure 10),
FLAVERS returns conclusive results for the property
no-fork-raised-twice.

These two properties are representative of the kind
of properties that can and should be verified to show

that the program is a valid implementation of the
dining philosophers problem. Many others can
readily be suggested. For example, two adjacent phi-
losophers cannot both be eating at the same time.
Again, this property could be proved over all phi-
losophers in the system, but it is easier to make it
specific to a pair of philosophers. The FSA for this
property is shown in Figure 11. It has three states
to keep track of who is eating at any given time. If
it is in a state where one philosopher is eating and
another philosopher starts to eat, then it is driven
into the property violation state. In order to prove
this property conclusively, we need variable autom-
ata for isUp2, success1_2, success2_2, and task au-
tomata for philosopher1 and philosopher2 and a
monitor constraint for fork2. These six constraints
are sufficient to prove this property for this system
with any number of philosophers.

Some other example properties are: a fork cannot
be put down unless it is already up, a fork that is down

3 exit

2 entry

Figure 9 Task automaton example

4

7 exit

6 entry

8

9

4

9

2

3

0

1

1

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 155

cannot be put down, a philosopher must put down
both forks after completing the startEating step. In
each of these cases we can readily define a property
automaton to capture the property, can demonstrate
a TFG to support verification of the property, and
can specify constraint automata sufficient to cause
the analysis to produce definitive results.

Note that task automata and concurrency control
FSAs can easily be automatically derived from the
TFG. Right now, the analyst must indicate which of
these constraint automata to include when doing a
verification problem; however, we expect that heu-

ristics could be developed for making reasonable
choices automatically. Moreover, for explanatory
purposes, we have selected constraints one at a time.
In practice, analysts tend to add a small number of
constraints at each iteration. For example, in the se-
quential example shown previously, we added each
variable automaton separately, while an astute an-
alyst would have suspected that both automata were
important to the property being proven. In fact, an
analyst might have suspected this from the very start
and modeled this information in the initial analysis.

Some experimental results

Our FLAVERS prototype for analyzing programs writ-
ten in Ada is considerably more mature than the pro-
totype for Java code. Therefore all the results pre-
sented in this section are based on FLAVERS/Ada.
The Ada version of our example problem for n phi-
losophers has 2n tasks, one task for each philos-
opher and one task for each fork. In this section
we present the timing results for analyzing the din-
ing philosophers problem for the two properties
no-fork-raised-twice and no-eat-at-same-time. We
show how FLAVERS performs as we increase the
number of philosophers, and consequently the
number of forks.

It should be noted that observing how size and run-
ning speed grow with increasing numbers of iden-
tical tasks may not accurately predict growth in size
and speed as systems grow in less regular ways. But
this approach, although flawed, does give some sense
of scalability. Further, we note that others have ar-
gued that in most cases it is sufficient to validate only
a small number of configurations31 and we basically
agree.

Figure 10 Monitor constraint

none

trap

Figure 11 Property “no-eat-at-same-time”

COBLEIGH, CLARKE, AND OSTERWEIL IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002156

To prove the property no-fork-raised-twice conclu-
sively for the Ada version of the program only re-
quired a task automaton for the fork1 task. To prove
the property no-eat-at-same-time conclusively for the
Ada version of the program required three task au-
tomata, one for the first philosopher, one for the sec-
ond philosopher, and one for their shared fork. For
both these problems, as we increased the number of
philosophers and forks, we did not need to increase
the number of constraints needed to prove this prop-
erty conclusively. We have found that this is often
the case. Once the necessary constraints are found
for a small configuration of a system, it is often the
case that the system can be scaled without having to
add additional constraints.

To prove properties of actual source code, it is nec-
essary to first use language processing tools to trans-
late the source code into annotated CFGs. For
FLAVERS/Ada the translator is written in Ada and
built on the Arcadia infrastructure components de-
scribed in Taylor et al.32 Tools written in the Java
language are then used to translate these CFGs into
a TFG and to construct finite state automata repre-
sentations of the properties and any constraints.
Once all of this has been done, the FLAVERS state
propagation algorithm is used to verify the property.
To maximize execution speed, the state propagation
algorithm is written in C code.

The time measurements given here are sums of the
user and system times as measured by /usr/bin/time
on a Sun Enterprise 3500 with two 336 megahertz
processors and 2 gigabytes of memory running So-
laris** 2.6. While this is a multiuser system, for all
experiments we had exclusive access to the machine
to prevent variance in the times due to other users.
The Ada portion of the FLAVERS/Ada tools were
compiled using the Verdix Ada Development Sys-
tem version 6.2.3c with optimizations disabled (to
avoid known compiler bugs). The Java portion of the
tools was run using the Sun JDK** version 1.3.0. The
C version of state propagation was compiled with
the Free Software Foundation’s gcc version 2.95.2,
using -O2 for optimization.

The timing results for these properties are shown in
Figures 12 and 13. The x-axis shows the number of
philosophers and the y-axis shows the running time
in seconds. Each of these figures has three lines. The
sp_total is the total time for running state propaga-
tion. The java_total includes this time, plus the time
for running all of the Java tools. The mip_total in-

cludes these times, plus the time for running the MHP
analysis and adding the MIP edges.

We are not including the time for running the Ada
tools to translate the source code into annotated
CFGs, since these tools are based on an obsolete front
end. This translation took almost one hour when the
system had 200 philosophers, whereas everything else
took less than 4 minutes.

In an attempt to estimate the actual functional de-
pendence between running time and the number of
philosophers, we fit different polynomials to the
mip_total lines shown in Figures 12 and 13. The re-
sults of these fittings are shown in Table 1. Each col-
umn gives the data for the best-fit polynomial of the
given form. In each column, r 2 is the proportion of
the variance in the data explained by the polyno-
mial. The remaining rows give the coefficients of
the best-fit polynomial.

For each property, the more terms in the polyno-
mial, the better the fit as measured by r 2. For both
properties, a linear polynomial explains the data
well, but adding a quadratic term improves the fit.
Adding a cubic term improves the fit, but not by
much. Since the linear polynomial explains a large
part of the variance, it is hard to say by examining
the table whether the data are better explained by
a linear or a quadratic polynomial. Figure 14 shows
the total time and the linear and quadratic best-
fit polynomials for the property no-fork-raised-
twice. The data for the property no-eat-at-same-
time is similar. From this, it appears that the data
are better explained by a quadratic polynomial.

Admittedly, the dining philosophers problem is a
small and contrived example. It tends to have more
task interaction than most concurrent programs, so
it is not an unreasonable example to study. It also
is easy to understand and easy to scale. The profiles
of the timing diagrams for the two properties exam-
ined here are, however, representative of the timing
diagrams that we tend to see when the current
FLAVERS prototype is applied to a variety of other
systems. Although the prototype could be improved
considerably, the performance indicates that the ap-
proach seems to scale well.

In Avrunin et al., 33 a comparison was made of sev-
eral finite state verification tools on a real software
system, called Chiron.34 In that study, SPIN,7 SMV,6

INCA (Inequality Necessary Condition Analyzer),35

and FLAVERS were all applied to the same problems.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 157

Although there was considerable variation in how
the tools performed from problem to problem, the
computation time associated with FLAVERS, with a
few exceptions, grew at a lower rate than that as-
sociated with the other tools.36

Related work

Flow analysis techniques for verification were orig-
inally used to detect potential definition and refer-
ence anomalies in sequential code.37 This approach
was later extended to allow the verification of user-
specified properties.11,38 FLAVERS extended this work
to support verification of concurrent systems and to
support incremental improvements to the model of
the system being analyzed.12,13

Most other approaches to FSV have been based on
building a reachability graph model of the software
system and thus have a worst-case bound that is ex-
ponential in the number of tasks in the system. These
approaches often use abstractions, such as binary de-
cision diagrams,6 and optimization, such as partial
order reductions,39 to reduce the size of the system
model. These optimizations and abstractions have
effectively reduced the model size impressively for
a number of examples. When the model size is too
large to support efficient analysis, however, analysts
must devise new abstractions to reduce the model
further. FLAVERS, in contrast, starts with a small
model but provides a systematic way of improving
the precision of the system model steadily with a
gradual increase in model size. On the other hand,

Figure 12 Timing for “no-fork-raised-twice”

mip_total

COBLEIGH, CLARKE, AND OSTERWEIL IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002158

since the FLAVERS model is event-based and impre-
cise, it is not effective for detecting properties such
as deadlock, unlike many of the reachability-based
approaches.

There has been considerable interest in applying FSV
approaches to software systems. Thus, for example,
SPIN7 creates a highly optimized representation of
the reachability graph. Initially SPIN supported the
analysis of systems written in Promela, a state tran-
sition modeling language. Recently, a translator from
C to Promela (Process Meta Language) has been de-
veloped, so that C programs can be analyzed as well.40

This translation is only partially automated, however,
and requires the user to specify mappings between the
C and the Promela code. For example, communi-

cation between threads may need to be mapped into
communication via channels in Promela.

Java PathFinder (JPF) uses a reachability-based ap-
proach to verify properties of Java programs.41 JPF
operates directly on the Java bytecode and tries to
execute all possible paths. To combat the state ex-
plosion problem, it makes use of abstraction, slic-
ing, and partial order reduction.

The SLAM (software specifications, languages, anal-
ysis, and model checking) project verifies properties
over sequential programs, using a reachability graph
that represents all variables in terms of Boolean val-
ues.42 The tool translates a C program into a Bool-
ean program, abstracting values with respect to a set

Figure 13 Timing for “no-eat-at-same-time”

mip_total

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 159

of predicates, and then uses interprocedural data
flow analysis to associate variable states with the pro-
gram statements.43 When a counterexample is found,
SLAM makes use of a theorem prover to detect
whether the counterexample is infeasible and to find
a set of predicates to remove the infeasible path from
consideration. At this point, the process begins again
with the translation into a new Boolean program.
This iterative refinement approach is very similar to
the iterative approach that we are advocating with
FLAVERS.

INCA35 is an FSV approach that is not based on a
reachability graph model. INCA creates inequalities
that describe the legal flow through the system and
models the complement of the property as an in-
equality as well. It then uses integer linear program-
ming techniques to determine if there exists a so-
lution representing flow through the system that is
a violation of the property. Although, in general, in-
teger linear programming has an exponential worst-
case bound, the inequalities generated by INCA are
usually extremely simple so that the performance is
quite good. INCA assumes that the system being an-
alyzed uses a synchronous model of concurrent ex-
ecution; it is currently not clear how to extend this
approach to asynchronous execution models.

The Bandera project44 is concerned with automat-
ically extracting system models from Java programs.
Bandera uses abstraction45 and slicing techniques46

to reduce the size of the model. We are currently
exploring the use of the Bandera tool set to build
FLAVERS’ TFGs for Java programs. In doing so, we
believe that the slicing and abstractions will provide
a good starting point for doing FLAVERS analyses,

but that slicing will tend to overestimate the rele-
vant portions of the programs that are necessary for
proving that a property holds. As a result, we expect
that it will be necessary to allow the analyst to add
precision more selectively to the model using
FLAVERS’ constraint mechanism.

In addition to FSV approaches, which verify prop-
erties for all executions, there are some interesting
approaches that generate counterexamples to a prop-
erty. These approaches are not conservative and thus
are not guaranteed to detect a violation if one ex-
ists. For example, the Alloy constraint analyzer has
been used to analyze programs written in a subset
of the Java language by translating them into the
Alloy language.31 Unlike FSV tools, the counterex-
amples returned by Alloy are guaranteed to be
feasible. The MC (metalevel compilation) system47

checks C programs for adherence to properties spec-
ified in metal, a state machine language. The system
is built as a compiler extension and transitions in the
state machine are syntactic patterns in the source
code. The MC approach is similar to FLAVERS’ state
propagation, in that states of the property are prop-
agated to statements of the program being checked.
Like Alloy, MC analyses find counterexamples, but
do not guarantee the absence of possible property
violations.

FLAVERS uses a graph model of the software system
that is considerably less precise than the FSV ap-
proaches described previously. Reachability graph
models represent all the states that a system can be
in, where a state consists of the program counter for
each task and the values of each of the task’s var-
iables. The optimization techniques employed by

Table 1 Polynomial fitting

no-fork-raised-twice
c1x $ c0 c2x2 $ c1x $ c0 c3x3 $ c2x2 $ c1x $ c0

r 2 0.9640 0.999823 0.999826
c0 .1.9378 2.3187 2.2711
c1 0.2335 0.0702 0.0741
c2 8.660 " 10.4 8.141 " 10.4

c3 1.780 " 10.7

no-eat-at-same-time
c1x $ c0 c2x2 $ c1x $ c0 c3x3 $ c2x2 $ c1x $ c0

r 2 0.9359 0.999883 0.999884
c0 .23.3302 2.3601 2.5072
c1 1.0393 0.0540 0.0420
c2 0.0052 0.0054
c3 .5.480 " 10.7

COBLEIGH, CLARKE, AND OSTERWEIL IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002160

these approaches remove information whenever they
can, but most models are still precise (and thus con-
servative) with respect to the property that is being
verified. In contrast, FLAVERS uses a model that is
conservative, with respect to the property, but not
precise. If it can be shown that the property is con-
sistent with this model, then it is indeed valid. If in-
conclusive results are returned, then the analyst
needs to determine if the system has a fault or if ad-
ditional information should be added to the model
before the analysis is rerun. If an analyst ends up
fully modeling all the variables in the system, then
the two approaches are basically equivalent. Reach-
ability approaches, however, create models that are
often too large to be applied to real-world software
systems directly. FLAVERS has an advantage in that

precision can be added incrementally, guided by pre-
vious analysis results. In the future, we hope to im-
prove and automate much of this guidance. Based
on our scaling experiments, FLAVERS seems to have
a growth rate that is usually subcubic in the number
of tasks. This compares very favorably with other FSV
approaches we have studied.

Conclusions

Software systems are an integral part of our basic
societal infrastructure, playing a role in vital appli-
cations such as communication, transportation, fi-
nance, and medical informatics. With their wide-
spread use across the Internet, systems must meet
more stringent requirements and perform more re-

Figure 14 Best-fit polynomials for “no-fork-raised-twice”

quadratic

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 161

liably than ever. Although testing provides valuable
assurances about how a system performs, it cannot
guarantee that a system will always adhere to im-
portant behavioral requirements. FSV approaches
can be used to make such assurances, yet are not as
difficult to use as more traditional theorem proving-
based formal verification techniques.

Most FSV verification approaches base their analy-
ses on a very precise model of the system and have
thus focused on analyzing hardware or system de-
signs, where the resulting model tends not to be too
large. They employ sophisticated optimization tech-
niques to reduce the model, but even then must of-
ten rely on users to help find suitable model abstrac-
tions to help keep performance tractable.

FLAVERS, on the other hand, has been designed to
verify software systems. It relies on relatively stan-
dard compiler front-end and optimization techniques
to create a control flow graph-based model of the
system. Concurrency is represented using MIP edges
to represent potential interleaved execution, instead
of enumerating all possible system states. This model
basically trades off compactness for precision. If sub-
sequent analysis demonstrates that more precision
is required to achieve conclusive results, the analyst
directs the system, via constraints, to add more de-
tail. Thus, the model is built up incrementally, with
some support for the automatic creation of com-
monly used types of constraints. Although the an-
alyst has to help select the constraints to be added,
we believe that this is usually more straightforward
than developing the abstractions needed to reduce
the size of reachability-based models. In either case,
more automated techniques would be useful to as-
sist analysts with these tasks.

Although constraints are a very powerful mechanism
for selectively adding more semantic information and
for modeling additional information, when they are
manually created by an analyst, they may be incor-
rect. It is important to document the assumptions
(i.e., the constraints) under which each property is
verified. For those constraints that are manually cre-
ated, assertion monitoring techniques might also be
useful to determine if such constraints are ever vi-
olated during execution.

Our experimental results indicate that the FLAVERS
approach is effective for verifying a wide range of
event-based properties. In addition to the dining phi-
losophers system, we have verified properties for a
number of Ada programs. The underlying models

that FLAVERS employs, an FSA for representing prop-
erties and an annotated control flow graph for repre-
senting systems, are relatively general. Thus FLAVERS
has been applied to different programming languages
and property specification languages. For example,
in addition to our FLAVERS/Ada and FLAVERS/Java
prototypes, others have developed systems for Jo-
vial and C//. In addition, FLAVERS has been used
to verify properties of process programs16 and ar-
chitecture descriptions.15

Our two prototypes have clearly demonstrated proof
of concept. FLAVERS/Ada is the more mature of the
prototypes and has been used to verify small-to-me-
dium-sized systems, ranging from one hundred lines
to thirty thousand lines of source code. Unfortu-
nately, the cost of such verification seems to be very
dependent on the actual system and properties be-
ing considered.48 Systems that have events on most
statements and have a great deal of intertask com-
munication tend to require considerably more time
and space for their analysis. Moreover, small changes
in a program or in a property can have a large im-
pact on resource utilization, causing predictions of
the cost for a particular analysis to be unreliable.

There are several areas of future research that we
intend to explore. We are very interested in further
developing the FLAVERS/Java prototype. Java pro-
vides a number of interesting language constructs
that need to be investigated further. Although we
have developed an approach for dealing with the
eclectic set of Java concurrency constructs,14 more
experimentation needs to be done.

Many of the optimizations used in FLAVERS are, or
could be, applied by other FSV systems. The Ban-
dera system is trying to provide general front-end
support, for FSV systems, that would incorporate
many of the transformations used in FLAVERS, as well
as several others. Others are exploring alternative
reduced internal representations. Although these op-
timizations and reduced representations help in
many cases, they do not appear to be adequate when
dealing with most software systems. FLAVERS’ incre-
mental approach assumes that, even when such op-
timizations are applied, the model will usually be un-
necessarily large and thus it is preferable to produce
a smaller, more tractable model initially and then
rely on constraints to improve the model. Currently,
the analyst must make the decisions about what con-
straints to add, but in our future work we intend to
explore ways of providing more automated support
for constraining the problem based on past results.

COBLEIGH, CLARKE, AND OSTERWEIL IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002162

In addition, we are also investigating ways in which
to make specifying properties easier. Although we
have tried to support notations that are more nat-
ural for practitioners to use than predicate calculus
or temporal logic-based notations,49,50 it is still dif-
ficult to capture a property specification precisely.
Building upon the work in specification patterns,51

we are trying to develop natural language templates
that help analysts understand and select among the
choices associated with each pattern.

Finally, we are exploring compositional approaches
to the analysis. Although our current techniques for
optimizing the TFG have been surprisingly success-
ful, they clearly will not work for systems of any ar-
bitrary size. It is clear that we need to find ways in
which subsystems can be verified and the results then
combined.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references and notes

1. E. W. Dijkstra, Notes on Structured Programming, Academic
Press, London (1972), pp. 1–82.

2. R. Floyd, “Assigning Meaning to Programs,” Proceedings,
Symposium on Applied Mathematics, Volume 19, American
Mathematical Society, Providence, RI (1967), pp. 19–32.

3. S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert,
“PVS: An Experience Report,” Applied Formal Methods—
FM-Trends 98, Volume 1641 of Lecture Notes in Computer
Science, D. Hutter, W. Stephan, P. Traverso, and M. Ullman,
Editors, Springer-Verlag, Boppard, Germany (October 1998),
pp. 338–345.

4. E. M. Clarke and J. M. Wing, “Formal Methods: State of the
Art and Future Directions,” ACM Computing Surveys 28, No.
4, 626–643 (December 1996).

5. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang, “Symbolic Model Checking: 1020 States and Be-
yond,” Information and Computing 98, No. 2, 142–170 (1992).

6. K. L. McMillan, Symbolic Model Checking: An Approach to
the State Explosion Problem, Kluwer Academic Publishers,
Boston, MA (1993).

7. G. J. Holzmann, “The Model Checker SPIN,” IEEE Trans-
actions on Software Engineering 23, No. 5, 279–295 (May
1997).

8. R. J. Anderson, P. Beame, S. Burns, W. Chan, F. Modugno,
D. Notkin, and J. D. Reese, “Model Checking Large Soft-
ware Specifications,” IEEE Transactions on Software Engi-
neering 24, No. 7, 498–520 (July 1996).

9. J. M. Wing and M. Vaziri-Farahani, “Model Checking Soft-
ware Systems: A Case Study,” Proceedings, Third ACM SIG-
SOFT Symposium on the Foundations of Software Engineer-
ing, Washington, DC (October 10–13, 1995), pp. 128–139.

10. This research was partially supported by the U.S. Department
of Defense/Army and the Defense Advanced Research Projects
Agency under Contract DAAH01-00-C-R231, by the National
Science Foundation under Grant CCR-9708184, and by IBM
Faculty Partnership Awards. The U.S. government is autho-
rized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of the Defense Advanced Research Projects
Agency, the Air Force Research Laboratory/IFTD, the U.S.
Department of Defense, the U.S. Army, the U.S. government,
the National Science Foundation, or of IBM.

11. K. M. Olender and L. J. Osterweil, “Cecil: A Sequencing Con-
straint Language for Automatic Static Analysis Generation,”
IEEE Transactions on Software Engineering 16, No. 3, 268–
280 (March 1990).

12. M. B. Dwyer and L. A. Clarke, “Data Flow Analysis for Ver-
ifying Properties of Concurrent Programs,” Proceedings, Sec-
ond ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, New Orleans, LA (December 6–9, 1994),
pp. 62–75.

13. M. B. Dwyer and L. A. Clarke, Flow Analysis for Verifying Spec-
ifications of Concurrent and Distributed Software, Technical
Report 99-52, University of Massachusetts, Department of
Computer Science, Amherst, MA (August 1999).

14. G. Naumovich, G. S. Avrunin, and L. A. Clarke, “Data Flow
Analysis for Checking Properties of Concurrent Java Pro-
grams,” Proceedings, 21st International Conference on Software
Engineering, Los Angeles, CA (May 16–22, 1999), pp. 399–
410.

15. G. Naumovich, G. S. Avrunin, L. A. Clarke, and L. J. Os-
terweil, “Applying Static Analysis to Software Architectures,”
Proceedings, Joint 6th European Software Engineering Confer-
ence and 5th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Zurich, Switzerland (September 22–
25, 1997), pp. 77–93.

16. J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil, “Verifying
Properties of Process Definitions,” Proceedings, International
Symposium on Software Testing and Analysis, Portland, OR
(August 22–24, 2000), pp. 96–101.

17. A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison-Wesley Publishing Co., Read-
ing, MA (1986).

18. FLAVERS does not currently handle recursive subprograms,
although standard techniques for dealing with recursion could
be extended and incorporated.

19. R. N. Taylor, “Complexity of Analyzing the Synchronization
Structure of Concurrent Programs,” Acta Informatica 19, No.
1, 57–84 (April 1983).

20. G. Naumovich and G. S. Avrunin, “A Conservative Data Flow
Algorithm for Detecting All Pairs of Statements that May
Happen in Parallel,” Proceedings, Sixth ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, Lake
Buena Vista, FL (November 3–5, 1998), pp. 24–34.

21. G. Naumovich, G. S. Avrunin, and L. A. Clarke, “An Effi-
cient Algorithm for Computing MHP Information for Con-
current Java Programs,” Proceedings, Joint 7th European Soft-
ware Engineering Conference and 7th ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Tou-
louse, France (September 6–10, 1999), pp. 338–354.

22. G. Naumovich, L. A. Clarke, and L. J. Osterweil, “Efficient
Composite Data Flow Analysis Applied to Concurrent Pro-
grams,” Proceedings, ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, Mon-
treal, Canada (June 16, 1998), pp. 51–58.

23. T. J. Marlowe and B. G. Ryder, “Properties of Data Flow
Frameworks: A Unified Model,” Acta Informatica 28, 121–
163 (1990).

24. Clever bookkeeping can improve the efficiency of line 5 of
the meta-algorithm. As presented, each tuple of node n is

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 163

propagated to node m on every loop iteration. In our im-
plementation, each node keeps track of what tuples it has
propagated to its successors, so when line 5 is reached only
new tuples are propagated.

25. J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil, “The Right
Algorithm at the Right Time: Comparing Data Flow Anal-
ysis Algorithms for Finite State Verification,” Proceedings,
23rd International Conference on Software Engineering,
Toronto, Canada (May 12–19, 2001), pp. 37–46.

26. In this example, both philosophers pick up fork 1 and then
fork 2, meaning one philosopher picks up the left fork first
while the other philosopher picks up the right fork first. This
is necessary to prevent deadlock in the system.

27. The variable “done” is used to break the loop to allow the
program to terminate, since FLAVERS currently considers
only tuples that reach the final node. Although we do not
address this issue in this paper, work has been done on ex-
tending our approach to prove properties over infinite ex-
ecutions. See G. Naumovich and L. A. Clarke, “Extending
FLAVERS to Check Properties on Infinite Executions of
Concurrent Software Systems,” Proceedings, Workshop on En-
gineering Automation for Software Intensive System Integration,
Monterey, CA (June 18–22, 2001), pp. 126–135.

28. FLAVERS requires that FSAs be total, meaning that they
have a transition from every state on every event in the al-
phabet. The FSA in Figure 1 and the other FSAs that we show
are not total in order to make them more compact and easier
to understand. They can easily be made total, by adding a
trap state that is nonaccepting and has all self-loop transi-
tions and by adding transitions from the existing states of the
FSAs to this trap state on events where transitions do not
already exist.

29. When inlining was performed, variables in called methods
were renamed to avoid collisions. Thus, in the philosopher1
task, success1_1 represents the variable success in the method
up and success1_2 represents the variable success in the
method down. Similarly, for the philosopher2 task, variables
success2_1 and success2_2 are used.

30. We can do better than this by using a partial order optimi-
zation that can reduce the number of MIP edges by noting
that certain interleavings are equivalent with respect to the
property and constraints. Thus, it is only necessary to con-
sider one interleaving from each equivalence class. See
G. Naumovich, L. A. Clarke, and J. M. Cobleigh, “Using Par-
tial Order Techniques to Improve Performance of Data Flow
Analysis Based Verification,” Proceedings, ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, Toulouse, France (September 6, 1999), pp.
57–65.

31. D. Jackson and M. Vaziri, “Finding Bugs with a Constraint
Solver,” Proceedings, International Symposium on Software
Testing and Analysis, Portland, OR (August 21–23, 2000), pp.
14–25.

32. R. N. Taylor, F. C. Belz, L. A. Clarke, L. Osterweil, R. W.
Selby, J. C. Wileden, A. L. Wolf, and M. Young, “Founda-
tions for the Arcadia Environment Architecture,” Proceed-
ings, ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical Software Development Environments
(November 1988), pp. 1–13.

33. G. S. Avrunin, J. C. Corbett, M. B. Dwyer, C. S. Pǎsǎreanu,
and S. F. Siegel, Comparing Finite-State Verification Tech-
niques for Concurrent Software, Technical Report 99-69, Uni-
versity of Massachusetts, Department of Computer Science,
Amherst, MA (November 1999).

34. K. Forester, C. MacFarlane, M. Cameron, and G. Bolcer, Chi-

ron-1 User Manual, Arcadia Document UCI-93-07, Univer-
sity of California, Irvine, CA (September 1993).

35. G. S. Avrunin, U. A. Buy, J. C. Corbett, L. K. Dillon, and
J. C. Wileden, “Automated Analysis of Concurrent Systems
with the Constrained Expression Toolset,” IEEE Transactions
on Software Engineering 17, No. 11, 1204–1222 (November
1991).

36. In this experiment, FLAVERS often had the worst perfor-
mance on the smaller problems, but it was the only FSV sys-
tem that began its analysis by dealing with actual source code,
rather than an abstract model of source code.

37. L. J. Osterweil and L. D. Fosdick, “DAVE—A Validation
Error Detection and Documentation System for FORTRAN
Programs,” Software—Practice and Experience 6, 473–486
(1976).

38. K. M. Olender and L. J. Osterweil, “Interprocedural Static
Analysis of Sequencing Constraints,” ACM Transactions on
Software Engineering and Methodology 1, No. 1, 21–52 (Jan-
uary 1992).

39. P. Godefroid, “Model Checking for Programming Languages
Using VeriSoft,” Proceedings, 24th ACM Symposium on Prin-
ciples of Programming Languages, Paris, France (January 15–
17, 1997), pp. 174–186.

40. G. J. Holzmann, “Logic Verification of ANSI-C Code with
SPIN,” Proceedings, Seventh SPIN Workshop, Stanford, CA
(August 30–September 1, 2000), pp. 131–147.

41. W. Visser, K. Havelund, G. Brat, and S.-J. Park, “Model
Checking Programs,” Proceedings, Fifteenth IEEE Interna-
tional Conference on Automated Software Engineering (Sep-
tember 2000), pp. 3–12.

42. T. Ball and S. K. Rajamani, “Automatically Validating Tem-
poral Safety Properties of Interfaces,” Proceedings, Eighth
SPIN Workshop, Toronto, Canada (May 19–20, 2001), pp.
101–122.

43. T. Ball and S. K. Rajamani, “Bebop: A Symbolic Model
Checker for Boolean Programs,” Proceedings, Seventh SPIN
Workshop, Stanford, CA (August 30–September 1, 2000), pp.
113–130.

44. J. C. Corbett, M. B. Dwyer, J. Hatcliff, R. Joehanes,
S. Laubach, C. S. Pǎsǎreanu, Robby, and H. Zheng, “Ban-
dera: Extracting Finite-State Models from Java Source Code,”
Proceedings, 22nd International Conference on Software En-
gineering, Limerick, Ireland (June 4–11, 2000).

45. M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S.
Pǎsǎreanu, Robby, W. Visser, and H. Zhen, “Tool-Support-
ed Program Abstraction for Finite-State Verification,” Pro-
ceedings, 23rd International Conference on Software Engineer-
ing, Toronto, Canada (May 12–19, 2001), pp. 177–187.

46. M. B. Dwyer, J. Hatcliff, and H. Zheng, “Slicing Software for
Model Construction,” Proceedings, ACM/SIGPLAN Sympo-
sium on Partial Evaluation and Semantic-Based Program Ma-
nipulation, San Antonio, TX (January 22–23, 1999), pp. 105–
118.

47. D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking Sys-
tem Rules Using System-Specific, Programmer-Written Com-
piler Extensions,” Proceedings, Fourth Symposium on Oper-
ating Systems Design and Implementation, San Diego, CA
(October 23–25, 2000).

48. A. T. Chamillard, L. A. Clarke, and G. S. Avrunin, An Em-
pirical Comparison of Static Concurrency Analysis Techniques,
Technical Report 96-84, University of Massachusetts, Depart-
ment of Computer Science, Amherst, MA (May 1996).

49. A. Pnueli, “The Temporal Logic of Programs,” Proceedings,
Eighteenth Symposium on Foundations of Computer Science,
Providence, RI (October 31–November 2, 1977), pp. 46–57.

COBLEIGH, CLARKE, AND OSTERWEIL IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002164

50. E. A. Emerson, “Temporal and Modal Logic,” Handbook of
Theoretical Computer Science, Volume B: Formal Models and
Semantics, J. van Leeuwen, Editor, Elsevier Science Publish-
ers (1990), 995–1072.

51. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in
Property Specifications for Finite-State Verification,” Pro-
ceedings, 21st International Conference on Software Engineer-
ing, Los Angeles, CA (May 1999), pp. 16–22.

Accepted for publication September 19, 2001.

Jamieson M. Cobleigh University of Massachusetts, Amherst,
Massachusetts 01003 (electronic mail: jcobleig@cs.umass.edu).Mr.
Cobleigh received a B.S. degree in computer science and math-
ematics from Rutgers University and is currently a computer sci-
ence graduate student at the University of Massachusetts. His
thesis is investigating compositional approaches to finite state ver-
ification. He is a recipient of the WellFleet Fellowship and is a
graduate research assistant.

Lori A. Clarke University of Massachusetts, Amherst, Massachu-
setts 01003 (electronic mail: clarke@cs.umass.edu). Dr. Clarke re-
ceived a B.A. degree in mathematics from the University of Roch-
ester and a Ph.D. degree in computer science from the University
of Colorado. In 1975 she joined the computer science faculty at
the University of Massachusetts, where she has continued to pur-
sue research on a broad range of software engineering issues, in-
cluding verification of distributed systems and distributed object
technology. Dr. Clarke is a Fellow of the ACM, a recipient of the
University of Massachusetts Chancellor’s medal, a member of the
IEEE Computer Society Publications Board, the board of direc-
tors of the Computing Research Association (CRA), and the
steering committee for the International Conference on Software
Engineering (ICSE). She is a former IEEE Distinguished Vis-
itor, ACM National Lecturer, member of the NSF CCR advisory
board, recipient of a University Faculty Fellowship, associate ed-
itor of ACM Transactions on Programming Languages and Sys-
tems and the IEEE Transactions on Software Engineering, and
secretary/treasurer, vice-chair, and chair of SIGSOFT. She has
served on or chaired numerous program committees and is gen-
eral chair of ICSE 2003.

Leon J. Osterweil University of Massachusetts, Amherst, Massa-
chusetts 01003 (electronic mail: ljo@cs.umass.edu). Dr. Osterweil
is currently Dean of the College of Natural Sciences and Math-
ematics at the University of Massachusetts, where he is also a
professor in the Department of Computer Science, codirector of
the Laboratory for Advanced Software Engineering Research
(LASER), and founding codirector of the Electronic Enterprise
Institute. Previously he had been a professor in, and chair of, com-
puter science departments at both the University of California,
Irvine, and the University of Colorado, Boulder. He was the found-
ing director of the Irvine Research Unit in Software (IRUS) and
the Southern California Software Process Improvement Network
(SPIN). He has been the program committee chair for the Six-
teenth International Conference on Software Engineering, the
Second International Symposium on Software Testing, Analysis,
and Validation, the Fourth International Software Process Work-
shop, the Second Symposium on Software Development Envi-
ronments, and both the Second and Fifth International Confer-
ences on the Software Process. He was also the general chair of
the Sixth ACM SIGSOFT Conference on the Foundations of Soft-
ware Engineering. He has been a member of the editorial boards
of the ACM Transactions on Software Engineering Methods, IEEE

Software, and Software Process Improvement and Practice. He has
presented keynote talks at CASE ’92 in Montreal, Quality Week
2000 in San Francisco, the Inaugural Symposium of JAIST (the
Japan Advanced Institute for Software Technology) in Kanazawa,
Japan, and ICSE 9 (the Ninth International Conference on Soft-
ware Engineering), where he introduced the concept of process
programming. His ICSE 9 paper has been awarded a prize as the
most influential paper of ICSE 9, awarded as a 10-year retrospec-
tive. He has consulted for IBM, Bell Laboratories, SAIC, MCC,
and TRW, and SEI’s Process Program Advisory Board. Dr. Os-
terweil is a Fellow of the ACM.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 COBLEIGH, CLARKE, AND OSTERWEIL 165

